
QMan: An Adaptive End-to-End QoS
Management .Architecture

Sae-Whong Suthon, Hung-Keng Pung and LiFeng Zhou
Network Systems and Services Lab, School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

Abstract - Recognizing the need to provide end-to-end
QoS for performance sensitive applications, and the need
to manage such QoS provisions in the presence of diverse
application QoS requirements as well as heterogeneous
network environment, we propose an adaptive end-to-end
QoS management architecture - QMan, to address such
issues. QMan, as one of the key components of OCTOPUS
middleware, makes no presumption of the underneath
QoS provisions for end-to-end QoS management, but can
take advantage of such provisions if there are. QMan
allows applications to exchange QoS requirements and
negotiate for a suitable prntncnl stack configuration with
the assistance from Dynamic Protocol Framework (DPF).
During data transmission, QMan monitors QoS violations
and performs QnS adaptations according to the rules
defined through a combination of three possible conduits
in an end-to-end fashion: network level, host level and
application level. These rules are pre-determined
according tn application requirements or network policies
and can be re-configured for custnmization of QoS
adaptations during run-time. Performance evaluations of
our implementation demonstrate the feasibility of QMan’s
design with satisfactory performance.

Keywords - QoS managemeni; multimedia; adapiive QoS
middleware; QoS policy; dynamic proiocol configuration

I. INTRODUCTION
To provide end-to-end QoS provisions for advanced

applications, it is widely accepted that support is needed at
both end-hosts and networks. Recent advancements in Internet
technology have brought forth several QoS models such as
Integrated Service and Differentiated Service. However, these
models are not expected to be widely deployed as common
services in the foreseeable future due to various reasons. In
contrast, best effort service class is still prevalent, which
implies that Internet is more likely to provide best assure rather
than guaranteed QoS.

In end-hosts, various QoS approaches have been proposed
and discussed. These approaches can be categorized into
reservation-based approach and adaptation-based approach
according to their different resource management styles.
Reservation-based approach employs admission control and
resource reservation along the end-to-end communication path.

However, current operating systems and networks are not
ready to support these advanced QoS features, which makes
reservation-based approach hard to realize practically. In
contrast, adaptation-based approach proposes to operate in
best-effort environment and manages QoS in a pure end-to-end
fashion where QoS monitoring and adaptation are enforced at
end-hosts throughout the lifecycle of the session to smooth the
quality fluctuation and maintain the agreed QoS level.
Adaptation-based approach requires no modification at
network level and OS level thus makes itself more suitable to
deploy over current non-real-time OS and best effort network
environment.

In adaptation-based QoS research, progresses have been
made in the directions of ‘QoS-aware applications’ and ‘QoS
middleware’. Most work done in the application layer is
related to the transmissions of continuous media streams (e.g.
variable bit rate codec, media compression, frame-dropping
and layered encoding scheme), and hence is rather media
specific and restrictive in certain application domains [I] [2]
[3]. In recognition of these limitations, more active research
efforts have been spent in the middleware approaches. QoS
middleware approach is popular for at least two main reasons
despite of its performance overhead: (1) the QoS solutions are
likely to be independent of the network and OS platforms, and
(2) the QoS controls can be transparent to applications.

However, QoS should be more than just delay and
throughput as is considered by current projects. Nowadays,
application programmers could be overwhelmed by the
problems of heterogeneous run-time environments and
resource diversity, which makes applications hard to be
developed. To gracefully and efficiently manage QoS for
multimedia applications, these issues also need to be handled.
In this paper, we propose our design philosophy to restore the
flexibility of applications, Instead of specifying the names of
the services, applications may specify the desirable properties
of the services. For example, instead of “RSVP, applications
can specify “resource reservation”. In bind-time, an available
service that offers resource reservation can be selected. If the
selected service fails to deliver at runtime, it can be quickly
replaced by another service instead of dully reporting to the
application for rescue. This design philosophy assists
applications to regain their flexibility and ensure that
applications can be deployed easily and rapidly in large scale.

0-7R07-8783-X/04/$20.00 0 2004 IEEE 791

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

An adaptive QoS Management architecture (QMan) has
been developed based on such a design philosophy. It enables
end-to-end QoS management and control in both unicast and
multicast settings. The remainder of this paper is organized as
follows: Section II discusses related work; Section III
describes the architecture of QMan in detail; Section IV
explains QMan QoS management mechanisms; Section V
evaluates the functionalities and performance characteristics of
our current implementation. This is followed by a conclusion
and future work in section VI.

