
Praveen Kaushik Sharma,
Joseph Loyall,
Richard E. Schantz,
Jianming Ye,
Prakash Manghwani,
and Matthew Gillen
BBN Technologies

George T. Heineman
Worcester Polytechnic Institute

Managing End-to-End
QoS in Distributed
Embedded Applications

Maintaining end-to-end quality of service (QoS) is a challenge in distributed real-

time embedded systems due to dynamically changing network environments and

resource requirements. The authors’ middleware QoS management approach

encapsulates QoS behaviors as software components. Using the Corba

Component Model, they build these specialized QoS components and combine

them to produce a comprehensive management system that maintains QoS. The

authors illustrate their approach by building a real-world medium-scale system

with these components. Using this example, they demonstrate the reusability of

each component in different contexts.

Distributed real-time embedded
(DRE) systems are increasingly at
the core of domains ranging from

telecommunications to medicine, disas-
ter response, and e-commerce. These sys-
tems are network-centric with real-time
constraints and use Internet protocols
and principles to communicate. In addi-
tion to stringent quality-of-service (QoS)
requirements from traditional closed
embedded systems, DRE systems have
greater end-to-end QoS needs (such as
managing resources for all participants
and shaping application data attributes
throughout an application’s life cycle)
and are distributed across volatile net-
work environments.

BBN Technologies has been develop-
ing a middleware approach to provide

dynamic, end-to-end QoS management
in DRE systems using encapsulations of
QoS-management code segments, called
Qoskets.1 (See the “Related Work in Mid-
dleware and QoS Composition” sidebar
for other work in this area.) In prior
work, we demonstrated how Qoskets
helped provide dynamic QoS manage-
ment in DRE object applications.2 We
developed Qosket component instantia-
tions, or Qosket components (QCs),3,4 for
the Corba component model (CCM),5 an
avionics domain-specific component
model (PriSm),6 and the Cougaar Java-
Bean-based component model (www.
cougaar.org).

QCs help us demonstrate the feasibil-
ity of integrating end-to-end, dynamic
QoS management into DRE systems by

16 MAY • JUNE 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

A
pp

li
ca

ti
on

-L
ev

el
 Q

oS

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

creating specialized QoS management mecha-
nisms using middleware. Encapsulating QoS
behaviors as components conceivably lets the
middleware layer use any QoS mechanism as long
as the QoS developer can provide suitable inter-
faces to control it. Furthermore, because QoS
trade-offs are inevitable in the environments
we’re targeting, our modular approach lets us
identify and expose the configuration and run-
time parameters with which we can make dynam-
ic trade-offs.

This article illustrates how to combine individ-
ual, off-the-shelf QCs to provide dynamic, end-to-
end QoS. We discuss some of our approach’s
trade-offs, issues, and benefits, focusing on the
CCM implementation of QCs.

Motivating Example
We can illustrate the need for combining QoS
behaviors using a real-world, live-flight and live-
fire DRE system we demonstrated at the White
Sands Missile Range (WSMR) in April 2005 (http://
dtsn.darpa.mil/ixo/appareas.asp?id=126).7 The
full system included multiple subsystems —
coded in different languages using various com-
ponent models — composed of middleware and
Web services interfaces. (Full system details are
available elsewhere.7)

In the demonstration, Command and Control
(C2) center personnel managed several unmanned
air vehicles (UAVs) while engaging a time-critical
target — that is, an immediate threat or fleeting tar-
get of opportunity. These UAVs operate in a con-

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2006 17

Managing Dynamic QoS

Related Work in Middleware and QoS Composition

Given the extensive quality of service
(QoS) and component literature, we

focus on approaches that are most directly
related to our efforts, specifically regarding
composition of QoS and middleware.

Middleware
Many researchers seek to coordinate shared
resource access to support dynamic,end-to-
end QoS management.Brenta1 concentrates
on contract-based negotiation of network
QoS by assuming that applications can adapt
to available resources. QARMA2 adds a
resource manager and system repository to
the available Corba services.

In the Corba component model
(CCM) framework, QoS isn’t part of the
standard specification. We’ve worked with
the developers of Component Integrated
Adaptive Communication Environment
(ACE) ORB (CIAO; www.cs.wustl.edu/
~schmidt/CIAO.html) to define static and
dynamic QoS support for CCM within the
CIAO framework. The QoS Enabled Dis-
tributed Objects (Qedo; www.qedo.org)
effort provides QoS to components by
integrating data streams (based on their
streams for the CCM specification).

