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ABSTRACT

IntServ Resource ReSerVation Protocol (RSVP) is based on end-
to-end signaling and the current HAIPE specification does not
allow for RSVP signaling to be bypassed across cryptographic
boundaries. Since end-to-end RVSP signaling traffic is not
bypassed across HAIPE boundaries, it does not seamlessly allow
for IntServ based QoS provisioning within the core Black
network. This leads us to the challenge of defining a mechanism
by which IntServ/RSVP can be supported within the core Black
network. We built upon our prior work on a dynamic Dif/Serv
network QoS management framework developing an IntServ
implementation that operates across HAIPE boundary. The
objective of our effort was to allow for individual IntServ/RSVP
sessions in the red security enclave to be aggregated into afinite
set of dynamically instantiated IntServ/RSVP sessions between
ingress and egress nodes within the black security enclave. We
used simple policy based management whereby the RSVP
daemon on the ingress black node monitors the DSCP values on
its outbound ports to initiate the creation or deletion of
aggregated IntServ/RSVP sessions to the appropriate egress
black node. These egress black node sessions are dynamically
resized based on traffic demand and network state. This
approach allowed for end-to-end IntServ across HAIPE
boundaries.

Keywords: QoS, DiffServ, IntServ, RSVP, IP Security, HAIPE,
dynamic ad hoc mobile heterogeneous networks

I. INTRODUCTION

Department of Defense (DoD) policies require the use of High
Assurance Internet Protocol Encryptor (HAIPE) devices that
provide cryptographic isolation between data in red security
enclaves and data that is transported across a black shared transit
network through HAIPE tunnels, i.e., IP Security (IPSec) tunnel
mode with Encapsulating Security Payload (ESP). As a result,
packet exchanges and even IP addresses visible in the red
enclaves are opaque to the black network. This segmentation of
the network at cryptographic boundaries impacts the operation
of QoS mechanisms, most of which require signaling messages
to be passed between peer network elements. The QoS
mechanism that is presently compatible with HAIPE is
Differentiated Services (DiffServ). While DiffServ provides Per
Hop Behavior (PHB) management, end-to-end QoS provisioning
via Integrated Services (IntServ) across both the red and black
security enclaves is required for specific real-time traffic flows.
IntServ enables per domain behavior (PDB) provisioning for a
session via end-to-end QoS provisioning from the source to the

destination nodes. A key challenge in the deployment of IntServ
within current HAIPE specification environment is that only the
Type of Service (ToS) byte in IPv4, which includes the 6-bit
DiffServ Code Point (DSCP) and the 2-bit Explicit Congestion
Notification (ECN) may be bypassed across cryptographic
boundaries while IntServ Resource ReSerVation Protocol
(RSVP) signaling cannot be bypassed. Since RVSP signaling
traffic is not bypassed, it does not seamlessly allow for IntServ
based QoS provisioning within the core Black network. We built
upon our prior work on a dynamic DiffServ network QoS
management framework by developing an IntServ
implementation that operates across HAIPE boundary [1]. The
objective of our effort was to allow for individual IntServ/RSVP
sessions in the red security enclave to be aggregated into a finite
set of dynamically instantiated IntServ/RSVP sessions between
the ingress and egress nodes within the black security enclave.

II. INTSERV PROVISIONING OVER DIFFSERV
NETWORKS

IntServ enables PDB provisioning for a session via end-to-end
QoS provisioning from the source to the destination nodes [2].
IntServ uses a protocol called RSVP by which applications can
request end-to-end per-conversation QoS from the network, and
can indicate QoS requirements and capabilities to peer
applications [3]. As illustrated in Figure 1, we have integrated
RSVP-based IntServ implementation (IETF RFC 2210) into our
existing QoS Service Provider framework. The QoS request
signaled via RSVP is mapped to a specific filter and an
appropriate policer within the underlying DiffServ Traffic
Control (TC) scheduler [4].

In order to incorporate the use of IntServ into our QoS Service
Provider, we used the KOM RSVP environment developed at
the Technical University of Darmstadt in Darmstadt, Germany
[5]. This environment consists of an RSVP protocol engine
implemented as a user space daemon with a client API. The code
was written in C++ and has been compiled and tested on Linux,
Solaris, and FreeBSD. For a description of using RSVP with
Integrated Services, see IETF RFC 2210.