11. RELATED WORK
The open problems of providing Quality of Service have

been addressed by various research efforts in the past years. In
end-host QoS research, various projects have been proposed to
provide QoS supports as middleware services. Agilos [I I] is a
middleware control architecture to determine application-
aware adaptations. The main contribution of this project is the
introduction of Fuzzy Control Model to make QoS adaptation
decisions. 2KQ [121 proposes a resource-aware service
configuration model. Multi-tie QoS translation and discovery
server have been designed for distributed QoS compilation and
runtime instantiation. DaCaPoti- [7] is a middleware QoS
project that integrates various fimctionalities, e.g., security and
multicast. It supports a range of multimedia applications and
automatically configures itself at start-up time to provide
suitable communication protocols and multimedia oriented
services that are adaptable to application needs. MCF [I31
from the same research group offers flexible multipoint
communication services through protocol configuration at
start-up time. DJINN [SI and RWANDA [9] follow
component-based approaches, which provide high level QoS
re-configuration. Components can be stacked and re-stacked in
a variety of ways to meet the communication demands of
applications.

Although great strides have been made in current projects,
there still remain some problems toward a better QoS
middleware:

1. Lack of meta-information model for specifiration of QoS
1-equirements, adaptation rules andpolicy.

Adaptive QoS Gameworks, like DaCaPoH, DJINN,
ADAPTIVE [15], and RWANDA offer the ability to re-
configure their components. However, the reconfiguration
needs guidance from applications when violations occur, since
such guidance is not included in the QoS specification. As it is
unlikely to anticipate all possible QoS violations at the design
phase of an application, expensive software re-engineering
process is needed to 'update' the QoS awareness of existing
applications, including adding new codes and re-compilations
of applications [IO]. In our view, this tedious process should
be de-coupled from the applications by defining a meta-
information model. This is the approach taken in the design of
QMan, with details to be presented later.

2. Lack of integrated framework utilizing both end-host and
network QoS capabilities in aflexible manner.

A middleware system can deliver much better end-to-end
QoS if it collaborates with the host OS and network QoS
support. However, previous frameworks that provide flexible
end-host adaptation, such as Agilos and 2KQ, did not address
this essential issue. We believe an integrated framework that
utilizes both end-host and network QoS capabilities is essential
to end-to-end QoS provisions.

Motivated by the shortcomings above, QMan is designed
to provide QoS management functions in an integrated,
seamless and efficient manner. XML-based adaptation rules
are included into QoS specification. Application designers can
define their rules according to application characteristics,
while network administrators defme rules according to
network policy. QMan allows these rules to he combined and
assigned to the framework. The introduction of communication
component and management component allow collaboration
between end-host QoS management and network QoS
management. Moreover, all management functions are
extensible to support one-to-many and many-to-many
communications.

111. OVERVIEW OF QMAN ARCHITECTURE

An overview of the QMan architecture is shown in Figure
1, QMan consists of two principal components: QoSAgent and
QoS Manager. The former resides in each end-host to collect
local QoS information and holds references of available
components, whereas the latter directs participating QoS
Agents to perform QoS management operations via a control
channel. A data channel between participating hosts can
subsequently be established according to application
requirements. The data channel is referred to as Adaptive
Communication Tunnel (AC Tunnel); whereas the protocol

Figure I : Overvicw ofQMAN Architechm

stacks in the respective end-host is referred to as Adaptive
Communication Stack (AC Stack). Details of various key
components in QMan are described below.

A . QoS Manager

QoS Manager is a distributed component that is responsible
for overall QoS management of a session. A QoS Manager
enters an imbound mode once created. It is subsequently b o n d
when a sender attaches to it. This is the pre-condition for the
QoS Manager to make sure there is at least one sender in a
group session before any receivers can be accepted to join the
group.

798

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

QoS Manager provides Binding operation to allow
senderireceiver to create an AC Tunnel under its supervision.
QoS requirements of AC Tunnel are specified as parameters of
the binding operation. QoS Manager also extends an interface
for applications to specify adaptation rules about the AC
Tunnel; other functionalities provided by QoS manager
include Session Status Q u e v and Session Instrument, which is
useful to interested third parties (e.g., authorized ISP) to shape
an on-going session under regulation.