Although the middleware framework
should be responsible for providing impor-
tant QoS-related mechanisms, applications
must be able to specify policies that work
with the middleware to plan for, or other-

wise negotiate, QoS needs, as we demon-
strate with our Qosket component (QC)
approach. Formal models of adaptive QoS-
enabled middleware employ a two-level
structure (similar to our management QCs)
to concurrently execute application activities
and services for resource management.3 Our
working system embodies such a structure.

QoS Composition
In the Web services domain, business-to-
business (B2B) interactions are formed by
combining existing services. One common
approach is to design a middleware plat-
form that selects and combines appropri-
ate services from available Web services.
Liangzhao Zeng and his colleagues4 rely on
a planner and execution engine that uses
integer programming to select optimal
plans based on data and execution depen-
dencies. Abdelkarim Erradi and Piyush
Maheshwari rely on a lightweight broker
architecture to ensure the dependability of
Web services.5 Eric Wohlstadter and his
colleagues present an architecture that
actively mediates the QoS requirements of
clients and servers at runtime.6

We could apply our QCs to manage,
control, and mediate Web services as we
now do with functional components. One
reason for our initial concentration on a
CCM context for QoS composition is that
the middleware area is more advanced for

the real-time embedded domains driving
our applications of interest. We believe
these concepts will eventually emerge in
all forms of component and service-
integration approaches.

References
1. D. Mandato et al., “Handling End-to-End QoS in

Mobile Heterogeneous Networking Environ-

ments,” Proc. 12th IEEE Int’l Symp. Personal, Indoor

and Mobile Radio Communications, 2001; http://iee

explore.ieee.org/iel5/7636/20844/00965251.pdf?ar

number=965251.

2. D. Fleeman et al., “Quality-Based Adaptive

Resource Management Architecture (QARMA):

A CORBA Resource Management Service,” Proc.

Int’l Parallel and Distributed Processing Symp., IEEE CS

Press, 2004, p. 116b.

3. N. Venkatasubramanian, C. Talcott, and G. Agha,

“A Formal Model for Reasoning About Adaptive

QoS-Enabled Middleware,” ACM Trans. Software

Eng.and Methodology, vol.13,no.1,2004,pp.86–147.

4. L. Zeng et al.,“QoS-Aware Middleware for Web

Services Composition,” IEEE Trans. Software Eng.,

vol. 30, no. 5, 2004, pp. 311–327.

5. A. Erradi and P. Maheshwari, “wsBus: QoS-Aware

Middleware for Reliable Web Services Interactions,”

Proc. IEEE Int’l Conf. E-Technology, E-Commerce and E-

Service (EEE), IEEE CS Press,2005,pp.634–639.

6. E. Wohlstadter et al., “GlueQoS: Middleware to

Sweeten Quality-of-Service Policy Interactions,”

Proc. 26th Int’l Conf. Software Eng. (ICSE), IEEE CS

Press, 2004, pp. 189–199.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

strained network with limited CPU resources and
are assigned different functional roles such as sur-
veillance, target tracking (TT), and battle damage
indication (BDI). During surveillance, UAVs send
images of the surveilled area to help commanders
determine items of interest. During TT, UAVs track
targets and send images or streaming video that let
a commander follow unfolding situations. During
BDI, UAVs send images at regular intervals to let
human operators analyze details. Each role has dis-
tinct QoS requirements for application data such as
image rate, size, and resolution, and the system
dynamically allocates resources based on the avail-
able resources and roles of participants. UAVs can
change their roles as needed, for example, when a
commander identifies a potential threat. The sys-
tem assigns each role a priority with specific
resource requirements — TT has the highest priori-
ty, followed by BDI, then surveillance.

As Figure 1a depicts, we used six UAVs (two

real and four simulated) with sensors that sent
images to the C2 center. Each UAV sensor trans-
mitted analog video to its ground station (GS),
where an imagery sender process digitized it and
sent it (with the proper QoS) to the displays in the
C2 center, located more than 100 miles away and
connected to the GSs via a shared fiber-optic net-
work. A virtual LAN, using routers to control and
distinguish traffic, provided 80 Mbytes per second
(Mbytes/sec) network capacity, which the six UAV-
to-C2 image streams, C2 traffic, and other demon-
stration-specific traffic shared. This system
illustrates several challenges:

• managing end-to-end QoS dictated by the
user, provided by the application, and deliv-
ered by the infrastructure within the specified
time constraints;

• dynamically adapting QoS based on changing
application requirements, operating conditions,
and available resources; and

• cross-layer mapping of the application’s QoS
requirements (from higher mission-layer
concepts such as required fidelity to lower
resource-layer concepts such as resource avail-
ability and specific mechanisms) to provision-
ing resources and QoS control.