There are two situations when the QoS Service Provider and the
RSVP daemon must interact. The first is when the QoS Service
Provider is requested to use IntServ for a network connection.
The second is upon the receipt of a RSVP RESV message by the
RSVP daemon. The first point of interaction required functions
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Figure 1: Network QoS Management Architecture

to allow the QoS Service Provider, written in C, to be able to use
the C++ API of the RSVP daemon. We accomplished this by
using the extem "C" function qualifier in C++, to define
functions that could be called from the C code of the QoS
Service Provider, but could be compiled in C++ and could thus
call the C++ functions of the RSVP API. The second point of
interaction was written entirely in C++ within the RSVP
daemon. These two situations will be described in detail below.

An application using the QOSAPI may request that IntServ be
used for the network connection by setting the qosmech field, in
the qos info data structure, to INTSERV or alternatively the
QoS levels requested for the network connection may be mapped
to INTSERV by the QoS Service Provider. The QoS Service
Provider must first be configured to support IntServ by
specifying which DiffServ class will be used for IntServ traffic.
This is done by placing a statement of the form "RSVP CLASS
AF4" in the DiffServ configuration file used to invoke the QoS
Service Provider. This class will be reserved for IntServ traffic.
This statement should be consistent across all hosts/routers using
RSVP.

Upon receiving the request from the sending application, the
QoS Service Provider will create a filter to map that flow into
the DiffServ class as defined above. It will then use the API of
the RSVP daemon to create a sender object. This action will
initiate the sending of a RSVP PATH message to the destination.
At the destination, there must be a receiving application running
that has registered with the RSVP daemon on that host that it
will accept RSVP PATH messages to that IP address, port
number and protocol. This receiving application need not be the
same process as the one that will actually accept the network
connection. Thus, legacy applications can be used with only a
small separate proxy application to handle the RSVP signaling.
It would be an easy task to design a proxy application that could
handle the RSVP signaling for any number of legacy
applications by reading appropriate information from a
configuration file.

The job of the receiving application is to take the RSVP PATH
message and, using the API of the RSVP daemon on that host,

request the creation of a reservation. This action will initiate the
sending of a RSVP RESV message hop-by-hop back to the
sender along the reverse path of the PATH message. At each
hop, upon receipt of the RESV message, the RSVP daemon will
check the scheduler on that interface for admission control. This
is the second point of interaction between the QoS Service
Provider and the RSVP daemon.

The scheduler interface in KOM RSVP consists of an abstract
class called BaseScheduler with five pure virtual functions that
must be defined for a concrete class. These five functions
initialize a scheduler, add a flowspec, delete a flowspec, add a
filter, and delete a filter. Specific classes such as CBQ and
HFSC were subclassed from BaseScheduler. Using these
subclasses as examples, we subclassed the SchedulerQOSSP
class from the BaseScheduler class. An object of this class will
communicate to the QoS Service Provider over a UNIX socket
for admission control and filter creation. The QoS Service
Provider keeps track of how much bandwidth has been allocated
for IntServ flows and also knows the bandwidth that was
initially allocated to the DiffServ class reserved for IntServ. It
uses this information for admission control decisions. The filter
for this flow is placed at the top level of the DSMARK QDISC
for the DiffServ class used for IntServ, see Figure 2. The filter
has its own policer for this flow. As long as the flow stays within
its requested bandwidth, that flow will be mapped to the lowest
dropping level for that DiffServ class. However, if that flows
exceeds its requested bandwidth, any excess traffic will be
mapped to a higher dropping precedence level in that class. The
SchedulerQOSSP implements only the controlled-load service,
see IETF RFC RFC221 1 [6].