B. QoSAgent

QoS Agents reside in each participating end-host to
schedule the local QoS management. QoS Agents hold
references of Communication Components (C-Components)
and Management Components (M-Components) in the same
end-host. (Definitions of C-Components and M-Components
can be found in next section). QoS Agents provide a set of
APls for applications to access QoS management functions.
Methods provided by the QoS Agent include Defining local
QoS requirements ondpolicy, Setting DataSource' and Getting
DataSource.

C.

The outcome of the binding operation is an AC Stack,
which is created at each end-host according to negotiated QoS
requirements. Subsequently Adaptive Communication Tunnel
(AC Tunnel) between end-hosts will be established for
transmitting multimedia data from the sender to the receiver(s).
AC Tunnel covers from sender's AC Stack, networks and
along the way to receivers' AC Stack. In AC Tunnel,
applications may specify QoS requirements in term of
reliability, security, and etc.; data can be sent and received via
DataSozrrce object. AC Stack capitalizes on functions provided
by Dynamic Protocol Framework (DPF) [5]. The AC Stack is
richer in functionality than the Berkeley Socket where it can
adapt itself to maintain the required QoS.

AC Stack and AC Tunnel

D. Control Channel
The control channel is mainly used for the exchange of

control information and signaling messages between QoS
Manager and QoS Agent. Inspired by the OMG AudioNideo
Streaming. Service specification, QMan separates the control
channel from the data channel to ensure that additional control
overhead will not degrade processing of media data [6]. In
order to ensure the delively of messages, the channel should be
established over a reliable connection such as a TCP
connection or a reliable lightweight connection with ARQ
running over a unreliable UDP connection [4].

E. Communication Components (C-Component)

QMan regards a protocol component as its C-Component,
which is composed of a dynamic executable code and a XML
file. The executable code contains mechanism to process data
and to generate default parameters automatically. In our

' DataSourcc. a tcrm in Java Mcdia Framcwork, is used to manage the
Ransfcr of media-contents. A DataSource encapsulates both the location of
mcdia and thc protocol and saftwarc uscd to delivcr thc mcdia. Oncc obtained
thc DataSource object cannot bc rcuscd to dclivcr athcr medias.

XML

Figure 2: C-Components and Camponcnt Registry Manager

implementation in Java, the execute code is Java byte-code.
The XML file, which is called QoS-Meta-information-Based
(QMIB), stores C-Component properties such as name, version
and QoS attributes. As can be seen in Figure 2, the necessary
information from QMIB and executable code of components
will be translated into ComponentDescripter object, which is
collected and stored in registry by Component Regisny
Manager (CRM. Applications can quickly start-up based on
such pre-loaded information.

F. Management Component (M-Component)

M-Components are used to take advantage of QoS services
provided by extemal entities such as the host operating
systems (e.g., real-time OS) or network-level QoS support (e.g.
DiffServ and RSVP). Each M-Component is designed to be a
plug-in to QMan rather than a tightly coupled module.
Consequently, QMan can function even without the presence
of these management components. Two management
components have been designed to enhance QoS
functionalities curiently: Resource Manager and Connection
Manager. Resource Manager computes and reserves end-
hostinetwork resources before an AC Stack is created,
provided such reservation is supported by host OS or QoS-
aware network. Connection Manager (CM) manipulates group
level QoS adaptations. For example, CM enables a group of
users of similar QoS requirements to receive more or less
layers of encoded data in layered encoding scheme via the
group joining or disbanding operations. All C-Components
and M-Components are transparent to applications. The
combination of the adaptation of C-Components and the
adaptation of M-Components form the main pillar in the
QMan holistic approach to adaptive QoS support.

1V. QOS MANAGEMENT FUNCTIONS
The sequence diagram presented in Figure 3 provides a

clear illustration of the workflow of QMan QoS management
in conjunction with DPF. Applications first specify QoS
requirements and initiate binding operations to the QoS
manager in order to construct an AC Tunnel. At the connection
setup phase, QoS Agents retrieve information of protocol
components available in each end-host from Component
Registxy. They then feed this information to QoS Manager,
which will subsequently conduct the QoS negotiation
operation. After that, QoS mapping is performed to obtain
DPF specifications of a functional stack that meets the
requirements. After the stacks have been synchronized (i.e. the

0-7803-8783-X/04/$20.00 0 2004 IEEE 799

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

.........................

AC Sbck S 4 o S A& QOS wnager &OS Agent AC Star*
.......................