As Figure 1b illustrates, the system is distributed
with dynamically changing participants, resour-
ces, and mission goals. The system needs QoS
management software to oversee various func-
tions. It must

• allocate resources among the participants and
provide system-wide management of all par-
ticipants, available resources, and QoS and
application requirements. The software should
be based at the C2 center where the policies are
formulated. System-wide managers fulfill this.

• locally manage and enforce the policies by
adapting real-time allocations. It needs to be
associated with each asset, and it runs on each
GS associated with a UAV. Local managers ful-
fill this function.

• provide local mechanisms for controlling sys-
tem resources and shaping data streams to
meet resource constraints.

To avoid embedding QoS management code
throughout the application, we separate QoS con-
cerns from functional concerns by designing a QC
encapsulating each individual management or

18 MAY • JUNE 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Application-Level QoS

Figure 1. End-to-end QoS management in a live-flight and live-fire
demonstration at the White Sands Missile Range. (a) Live unmanned
air vehicles (UAVs) send images and receive command and control
(C2) signals. (b) The system also includes a system-wide manager
located at the C2 node providing QoS policy to local managers,
which enforce QoS using resource-control and data-shaping
mechanisms. Black arrows indicate the data flow.

Data
management

Data
management

CPU
management

Local
management

and enforcement

100+ miles

UAVs send analog video to ground
stations (GSs)

GS (one per UAV) receives video
signal from UAV,digitizes it and
forwards it with the proper QoS
to the C2 center

C2 center assigns roles and
priorities to UAVs; formulates
QoS policies; and displays
and analyzes imagery

(a)

(b)

Ground station

Network
management

CPU
management

C2 center

Image
displayer

Local
management

and enforcement

Image
sender

System-wide
management

Provides policy
Prioritizes traffic
Enforces and actuates

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

mechanism behavior. We then assemble these QCs
to create managed end-to-end aggregate behavior.

Qosket Encapsulation Framework
A Qosket is an encapsulation of QoS management
code, supporting the separate development of QoS
concerns from functional concerns and improved
modularity and reuse. (A more detailed description
is available elsewhere.1) A Qosket includes code
that lets us

• monitor the state of a particular QoS property
in the system, which often encompasses items
such as available resources, resources used, and
the satisfaction of a QoS policy;

• make decisions regarding what’s needed to
control and deliver QoS to mediate conflicting
demands, gracefully degrade and adapt as con-
ditions change, and meet applications’ require-
ments within resource allocations; and

• actuate, provide, enforce, and control QoS
through system, property, or resource-manager
interfaces.

QoS behavior in Qoskets is instantiated as code
artifacts — objects, wrappers, classes, components,
and methods — that implement the QoS monitor-
ing, decision making, and actuation throughout a
distributed application.

We demonstrated QoS provisioning using
Qoskets in distributed object applications in a pre-
vious work.2 This article concentrates on using
Qoskets as components in a component-based
software engineering model.

Qosket Components
QCs consist of Qosket code wrapped inside stan-
dards-compliant components that we can assemble
and deploy using existing tools and infrastruc-
tures.4 QCs expose interfaces, letting us integrate
them between functional components and services,
mechanisms, and system components to intercept
and adapt the interactions between the compo-
nents. These QCs provide all the features of Qos-
kets and all the features of components to provide
lifecycle support for design, assembly, and deploy-
ment. Each QC encapsulates a single QoS behavior
but can provide an aggregate, end-to-end behavior
when combined with other QCs.

DRE systems require various types of QoS man-
agement software. To address this, we developed and
classified QCs into managerial, enforcement, and
mechanism QCs, based on the QC’s scope and role.

Managerial QCs have a system-level view of an
application’s functional and system components.
They maintain specifications for QoS requirements
and domain-specific application requirements that
are translated by the managerial QCs into QoS
policies. Relatively speaking, managerial QCs are
decision makers, with only high-level monitoring
and little or no actuation.