HTB Classes Policing Marking Dropping Queues
P. Levels(AF)

1:I I
1

-

E
QDISC 11:0 DSMARK

Figure 2: DiffServ implementation using Linux TC elements

If the RESV message succeeds at every hop on the way back to
the sending host and if the application has specified that it wants
to be notified of events of the type RESV RECEIVED-EVENT,
the RESV message will be sent to a callback routine defined by
the application. If admission control fails at any point along the
path back to the sender, the RSVP daemon on that host stops
transmission of the RESV message at that point and sends a
RESV_ERROR message back to the receiving proxy. The
receiving proxy will release the original reservation, causing a
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RESV TEAR to be sent hop-by-hop back to the host generating
the RESV ERROR. The RSVP daemon will also notify the QoS
Service Provider on that host to send a message to the QoS
Service Provider on the host originating the RSVP PATH
request, notifying it of the RESV ERROR. The QoS Service
Provider on the originating host will notify the application's
callback of the event if the application has requested to be
notified of events of the type RESV ERROR EVENT. If the
QoS Service Provider on the originating host has not received a
RESV message or a RESV_ERROR message within a
configurable amount of time, it will call the application's
callback if the application has specified that it wants to be
notified of events of the type
RESV_NOT_RECEIVED_EVENT.

Upon the application calling QClose for the socket, the QoS
Service Provider will use the RSVP API to release the sender
object originally created on opening the connection. This action
will initiate the sending of a PATH TEAR message to the
destination. At each hop along the path to the destination, the
RSVP daemon will release all resources for that flow and inform
the scheduler to remove all references to that flow. The
SchedulerQOSSP will send this information to the QoS Service
Provider, which will remove the filter for that flow.

If the QoS Service Provider receives notification of a link
change, while it has been configured for supporting IntServ, it
will first adjust the rates allocated to the different Differentiated
Services classes. It will then compare the newly calculated rate
of the Differentiated Services class reserved for RSVP with the
amount of bandwidth currently allocated to RSVP flows. If the
new rate is still greater than or equal to what is currently
allocated, the QoS Service Provider will do nothing. If, however,
the new rate is less than the amount currently allocated to RSVP
flows, it will make some adjustments.

It will calculate how much to reduce the rate for each RSVP
flow proportionately in order for the sum of the flows to be
equal to the new rate of the Differentiated Services class
reserved for RSVP. Then it will adjust the rates of the policers
attached to the filters for each RSVP flow. In case if a
fluctuating bandwidth, it will wait a configurable amount of time
to see if the bandwidth of the link increases to a level sufficient
for all RSVP flows to have their originally requested rates, in
which case it will adjust the rates on the policers to their original
rates. However, if the rate remains too low, it will notify the QoS
Service Provider on the host of the sender of each RSVP flow
that its rate on this node has been reduced, using the TCP socket
reserved for communications between QoS Service Providers.

III. INTSERV PROVISIONING ACROSS HAIPE
BOUNDARIES

DoD policies require the use of HAIPE devices that provide
cryptographic isolation between data in red security enclaves
and data that is transported across a black shared transit network
through HAIPE tunnels, i.e., IPSec tunnel mode with ESP, see
Figure 3. As a result, packet exchanges and even IP addresses

visible in the Red enclaves are opaque to the Black network.
This segmentation of the network at cryptographic boundaries
impacts the operation of QoS mechanisms, most of which
require signaling messages to be passed between peer network
elements. The QoS mechanism that is presently compatible with
HAIPE is DiffServ. While DiffServ provides PHB management,
end-to-end QoS provisioning via IntServ across both the red and
black security enclaves is required for specific real-time traffic
flows.
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Figure 3: Information Security Deployment Topology

IntServ enables PDB provisioning for a session via end-to-end
QoS provisioning from the source to the destination nodes. Our
current capability to dynamically create and remove DiffServ
policer enables us to map the IntServ session to a unique policer
or can be mapped to an existing DiffServ class policer if an
aggregated flow control is acceptable. This development
provides the framework for further extension to incorporate
aggregation of RSVP sessions (similar to IETF RFC 3175) at
specific intermediary nodes within the infrastructure [7,8,9].
Within JTRS, FCS, TCA networks the ideal place for these
aggregation and deaggregation points are the ingress and egress
Red/Black boundaries within High Assurance Internet Protocol
Interoperability Specification (HAIPIS) environments.
Scalability of RSVP-based IntServ is an issue in particular when
traversing across Red/Black boundaries within a HAIPIS
environment. Aggregation of RSVP reservations provides a
means of aggregating individual RSVP reservations into a single
RSVP reservation across a transit routing region. This routing
region is akin to virtual paths and this approach readily applies
to the HAIPE environment across the ingress and egress
Red/Black boundaries.