Firmre 3: Workflow of OMan and DPF

stacks at both hosts are compatible), the sender and the
receiver will proceed to transmit data via the constructed AC
Stack.

During transmission, QoS Agent on the receiver side
monitors whether the QoS level has been sustained or violated.
A Qua& Event is sent out to the QoS Manager when a QoS
violation occurs. The QoS Manager will then conduct QoS
adaptation according to adaptation rules and policies to derive
a suitable new configuration of the AC Stack. Finally, the re-
configuration of the functional stack is performed. Some key
steps of QMan management hctionalities are outlined below.

A . QoS Specification and Mapping

The QoS specification of QMan is organized in two tiers
fashions: application level and middleware level. Applications
can utilize the provided MIS to specify Application Level
Requirements (ALR), which will be translated automatically or
manually into Middleware Level Requirements (MLR). MLR
specifies QoS in XML, and the resulting XML file, as
mentioned, is known as a QMB. For each level, there exists a
corresponding set of QoS requirements to be met. Each
requirement can be represented by a simple data smcture
consisting of a keyword of QoS parameter with minimum and
maximum value. For example, the built-in QMan API
QoSMapper (Figure 4) provides simplicity of usage with pre-
defined keywords such as “reliability” and “bandwidth usage”.
Application developers can create application-specific GUI for
QoS specification based on pre-defined QMan APIs, third
party APIs or directly on top of MLR. These APIs should have
their desirable QoS requirements translated into the
corresponding MLR representations in XML (QMIB). It
should be noted that MLR also allows new keywords to be
defined which provides the flexibility to extend and customize
the QMan framework.

QoSMapper mapper = new QoSMapperO,
ProtocoiStack stack = null,

: mapper.setReliabil i ty(true);
~ m a p p e r . s e t B a n d w i d t h U s a g e (m a p p e r . B A N D W I D T H ~ l J S A G E ~

Low);

..

I
I

mapper .setClarsofServ ice(mapper .TRAFFlC~CLASS~LOW);
mapper.setl i t terControl(true);
mapper.setDelayBound(mapper.DELAY_REALTIME);
mapper.addPreferredComponent(”1P”);
stack = mapper .c rea tes tack0; i ... 1

Figure 4: Sample code of ALR

QoS Mapping is the process within each end-host to map
higher-level application QoS requirements into middleware
requirements. Consequently, QMan selects a set of protocol
components and deploys them into a functional stack
according to the application’s QoS requirements. Current
QMan implementation supports pattern matching based QoS
mapping, which provides fast searching. One ALR keyword
may be translated to either one or few of pre-defined MLR
keywords. Components selection and DPF specification
translation are needed to complete MLR to DPF specification
mapping. Since MLR contains keywords indicating the
required QoS capabilities of C-Components, such mapping can
be done by retrieving corresponding C-Components from the
Component Registry.

B. QoSNegotiation

Before invoking a binding operation, an application has to
specify MLR to QoS Manager. If ALR is being used, it will be
translated to MLR either manually or automatically because
only MLR elements are exchanged between end-hosts. Hence,
the application can define application-specific ALR without
affecting management functions. In the binding operation, the
first step to perform in a QoS negotiation is to finalize the QoS
requirements between end-hosts. QMan conduct negotiation in
two aspects: MLR negotiation and components negotiation.

I) MLR Negotiation

Technically, QoS Manager and QoS Agents negotiate to
finalize a range of QoS parameter values. If the required range
of a particular agent is different &om the one selected by the
QoS Manager, some compromises will have to take place.
QMan supports three methods of MLR negotiation: system
driven in which the decision is up to the QoS Manager; sender
driven in which the negotiation takes place between the sender
and the QoS Manager; and lastly bilateral decision in which
sender, receiver and QoS manager are involved in the decision
making.

2) Components Negotiation

Once a MLR have been confmed, components that match
MLR will be selected. Although the selection is done in QoS
Mapping step, components negotiation ensures that all
participants will support the selected components. In a network
as technologically diverse as the Internet, each end node may
have its own set of system and network resources available. As
mentioned early, QMan utilizes a local Component Registly to
keep track of the protocol components available for use. For
example, in a system where IPv6 is not supported, an IPv6
component should not be listed in the local registry.
Components negotiation is then conducted via the stack

800

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

synchronization mechanism of DPF. Thus we have solved the
service diversity problem posed at the beginning of this paper.