For our WSMR demonstration, we developed a
system resource manager (SRM) managerial QC
that was hosted at the C2 center. The SRM QC uses
weighted utility functions to dynamically allocate
system resources based on the number of system
participants, relative priorities, and total available
resources. It creates QoS policies that include the
roles, priorities, and allowed quality ranges, and
sends those policies and allocations to the enforce-
ment QCs on each host.

Enforcement QCs locally manage a node or
group of nodes. They receive policies from man-
agerial QCs, translate them into actions, and
enforce them. They also decide which resource and
application controls (in the form of mechanism
QCs, which we define in a moment) can best
enforce the policies, in what combination, and at
what granularity within the resource and time con-
straints. They combine decision making with actu-
ation that turns on, configures, and accesses
mechanism QCs’ control interfaces.

We developed a local resource manager (LRM)
enforcement QC that manages resources and
trade-offs on each host. It configures specific
mechanisms to control resources, shape data, and
alter the application behavior to satisfy any
resource allocations and QoS policies the SRM QC
sends it.

Mechanism QCs access system controls and
interfaces to adapt to a particular QoS control or
behavior. Their actuation can range from control-
ling a resource to shaping application data or
altering algorithm parameters. These QCs monitor
and act only on local information and are directed
by enforcement and managerial QCs. Mechanism
QCs can include decision-making capabilities, for
example, for selecting the best compression algo-
rithm to match the traffic format, but they gener-
ally have less decision-making capability than
enforcement or managerial QCs.

For the WSMR demonstration, we used the fol-
lowing mechanism QCs:

• network prioritization DiffServ QC, which pri-
oritizes outgoing IP traffic;

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2006 19

Managing Dynamic QoS

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

• CPU reservation mechanism QC, which reserves
a percentage of the CPU;

• encrypt and decrypt security QC, which
encrypts and decrypts data;

• pacing and depacing QC, which minimizes net-
work jitter; and

• application-adaptation or data-shaping QCs,
including a compression QC (to compress images),
cropping QC (to crop images by removing pix-
els from each side), and scaling QC (to scale
images to either half or quarter size).

We then combine these QCs to provide QoS
management.

Composing QCs
We assembled the WSMR demonstration system by
combining the QCs we described in the last section
with the application’s functional components (for
example, the image sender, image receiver, and
processing components) through the component
and QC interfaces. During the UAV demonstration,
the SRM QC at the C2 center used the number of
demonstration participants, priorities, and roles to
create a resource allocation and policy for each
participant whenever the mission, roles, or avail-
able resources changed. The SRM QC pushed the
allocation and policy to all LRM QCs, each of
which then selected, configured, and activated the
correct set of mechanism QCs to satisfy the policy
within the allocated resources.

There was an LRM QC at the UAV GS and one
at the C2 center for each information stream. Each
LRM consisted of a set of mechanism QCs that it
configured and activated to satisfy the policy with
the allocation the SRM provided.8

We combined the QCs using the following com-
position patterns, illustrated in Figure 2:

• Hierarchical composition (see Figure 2a). In this
pattern, managerial QCs are layered on
enforcement QCs, which in turn are layered on
mechanism QCs. In our demonstration, the
SRM QC formed the top of the hierarchy, push-
ing policy down to the LRM QCs and receiving
status back. The LRM QCs, in turn, controlled a
set of mechanism QCs (resource control and
data-shaping QCs).

• Parallel composition (see Figure 2b). When QCs
receive data simultaneously and perform their
QoS behavior independently, they can run in
parallel. Our demonstration system had two
examples of parallel composition. First, the

SRM QC must send its policy to all the LRM
QCs associated with a data stream (for exam-
ple, at the data’s GS source and the C2 destina-
tion) in parallel because they must coordinate
QoS management. Second, the LRM QC enforc-
ing the QoS policy must simultaneously con-
trol the CPU resource mechanism QC, the
network mechanism QC, and the data-shaping
QCs to produce the proper aggregate behavior.

• Sequential composition (see Figure 2c). Often, we
must tightly integrate a set of QCs to ensure that
a set of QoS behaviors operates sequentially, with
the output of each QC becoming the input to the
next QC. In our demonstration system, the data-
shaping QCs used this pattern, controlling the
data rate, altering (by cropping, scaling, or com-
pressing) the data, and finally pacing it — that is,
sending it in pieces over time to control jitter.

While integrating the QCs, we came across sev-
eral issues that can impact QoS management.