A key challenge in the deployment of IntServ within a HAIPE
environment is that currently (HAIPIS Version 2.0) only the ToS
byte in IPv4, consisting of 6-bit DSCP and 2-bit ECN, may be
bypassed across the Red/Black boundaries. RSVP is based on
end-to-end signaling and the current HAIPE specification does
not allow for RSVP signaling to be bypassed across the
Red/Black and Black/Red boundaries. The rational for this
restriction is to minimize the amount of plain-text information
that can be bypassed across the Red/Black and Black/Red
security enclaves to maintain desired levels of Information
Assurance against security threats such as traffic analysis and
Denial of Service (DoS) attacks. Since RSVP signaling traffic is
not bypassed it is carried within HAIPE tunnels it does not allow
for QoS provisioning within the core Black network. This leads
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to the challenge of defining a mechanism by which RSVP-based
IntServ can be supported within the core Black network.

The objective is to provision RSVP-based IntServ within the
HAIPE based core Black network as a function of the RSVP-
based IntServ sessions between Red network clients separated
by a core Black network. An approach to accomplishing this via
explicit signaling is by allowing for in-band bypass of RSVP
signaling across Red/Black and Black/Red HAIPE boundaries.
Alternatively one may support out-of-band secure
private/proprietary control signaling across the Red/Black
HAIPE boundary. In both cases there is a need for explicit
transfer of control information across the HAIPE boundary that
is currently not permitted. While the long-term goal is to achieve
greater resource management control, it would require approval
from government National Security Agency (NSA). NSA would
likely pose barriers due to the additional exposure of plain-text
information within the core Black network. As an alternative, we
have defined an implicit signaling mechanism by which RSVP-
based IntServ can be supported in the core Black network,
within current HAIPE specification constraints for the bypass of
information across the Red/Black and Black/Red boundaries.
Our approach leverages the bypass allowed in the current
HAIPE specification, 6-bit DSCP and 2-bit ECN across the
Red/Black boundary and 2-bit ECN across the Black/Red
boundary. This approach does not require any additional control
signaling bypass while allowing for provisioning of RSVP-based
IntServ within the HAIPE based core Black network as a
function of the RSVP-based IntServ sessions between Red
network clients separated by a core Black network. This design
and software implementation will enable end-to-end QoS
provisioning, via RSVP-based IntServ, for real-time applications
within JTRS, FCS, TCA networks.

We build upon the dynamic DiffServ network QoS management
framework by developing IntServ implementation that operates
across HAIPE boundary. The goal of this task is to allow for
individual RSVP-based IntServ sessions on the red security
enclave to be aggregated into a finite set of dynamically
instantiated RSVP-based IntServ sessions between the ingress
and egress nodes within the black security enclave. We propose
to use policy based management whereby the RSVP daemon on
the ingress black node would monitor the DSCP values on its
outbound ports to initiate the creation or deletion of aggregated
RSVP-based IntServ sessions to the appropriate egress black
node. This proposed approach allows for end-to-end IntServ
across HAIPE boundaries. The DSCP values that would trigger
RSVP signaling within the black security enclave would be
based on the policy established during mission planning to
ensure consistent classification and policing within red and black
security enclaves. Following the initial development, we will
extend the end-to-end QoS provisioning functionality by
leveraging the ECN bypass across red/black boundaries and
traffic monitoring on the egress/ingress red boundaries to
dynamically resize the aggregated RSVP-based IntServ session's
resource allocations within the black security enclave.