C. QoS Monitoring andAdaplation

QoS monitoring is the process to detect QoS violations
throughout the lifecycle of a session. Any piggyhack-like
protocols, such as RTP and SFP [6] , can be deployed in our
framework for QoS monitoring. In addition to monitor at AC
Stack, M-Components may also act as monitoring units. For
example, an MComponent that utilizes Simple Network
Management Protocol (SNMP) can be deployed to obtain
network status from network devices. When a violation is
detected, QoS Monitor will generate a report to the QoS
Manager, where the actually adaptation choice will he
determined. This approach has the advantage of preventing
QoS feedbacks explosion at the sender in case of multicast.

Upon the receipt of a QoS violations report, QoS Manager
will consult Adaptation Rules Table to perform QoS
adaptations. Adaptation rules are predefmed by applications or
other relevant parties and can be re-installed during runtime.
Each adaptation rule consists of three parts: 'when to do
adaptation', 'where to do adaptation' and 'how to do
adaptation'. Adaptation Rules can be defmed to tune
performance of a particular protocol (e.g., increase buffer sue
in case ofjitter) or even to modify AC stack. Figure 5 show an
example of C-Component adaptation rule: a flow control based
transport protocol (e.g.. TCP) is to he replaced by another
protocol without such feature, when the packet loss rate
exceeds 20%. Upon occurrence of such violation, a suitable
protocol (e.g., UDP) will be picked out to substitute the
original protocol according to this d e .

~ <rule name="ru ie2" p r i o r i t y = ' l ' ' >
: < w h e n >
: <condit ion D a r a m = " l o s x r a t e " b o u n d = " + + 0 . 2 " / >

Figure 5: An XML-based rulc Io remove a C-Componcnt

In addition to C-Component configuration and adaptation,
applications can also specify adaptation rules to perform M-
Component adaptations. Such adaptations will not intenupt
transmission of media flow because adaptation is performed at
external entities, not within the AC Stack

~ .. ~~~ ... ~ ~~.~
<rule name="rule4" pr ior i ty="4" descript ion="modify
t ra f f ic c l a s s ")

< w h e n >

< / w h e n >
< w h e r e

<condit ion param="throughput" bound=''-SO%">

manager=octopus.qos.plugin.resource-manager">
<how act ion="modify" param="traff ic-class"

va lue="rea l_ t ime" / .

< / r u l e >
< / w h e r e >

Figurc 6: An XML-based rulc IO modify M-Componcnl

Figure 6 shows an M-Component adaptation example
whether the Resource Manager will perform re-negotiation for
a new traffic class when the throughput of the media flow is
less than 80 percent of the required bandwidth. This adaptation
is actually performed by the network components, such as
DiffServ.

D. Group Level QoS Management

To address the heterogeneity and scalability issues of group
QoS, we have extended the QMan framework presented so far
to provide adaptive QoS support for group communication.
The concept of group layering bas been introduced where
receivers are divided into groups so that all receivers in the
same group have the same QoS requirements and share the
same data flow. For each group, a QoS Manager is created to
manage the session, the whole of which form a QoS
management tree to balance loads of root manager and to
prevent feedback explosion.

V. IMPLEMENTATION AND EVALUATIONS
We have implemented a prototype QMan to demonstrate

the feasibility of our approach as well as to test the basic
functionalities of the architecture. In our implementation, Java
was chosen as the programming language due to its platform
independent feature. The reflective API and dynamic class
loading features of Java have also found to be essential in the
implementation of DPF. The control channel between manager
and agent is implemented using the Remote Method Invocation
(RM), which enables Java-based application to include
distributed functionality.

The configuration of the testbed is as follows: three
personal computers, each equipped with a 2 GHz Pentium IV
processor and 5 12MB memory, are used as end-hosts in our
experiments. Microsoft Windows XP is the primary operating
system used on these machines. Three additional machines,
each equipped with a 400 M H z Pentium 111 processor and
256MB memory, are used as Linux routers. One of the routers
supports traffic shaping [14]; the Token Bucket Filter are used
as queuing discipline. End-hostss and routers are connected via
IOMbps hubs where each end-host resides in different suhnet.
Every end-host has ten C-Components: RTP, TCP, UDP, IF'
(unicastlmulticast), G711 codec, G723 codec, GSM codec,
MPEG codec, affine encryptioddecryption and stop-and-wait
flow control.