Factors Affecting QC Composition
A complete treatment of all the issues related to
the formalisms, tools, and analyses that can guide
effective composition is beyond this article’s scope.
However, we can briefly discuss several important
issues. For example, our demonstration system
showed that the composition order of some QCs is
important to the feasibility or effectiveness of end-
to-end QoS management. We crop before com-
pressing files because the cropping QC can only
process noncompressed image formats. As anoth-
er example, a QC adjusting the rate of imagery
should be executed before other data-shaping QCs
to avoid wasting time and resources by compress-
ing or cropping an image that won’t be sent.

Some QCs have to combine their behavior with
corresponding “undo” behaviors. In our demonstra-
tion, for example, each compression QC on the
source side requires a corresponding decompression
QC on the receiver side. The “undo” QCs usually
must execute in the reverse order of their paired QCs.

There are dependencies between QCs that assist
with system integration and those that restrict the
circumstances in which we can usefully combine
them. For example, in QC interfaces, the cropping
QC works only with specific, uncompressed data
types. Other implicit dependencies can be due to
semantic or algorithmic factors and can be more
difficult to detect and manage. For instance, some
encryption and compression algorithms don’t inte-
grate well because encrypting might restrict our

20 MAY • JUNE 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Application-Level QoS

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

ability to compress data, and compression might
produce data that we can’t properly encrypt. We’re
still investigating ways to incorporate this type of
information so that automated tools can verify
appropriate integration requirements.

The host boundaries on which we deploy QCs
can play a crucial role in the aggregate QoS man-
agement’s effectiveness. Placing data-shaping QCs
closest to the data source makes the most sense
unless multiple clients are using the data and
demanding different qualities. Some QCs are only
effective when separated by host boundaries. Com-
pression can only reduce network traffic, for
example, if the compression and decompression
QCs are placed on different hosts. In addition,
because our demonstration was based on a mili-
tary scenario, there was a defined central authori-
ty in the C2 center and, therefore, an obvious place
to put the SRM QC. A peer-to-peer or ad hoc sys-
tem, however, might need a different number and
placement of managerial QCs. We’re still experi-
menting with how to express the relationships
between QC placement and the outcome of the
end-to-end compositions.

Benefits
There are numerous benefits associated with build-
ing a system via embedded QCs instead of a cus-
tom stove-piped system — that is, a legacy system,
consisting of tightly bound interrelated elements,
that must be maintained until it can be entirely

replaced with a new system. For example, many of
the QCs we used in our UAV demonstration were
reused or easily adapted from earlier contexts and
remain part of our QC library. Part of our ongoing
work involves exploring the trade-offs associated
with decoupling a QC from functional interfaces
(thereby increasing its reusability in different con-
texts) but increasing the work associated with
using it in a specific context.

Using the embedded QC approach, providing
QoS management in a DRE system ultimately
becomes more of a configuration issue than a
programming exercise. Hence, we can assemble
the components required for QoS management
into an existing or developing component-based
distributed application. In our demonstration
system, this lets us rapidly prototype versions of
the system with or without specific QoS behav-
iors and with specific combinations of QCs, sim-
ply by assembling the system using available
CCM assembly tools.

Traditional embedded systems rely on static
QoS provisioning at design time or system-
configuration time. Our approach supports QoS
provisioning at several different lifecycle epochs
of an application:

• At configuration time, we can set QC attributes’
default values. For example, we can set the
attributes of an LRM QC to define the default
strategy for selecting and activating a QC.

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2006 21

Managing Dynamic QoS

Figure 2. Composition patterns. We used these to construct the demonstration system from managerial,
enforcement, and mechanism Qosket components (QCs). (a) In the hierarchical composition, each layer
manages a set of QCs below it, pushing policy and control down and receiving status up. (b) In the
parallel composition, a set of QCs must be invoked in parallel. (c) In the sequential composition, a set of
QCs form a chain of combined QoS behavior.

System resource manager (SRM)

Local resource
manager (LRM)

Mech
QC

Image
sender

Image
receiver/display

Mech
QC

Crop
QC

Scale
QC

Compress
QC

Pacing
QC

DePacing
QC

Decompress
QC

LRM

SRM

LRM

LRM
Mech
QC

Mech
QC

...

... ...

(a)

(c)

(b)

CPU
QC

NW
QC

DS
QC

Data-shaping QCs

Network

LRM

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

• At assembly time, we can combine QCs to pro-
vide a desired aggregate or end-to-end QoS.