The purpose of this Network QoS Management development
effort is to support aggregation of red-side RSVP traffic across
black networks in HAIPIS environment. In order to develop
code for traffic traversing across Red/Black boundaries, we have
simulated HAIPE encryption with IPSec (tunnel mode with
ESP) on a stand-alone Linux machine running the 2.6 kernel
(standard Fedora Core 2). We used the inline IPSec
implementation of the Linux 2.6 kernel, because FreeS/Wan
under the Linux 2.4 kernel did not support IP packet options,
which the RSVP messages require. The inline IPSec of the
Linux 2.6 kernel supports IP packet options. This simulated
HAIPE device does not run any of the code for the QoS Service
Provider or RSVP daemon; it merely simulates the HAIPE
encryption functionality. Each simulated HAIPE device has two
interfaces, one red and one black. The IPSec is configured so the
red network is hidden from the black side. All red traffic on the
black network is ESP encrypted and has source and destination
IP addresses of the black interfaces of the simulated HAIPE
devices.

Figure 4 illustrates our testbed consisting of seven machines. All
simulated HAIPE devices are running the Linux 2.6 kernel
(standard Fedora Core 2) and all others are running the Linux
2.4 kernel (standard Fedora Core 1). We have the interface of a
red client connected to the same subnet as the red interface of a
simulated HAIPE device. The black interface of the simulated
HAIPE device is connected to one interface in the first black
router. The second interface of this router is connected to an
intermediate black router, which is also connected the last black
router. This last black router is connected to the black interface
of the second HAIPE device. The red interface of this simulated
HAIPE device is connected to a second red client.

Red Client 1 H HAIPE Device 1 HAIPE Device 2 F Red Client 2

Black Router 1

Figure 4: Network QoS Management Testbed

We want the QoS Service Provider to have the ability to detect
RSVP traffic coming from the red network onto the black
network. So, the first black router between the HAIPE
encryption and the black network needs to be able to detect
RSVP traffic. Since we are using a specific AF class for RSVP
traffic and the DSCP value is copied through the IPSec
encryption, the kernel needs to be able to detect packets with a
source IP address of the simulated HAIPE device being routed to
an interface connected to the black network with DSCP values
of any of the three dropping levels corresponding to the AF class
reserved for RSVP traffic.

When the QoS Service Provider has been informed by the kernel
that it has seen packets with the appropriate DSCP values, we
want it to set up a black-side RSVP session between the first
black router and the last black router. This requires a table of
black-router-haipe-device connections, so that the QoS Service
Provider knows which black router to use as an RSVP endpoint
when it has a simulated HAIPE device destination address. Also,
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all intermediate black routers need this information when setting
up the black-side RSVP session, because, in order to set up the
TC filters, it will need to know the simulated HAIPE device IP
addresses, since they are what will be in the IP packet headers. If
the simulated or real HAIPE encryption is such that the source
IP address is the first black router, then this table would be
unnecessary. The table is a compile-time option in the QoS
Service Provider.

Also, we want the QoS Service Provider to tear down this black-
side RSVP session when there are no packets flowing through
that filter for a certain amount of time.

Kernel modifications

In order for the kernel to detect and report packets with a certain
source IP address and DSCP value, modifications to the kernel
were necessary. We extended the rtnetlink mechanism by adding
the message types RTM_NEWQOSSP, RTM_DELQOSSP, and
RTM GETQOSSP, by adding a broadcast group
RTMGRP_QOSSP DSCPWATCH and by defining the
qosspmsg structure in /usr/src/linux/include/linux/rtnetlink.h.
We added the function to process these message types in
/usr/src/linux/net/core/rtnetlink.c. When an application sends a
RTM NEWQOSSP message to the kernel, for a particular
interface, with a DSCP value and a source IP address, this
function will store these values, currently in a static array of 10.
Next, we added code to /usr/src/linux/net/ipv4/ip_forward.c that
will search this array whenever a packet is being forwarded. If
there is a match, the code saves the destination address, currently
in a static array of 10, so that it will not report this match again.
It then calls the function rtmsg_qosspinfo, in
/usr/src/linux/include/linux/rtnetlink.h which reports the
interface, DSCP value, source IP address and destination IP
address to the broadcast group
RTMGRP_QOSSP_DSCPWATCH.