A . Functional Verification

Two programs have been written to facilitate the testing the
functionality and measurement of the performance of the
implemented framework: firstly, an end-host application which
define the capabilities of local media devices and registers
these devices to a JINI lookup service. Media devices can be
discovered by the second application - a JINI control
application.

We have then designed several application scenarios to test
the functionalities of QMan:

0-7803-8783-x/04/$20.00 0 2004 IEEE 80 I

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

>%>>., , \ 3 m Analyzing adaptation table 485 . .~ ~ ..

adaptation of AC stacks by (a) replacing its TCP stack with a
UDP stack, (b) changing to a codec with a higher compression
ratio (e.g., from MP3 to GSM) during runtime. These tests
were conducted for unicast transmission.

483

ii). Create several multicast groups - audio conferencing,
video multicast, and shared white-board - to test the operation
of group joining and leaving as well as QoS adaptation.

We found QMan is functioning in the way as expected.

B. Latency Evaluaiions

We subsequently designed some experiments to measure
the latency of QMan in different phases of operations: before
establishing a network connection, the QoS requirements are
mapped into MLR. After that, the QoS Manager conducts QoS
negotiations to identify AC Stack for both sender and receiver.
Finally, according to agreed meta-stack, QoS Agents invoke
DPF to create actual protocol stacks. Time taken for various
QMan operations is shown in Table I. The first sub-column
under the time column shows the time taken in QoS
management when a single QoS Manager is used whereas the
second one shows the time taken when a management tree
(tree depth equals to 2) is used for multicast settings.

TABLE I. TIME-TAKEN IN QOS MANAGEMENT FUNCTIONS

"..6?": Analyzing components 432 438

2; ..,.., :e", Attaching to QaS Manaaer I 1192 I 1191

;ii " .
.. .n , .

C. Invocation delay o f R M

As mentioned early, RMI is used to establish the control
channel between QoS manager and QoS agents. Table II
shows the invocation delay of RMI. In this delay measurement,
a client simply invoked a remote method, passing difference
sizes (16, 32, 64 ... 32768 bytes) of message to the sender.
Measurements were taken under different network operational
conditions. The first three series were performed in IO Mbps,
100 Kbps and 40 Khps connections (slightly overlapped with
the line represents 100 Kbps) respectively, without other
network program running. The connection bandwidths other
than IO Mbps are simulated by running traffic shaping at the
intermediate Router. Another four series of experiment were
performed under violated environment; for example, Violate1
was performed in a 100 Kbps connection, with another
network progratn sending media data at the rate of 129 Kbps.

Table 11: Handover timc YS. notification dclay

According to the results, RMI does not contribute
significant additional delay to QoS functions at binding-time.
As the largest control message is set lo 4 Kbytes, RMI
produces delay that is less than lOms (under I O Mbps network).
The loading of configuration files, including available
components and adaptation table, incurs around 430 ms and
480 ms of delay respectively, while registering and discovery
services (due to JINI) take around I second each. However, the
reflective API adopted in DPF and its messaging have
contributed a significant delay to stack creation which suggests
that further investigation and improvement of DPF
performance is needed.

In the presence of QoS violations, RMI incurs higher delay
where QMan has to issue QoS adaptation commands via the
control channel. The receiver's QoS Agent will send the
notifications of violations when detecting the violation within
a specific time interval of 2.7 seconds. This is to reduce the
chances of false raising an alarm on the violation (stability
consideration). Notification of violations and delivering action
objects to the sender take around 0.7 seconds each. However,
processing of QMan takes less than 0.1 seconds because the

802

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

RMI has already produced the delay of approximate 0.6
seconds (see the delays of the upper four lines in Table 11).
Although notification has to be delivered from the receiver’s
QoS Agent to the leaf, the QoS manager will then forward it
directly to the root manager, thereby reducing the delay
incurred by half. Therefore, the notification takes 10 ms to be
delivered from the leaf manager to the root manager. This is
one of the benefits of separating the control path from the data
path.

VI. CONCLUSIONS AND FUTURE WORK
A holistic approach for end-to-end QoS control and

management has been adopted in the design of QMan. It has
the following key features: (i) the ability to provide a high
level QoS specification for applications, a QoS-Meta-
Information-Based (QMlB) for the specification of QoS
requirements and adaptation rules at middleware level, and the
translation of the former to the latter; (ii) the ability to provide
QoS monitoring and signaling between end-hosts, which
allows the QoS requirements and the rules for adaptation to be
configurable prior to sessions setup and re-configurable during
sessions; (iii) component-based approach where C-Component
and M-Component can he dynamically selected, configured
and adapted; (iv) the ability to provide multiple strategies for
QoS adaptation - from adaptation of hosts’ protocol stacks and
network QoS support to re-adjustments of QoS requirements
by applications during runtime; (v) multicast QoS management
tree which can be created to balance the working loads of QoS
Manager and prevent feedback explosion.