• At deployment time, the placement of QCs and
their monitoring sources affects the provided
QoS. Prior knowledge of the host and network
load can facilitate the process of selecting suit-
able hosts.

• At runtime, QCs facilitate the dynamic control
of QoS and adaptation to changing conditions.

Beyond these benefits, we still encountered
some challenges while integrating QCs.

Challenges
Although we’ve had success in developing and
combining QCs to create DRE systems, such as
the UAV demonstration system, we still have
many issues left to investigate on the path to
common practice and operational use. From our
recent experience with putting these ideas into
practice, we can identify a few of the most
important issues.

Data-specific QCs. There is a trade-off to be made
in developing a QC that’s specific to a particular
data format. A more generic QC should be more
widely reusable, but this might not always be fea-
sible. For example, an attempt to develop a
format-neutral compression QC leads to the fol-
lowing pitfalls:

• Trying to remove code that understands spe-
cific data formats from a QC might result in an
empty shell that contains little behavior and
requires everything to be specified at assembly
time or compensated for elsewhere.

• Including various algorithms that work with
many different formats might create an
unwieldy QC that’s too heavyweight for any
specific context.

• We could use format-neutral compression
algorithms, such as gzip, but data-specific
algorithms are more useful in many cases.
JPEG compression, for example, is more use-
ful for imagery because it compresses effi-
ciently and comes with display software. Over
time, emerging standards are likely to help
alleviate some of these issues, if for no other
reason than to reduce the number of accept-
able choices.

In much of our work, we made QCs as format-
neutral as possible, even while continuing to work

on additional solutions, such as QC interface tem-
plates. This can lead to a data incompatibility
problem in which data emitted from one set of QCs
might not be compatible as input to another set of
QCs. Currently, we have no way of specifying this
or annotating the QCs to aid the assemblers. The
assemblers need knowledge of the domain’s data
types and functional components and, therefore,
must either work with domain experts or possess
domain expertise. This problem doesn’t propagate
to application code because each QC that alters the
output data is paired with a QC that undoes the
alteration, as we described earlier.

Hardware and system support. QCs that provide
system-level controls and monitoring require
support from the system infrastructure to work
correctly. For instance, a DiffServ QC that pro-
vides network prioritization requires universal
support for DiffServ capabilities at all intermedi-
ate routers. This becomes difficult over an uncon-
trolled network, such as the Internet. Some
solutions are to use only more controlled subsets,
emphasize traffic-shaping techniques instead, or
use a reactive approach that adjusts to the pro-
vided QoS, even in a best-effort environment
such as the Internet.

Maintaining QoS. It’s challenging to provide end-
to-end QoS dynamically when the QCs need to
interoperate with other middleware services such
as the Joint Battlespace Infosphere (www.rl.af.mil/
programs/jbi/), a publish–subscribe-oriented ser-
vice, or the Corba Notification Service (www.omg.
org/technology/documents/formal/notification
_service.htm). Although these middleware services
are individually compliant with standards, no uni-
form protocol exists for communication among
them or for maintaining QoS using these services.

Our solution has been to provide as much
QoS as possible, up to the boundaries of enter-
ing uncontrolled services and introducing QCs
that react to the observed QoS in uncontrolled
environments. At the same time, we’re promot-
ing and helping develop QoS management
awareness and capabilities for these other com-
mon middleware services.

The Qosket and QC work we’ve described is
ongoing, and this article only discusses a por-

tion of our research. Specifically, our work devel-

22 MAY • JUNE 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Application-Level QoS

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

oping QoS engineering models and model-driven
tools is still in its early stages.9 In the future, we
plan to offer better support for encapsulation,
reuse, and composition with the goal of producing
better software engineering support for dynamic,
end-to-end QoS management capability and
developing a generally useful model for and the-
ory of integrating QoS behaviors.

Acknowledgments
This work was supported by Darpa (which has approved it for

public release, distribution unlimited) and the US Air Force

Research Laboratory under contracts F33615-00-C-1694 and

F33615-03-C-3317.

References

1. R.E. Schantz et al., “Packaging Quality of Service Control

Behaviors for Reuse,” Proc. 5th IEEE Int’l Symp. Object-

Oriented Real-Time Distributed Computing (ISORC), IEEE

CS Press, 2002, pp. 375–385.