An application can reset the monitoring of that DSCP value from
the source IP address to the destination IP address by sending a
RTM NEWQOSSP message to the kernel with those values.
Sending a RTM NEWQOSSP message with just a DSCP value
and source IP address, resets the monitoring of that combination
to all destination addresses. Sending a RTM DELQOSSP
message to the kernel with a DSCP value and source IP address,
removes that combination from the array.

Functions of the QoS Service Provider

The functions that the QoS Service Provider performs in order
for all this to function, depends on where it is in the
environment.

The QoS Service Provider on any red client does not need to do
anything special other than ensure that the DSCP value is set to
the appropriate AF class reserved for RSVP. In order to tell the
QoS Service Provider which DiffServ AF class to use for RSVP
traffic, the RSVP CLASS directive in the QoS Service
Provider's configuration file is used, as in RSVP_CLASS AF4.

This should be the same for all interfaces throughout the
environment on both the red side and the black side.

All black routers need the black-router-to-haipe-device table.
This is defined in the QoS Service Provider's configuration file
by using the BRHD directive as:

BRHD <IP address of Black Router 1> <IP address of
HAIPE Device 1>
BRHD <IP address of Black Router 3> <IP address of
HAIPE Device 2>

These entries should all be the same for all black routers in the
environment. After the QoS Service Provider has completely
read the configuration file, it will retrieve the IP address of all its
interfaces and, if any of them are in the black-router-to-haipe-
device table, it will mark them as local.

For black routers connected to simulated HAIPE devices and the
black network, we need to tell the QoS Service Provider which
interfaces are connected to the black network. The
WATCH FOR RSVP_DSCP directive in the QoS Service
Provider's configuration file is used to tell the QoS Service
Provider that an interface is connected to the black network and
that it needs to look for encrypted RSVP traffic coming from
other interfaces on the system that are connected to simulated
HAIPE devices.

If the QoS Service Provider sees the directive
WATCH FOR RSVP DSCP for an interface when reading its
configuration file, it will mark that interface as one to watch.
After completely reading the configuration file, for each
interface so marked, the QoS Service Provider will look through
the black-router-to-haipe-device table. For all local connections
in the table, it will set the kernel to watch for packets being
routed to that interface from the IP address of the simulated
HAIPE device with DSCP values of the three dropping levels of
the AF class reserved for RSVP.

The QoS Service Provider will then set up a listening netlink
socket for the RTMGRP_QOS_DSCPWATCH broadcast group.

In order for the endpoint black router to accept an RSVP PATH
message from another black router and generate an RSVP RESV
message along the return path, the QoS Service Provider will
setup a listening API on port 9999 with the RSVP daemon, on
any interface connected to a simulated HAIPE device.

Whenever, the kernel notifies the QoS Service Provider that it
has seen a packet with a certain DSCP, source IP address, and
destination IP address, the QoS Service Provider will check the
black-router-to-haipe-device table and attempt to setup an RSVP
session between port 9998 on itself and port 9999 on the black
router in the table corresponding to the destination IP address.
When the RSVP PATH message reaches the last black router, it
is forwarded to the QoS Service Provider, which initiates the
generation of an RSVP RESV message. At each black router
along the return path, if the session is accepted and if the ports
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are 9998 and 9999, the QoS Service Provider will consult the
black-router-to-haipe-device table to extract the simulated
HAIPE device IP addresses to create a TC filter. When the
original black router receives the RSVP RESV message and has
created the TC filter, it will begin to monitor the filter. Because
the RSVP daemon on the red-side will send REFREASH
messages every twenty to thirty seconds, if there is no traffic
through the filter for 100 consecutive seconds, the QoS Service
Provider will assume that the red-side RSVP session has been
closed and will generate an RSVP PATH TEAR message for the
black-side RSVP session.

The QoS Service Provider can dynamically adjust the bandwidth
reserved for an aggregated RSVP flow through the black
network based on the amount of RSVP traffic coming from the
red network for that particular flow. The QoS Service Provider
defines an aggregated RSVP increment as a percentage of the
rate assigned to the differentiated services class reserved for
RSVP through the black network. This percentage is ten percent
by default, but can be set to a different value in the QoS Service
Provider's configuration file. The aggregated RSVP session is
initially created with a flow rate of that percentage. The QoS
Service Provider will adjust the bandwidth reserved for the
aggregated RSVP flow up or down by that increment.