Leveraging on Dynamic Protocol Framework, QMan offers
greater functionality and flexibility in the end-to-end QoS
management. Results of tests show that QMan does not
introduce unacceptable overhead while offers enhanced
functionalities for distributed multimedia applications. Future
work can be canied out in several directions. Firstly, a study of
DifBerv model and its integration into QMan is needed as the
extension to current architecture. Secondly, the validation of
adaptation rules should be examined since QMan allows
different stakeholders (e.g., application, network administrator)
to define rules and policies, which may potentially conflict
with each other. Lastly, application QoS requirements should
be modeled to prepare QMan with the ability to better support
applications from various domains.

REFERENCES
C. Aurrecoechea, A. T. Campbell, L. Hauw, “A survey of
QoS architectures,” Mulitmedia Systems, 1998
N. Klara Nahrstedt, X. Dongyan, W. Duangdao, and L.
Baochun, “QoS-Aware middleware for ubiquitous and
heterogeneous environments,” IEEE Communications
Magazine, 2001
X. Wang and H. Schulzrinne, “Comparison of adaptive
Internet multimedia applications,” IEICE, June 1999

[41 C.H. Zbang, T.K. Chin, K.Y. Koh, G.M. Ong, C.H. Peng,
H.K. Pung, and S. Suthon, “OCTOPUS: A middleware
for multimedia communication,” IMSA, August 2002

[5] Sae-Whong Suthon, Geok Meng Ong and Hung Keng
Pung, “An Adaptive End-to-End QoS Management with
Dynamic Protocol Configurations”, IEEE International
Conference on Networks (ICON ‘02)

[6] Object Management Group (OMG), “Control and
management of AudidVideo Streams”,
CORBATelecoms: Telecomm Domain Spec version 1 .O,
Group Management Protocol, Version 2”, RFC 2236,
November 1997

[7] B. Stiller, C. Class, M. Waldvogel, G. Caronni, D. Bauer
and B. Plattner, “A Flexible Middleware for Multimedia
Communication: Design, Implementation, and
Experience”, IEEE JSAC: Special Issue on Middleware,
Vol. 17, No. 9, 1999

[SI Mitchell S., H. Naguih, G. Coulouris, and T. Kindberg,
“A QoS Support Framework for Dynamically
Reconfigurable Multimedia Applications”, Proc.
DAIS’99, June 1999

[9] Gerard Parr, Kevin Curran, “A Paradigm Shift in the
Distribution of Multimedia”, Communications of the
ACM, Vol43, No 6, June 2000

[I O] G. Xiaohui, N. Klara, Y. WanghOng, W. Duangdao, X.
Dongyan, “An XML-based QoS Enabling Language for
the Web”, Journal of Visual Language and Computing,
Special Issue on Multimedia Languages for the Web,
13(1): 61-95, Feb.2002

[I I] Baochun Li, Klara Nahrstedt, A Control-based
Middleware Framework for Quality of Service
Adaptations, IEEE JSAC: Special Issue on Senice
Enabling Platforms, Vol. 17, No. 9, pp. 1632-1650,
September 1999

[IZ] K. Nahrstedt, D. Wichadakul, and D. Xu, “Distributed
QoS Compilation and Runtime Instantiation,” in
Proceedings of IEEE/IFIP International Workshop on
Qualify of Service 2000 (IWQoS ZOOO), June 2000

[13] D. Bauer, B. Stiller, B. Plattner, “Guaranteed multipoint
communication support for multimedia applications,” in
SYBEN’98 Broadband European Networks Conference,
Switzerland, May 1998

[14] B. Hubert, G. Maxwell, R. Mook, P. B Schroeder, J.
Spaans, “Linux Advance Routing and Traffic Control
HOWTO, 2001

[15] D. Schmidt and T. Suda, “Transport system architecture
services for high performance communication
subsystems,” IEEE JSAC, vol. 1 I , no. 4, May 1993

0-7X03-X781-x/04/$20.00 0 2004 IEEE 803

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