2. J.P. Loyall et al., “Comparing and Contrasting Adaptive

Middleware Support in Wide-Area and Embedded Distrib-

uted Object Applications,” Proc. 21st IEEE Int’l Conf. Dis-

tributed Computing Systems (ICDCS-21), IEEE CS Press,

2001, pp. 625–634.

3. G.T. Heineman, J.P. Loyall, and R.E. Schantz, “Component

Technology and QoS Management,” Proc. Int’l Symp. Com-

ponent-Based Software Engineering (CBSE7), Springer,

2004, pp. 249–263.

4. P.K. Sharma et al., “Component-Based Dynamic QoS Adap-

tations in Distributed Real-Time and Embedded Systems,”

Proc. Int’l Symp. Distributed Objects and Applications

(DOA), SpringerBerlin/Heidelberg, 2004, pp. 1208–1224.

5. Corba Component Model, v. 3.0, formal specification, Object

Management Group; www.omg.org/technology/documents/

formal/components.htm.

6. W. Roll, “Towards Model-Based and CCM-Based Applica-

tions for Real-Time Systems,” Proc. 6th IEEE Int’l Symp.

Object-Oriented Real-Time Distributed Computing (ISORC),

IEEE CS Press, 2003, pp. 75–82.

7. J.P. Loyall et al., “A Distributed Real-Time Embedded

Application for Surveillance, Detection, and Tracking of

Time Critical Targets,” Proc. Real-Time and Embedded

Technology and Applications Symp. (RTAS), IEEE CS Press,

2005, pp. 88–97.

8. P. Manghwani et al., “End-to-End Quality of Service Man-

agement for Distributed Real-Time Embedded Applica-

tions,” Proc. 13th Int’l Workshop on Parallel and

Distributed Real-Time Systems (WPDRTS 2005), IEEE CS

Press, 2005, p. 138a.

9. J. Ye et al., “A Model-Based Approach to Designing QoS

Adaptive Applications,” Proc. 25th IEEE Int’l Real-Time

Systems Symp., IEEE CS Press, 2004, pp. 221–230.

Praveen Kaushik Sharma is a staff scientist in the Intelligent

Distributed Computing Department at BBN Technologies.

Her research interests focus on provisioning dynamic and

real-time QoS in distributed systems using software engi-

neering technologies. Sharma has an MS in computer sci-

ence from Iowa State University. She is a member of the

IEEE and the ACM. Contact her at psharma@bbn.com.

Joseph Loyall is a division scientist and lead of the Distributed

Systems Technology Group in the Intelligent Distributed

Computing Department at BBN Technologies. He has been

the PI for several projects dealing with QoS management,

distributed real-time embedded systems, and adaptive

middleware. Loyall has a PhD in computer science from

the University of Illinois. He is a senior member of the

IEEE and a member of the ACM and the AIAA. Contact

him at jloyall@bbn.com.

Richard E. Schantz is a principal scientist at BBN Technologies,

where he leads research efforts toward developing and

demonstrating the effectiveness of middleware support for

adaptively managing real-time, end-to-end QoS and sys-

tem survivability. Schantz has a PhD in computer science

from the State University of New York at Stony Brook. He

is a fellow of the ACM. Contact him at schantz@bbn.com.

Jianming Ye is a staff scientist in the Intelligent Distributed

Computing Department at BBN Technologies. His research

interests include dynamic resource management and run-

time environments for distributed real-time embedded

systems, QoS-aware middleware development, and model-

integrated computing. Ye has an MS in computer science

from the University of Rhode Island. He is a member of the

ACM. Contact him at jye@bbn.com.

Prakash Manghwani is a scientist in the Intelligent Distributed

Computing Department at BBN Technologies. His research

interests include large-scale, distributed real-time embed-

ded systems and sensor networks. Manghwani has a BE in

computer science from the University of Pune. He is a

member of the ACM. Contact him at pmanghwa@bbn.com.

Matthew Gillen is a staff software engineer at BBN Technolo-

gies. His research interests include distributed systems and

fault tolerance. Gillen has a BS in computer science from

Ohio University. Contact him at mgillen@bbn.com.

George T. Heineman is an associate professor of computer sci-

ence at Worcester Polytechnic Institute. He has a PhD in

computer science from Columbia University. Heineman is

the coeditor of Component-Based Software Engineering:

Putting the Pieces Together (Addison-Wesley). Contact him

at heineman@cs.wpi.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2006 23

Managing Dynamic QoS

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