Every five seconds, the QoS Service Provider gathers statistics.
It keeps a list of aggregated RSVP flows and will check the
policiers for those flows. If there are any overlimit packets in an
aggregated flow, the QoS Service Provider will request the
RSVPD to increase the bandwidth for that flow by one
increment. If the aggregated flow rate is below the current
assigned rate minus the increment, it will request to decrease the
bandwidth for that aggregated flow by one increment. If the
aggregated flow is zero, it will request to decrease the bandwidth
for that flow to the lowest level, if it is not already there. If the
aggregated flow remains at zero for a configurable amount of
time, one hundred seconds by default, it will remove the RSVP
session.

The QoS Service Provider always saves the information for the
current reservation so that if any resize request should fail, it will
revert back to the last successful reservation. Specifically, when
the QoS Service Provider on a black router receives the first
PATH message from another black router for an aggregated
RSVP session, it will save the information from that message
and request a reservation, which results in the generation of the
RESV message hop by hop back to the source. Whenever it
receives another PATH message for that session requesting an
increased rate, it will copy the information from the last
reservation and again save the information from the current
message. It only saves the last successful PATH request and the
current PATH request. It will then generate a new RESV
message. If this message results in RESV ERROR, it will
reissue a reservation request for the same rate as the previous
successful reservation.
If the QoS Service Provider receives a RESV ERROR for an
aggregated RSVP reservation after attempting to increase the
rate of the reservation, but the flow is still generating overlimit

packets, it will create a filter that will mark the DSCP of that
packet to a higher dropping level as well as set the ECN
codepoint to Congestion Experienced (CE). The presence of CE
in the ECN codepoint in packets arriving in a red network will
indicate that the black side cannot reserve enough resources for
the amount of RSVP traffic flowing between two red networks.
It will be up to the red side to attempt to reduce the amount of
traffic.

IV. EXPERIMENT AND EVALUATION

Once the QoS Service Provider and the RSVP daemon are
started on all red clients and black routers, with the configuration
files appropriate for their positions in the network, we can start
an application, see Figure 4. First we start two server
applications on red client 2. One is an RSVP receive application
that tells the RSVPD that it will accept RSVP sessions on
interface 1, port 5666, UDP protocol. The second is a network
server that actually listens for UDP packets on port 5666 and just
prints them to the screen.

We now run a test client on red client 1 that sends a certain
number of UDP packets to red client 2. The client first sets the
qinfo.qosmech field in the qos_info structure to INTSERV and
calls the QSocket function for protocol SOCK DGRAM. When
QConnect is called, the QOSAPI sends this information to the
QoS Service Provider. Since qinfo.qosmech is set to INTSERV,
it will request an RSVP session from the RSVPD. The RSVPD
will send an RSVP PATH message to red client 2. As it is
leaving red client 1, its DSCP will be set to AF42. The packet is
forwarded to HAIPE device 1. Since it is from red network 1 to
red network 2, HAIPE device 1 will set up an IPSec tunnel
between itself an HAIPE device 2. Once the tunnel is
established, HAIPE device 1 will encrypt the RSVP PATH
message in an ESP packet and forward it to black router 1. Note
that the DSCP value in the RSVP PATH message is copied to
the ESP packet IP header. The kernel of black router 1 will
notice that a packet from HAIPE device 1 with DSCP set to
AF42 is being forwarded to its black-network interface and
inform the QoS Service Provider. Upon receiving this
notification, the QoS Service Provider will use the black-router-
to-haipe-device table to determine the black router addresses that
are connected to the source and destination IP addresses in the
ESP packet. It will use them to request, through the RSVP API,
an RSVP session between black router 1 and black router 3. The
RSVPD will initiate an RSVP PATH message to black router 3,
port 9999, ESP protocol. Since the QoS Service Provider on
black router 3 has started a receive API with those parameters,
the RSVPD will forward the RSVP PATH message to the QoS
Service Provider. The QoS Service Provider will request an
RSVP_RESV message to be sent hop-by-hop back to black
router 1. When the RSVPD on black router 2 receives the
RSVP RESV message, it requests the scheduler for admission,
which sends the request to the QoS Service Provider. If it has not
allocated all of the bandwidth reserved for AF4, it will allow
admission, which will result is a filter request. Since the
destination port is 9999, the QoS Service Provider knows it is
for aggregated RSVP, so it must consult the black-router-to-
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haipe-device table to retrieve the IP address that will be in the
ESP packet in order to create the TC U32 filter. This filter is
created in the DSMARK qdisc and will map the ESP packets
from HAIPE device 1 to HAIPE device 2 into AF4 1. The
RSVP_RESV message is then sent to black router 1, where the
same procedure will occur, but since this is the originating node
the RESV event is returned to the QoS Service Provider, which
now knows that the aggregated RSVP session is established. It
will start monitoring the packets going through the newly
created filter.

Meanwhile, the ESP packet will have traveled to HAIPE device
2, which will decrypt it and send it to red client 2. The RSVPD
on red client 2 will send it to the RSVP receive API application,
that we started earlier, which will request a reservation from the
RSVPD. The RSVPD will initiate an RSVP RESV message to
red client 1, which will be forwarded to HAIPE device 2. It will
encrypt the packet and send it out. It then flows back through the
black routers and goes to HAIPE device 1, which decrypts and
sends it to red client 1. The RSVPD on red client 1 will ask the
QoS Service Provider for admission. If admitted, a filter request
is sent to the QoS Service Provider, which will create a filter in
the DSMARK qdisc for AF4 in order to map the packets for this
flow into AF41. Since this is the originating node for the red
RSVP session, the QOSAPI is notified that the RESV was
received and it sets up a filter in the HTB qdisc to map this flow
to the DSMARK qdisc for AF4.

Now, when the application on red client 1 begins to send its
packets, the filter in the HTB qdisc sends this packet to the
DSMARK qdisc for AF4. As long as the flow stays within the
original flow spec request, the filter in the DSMARK qdisc will
mark the packets with the DSCP for AF41. When the packets
reach HAIPE device 1, they are encrypted in ESP packets and
sent to black router 1. On black router 1, since the DSCP is set to
AF41, the packets are sent to the DSMARK qdisc for AF4,
where the filter for that flow will again mark the DSCP as AF4 1,
as long as the flow stays within the original flow spec request.
The packets will flow through the black network with a DSCP of
AF41 as long as the flow stays within the original flow spec
request. When they reach HAIPE device 2, they are decrypted
and sent to red client 1 and eventually to the test server
application that we started earlier, which will print the original
message to the screen.

Meanwhile, the QoS Service Provider on black router 1 is
monitoring the flow through the filter for that flow in the
DSMARK qdisc for AF4. If there are no packets through that
filter for 100 seconds, the QoS Service Provider will request to
release the aggregated RSVP session, which will result in the
RSVPD sending an RSVP PATH TEAR message to black
router 3 and all allocations and filters are released along the
black network. The QoS Service Provider on black router 1 will
reset the monitoring in the kernel for DSCP of AF41, AF42, and
AF43 from HAIPE device 1.

V. SUMMARY

We have developed and demonstrated a Network QoS
Management framework that addresses the objective of
provisioning IntServ across cryptographic boundaries within the
Linux operating system environment. The Network QoS
Management framework includes DiffServ adaptation to
dynamic link states, QoS Service Provider, QoS API for QoS-
aware applications, and incorporation of RSVP-based IntServ
functionality. We have also extended the IntServ framework to
support aggregation of RSVP-based IntServ sessions in HAIPIS
environments with dynamic resizing capability. Finally, we have
extended the implementation of QoS provisioning via RSVP-
based IntServ across HAIPE boundaries to support interchange
of control signals, using the ECN bypass, for session error
handling and reporting functionality.

As a next step, we plan to build upon our QoS provisioning via
RSVP-based IntServ across HAIPE boundaries by adding the
capability for error handling and resource allocation resizing
based on bandwidth estimations of dynamic link states within
the network.
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