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Abstract - Recognizing the need to provide end-to-end 
QoS for performance sensitive applications, and the need 
to manage such QoS provisions in the presence of diverse 
application QoS requirements as well as heterogeneous 
network environment, we propose an adaptive end-to-end 
QoS management architecture - QMan, to address such 
issues. QMan, as one of the key components of OCTOPUS 
middleware, makes no presumption of the underneath 
QoS provisions for end-to-end QoS management, but can 
take advantage of such provisions if there are. QMan 
allows applications to exchange QoS requirements and 
negotiate for a suitable prntncnl stack configuration with 
the assistance from Dynamic Protocol Framework (DPF). 
During data transmission, QMan monitors QoS violations 
and performs QnS adaptations according to the rules 
defined through a combination of three possible conduits 
in an end-to-end fashion: network level, host level and 
application level. These rules are  pre-determined 
according tn  application requirements or network policies 
and can be re-configured for custnmization of QoS 
adaptations during run-time. Performance evaluations of 
our implementation demonstrate the feasibility of QMan’s 
design with satisfactory performance. 

Keywords - QoS managemeni; multimedia; adapiive QoS 
middleware; QoS policy; dynamic proiocol configuration 

I. INTRODUCTION 
To provide end-to-end QoS provisions for advanced 

applications, it is widely accepted that support is needed at 
both end-hosts and networks. Recent advancements in Internet 
technology have brought forth several QoS models such as 
Integrated Service and Differentiated Service. However, these 
models are not expected to be widely deployed as common 
services in the foreseeable future due to various reasons. In 
contrast, best effort service class is still prevalent, which 
implies that Internet is more likely to provide best assure rather 
than guaranteed QoS. 

In end-hosts, various QoS approaches have been proposed 
and discussed. These approaches can be categorized into 
reservation-based approach and adaptation-based approach 
according to their different resource management styles. 
Reservation-based approach employs admission control and 
resource reservation along the end-to-end communication path. 

However, current operating systems and networks are not 
ready to support these advanced QoS features, which makes 
reservation-based approach hard to realize practically. In 
contrast, adaptation-based approach proposes to operate in 
best-effort environment and manages QoS in a pure end-to-end 
fashion where QoS monitoring and adaptation are enforced at 
end-hosts throughout the lifecycle of the session to smooth the 
quality fluctuation and maintain the agreed QoS level. 
Adaptation-based approach requires no modification at 
network level and OS level thus makes itself more suitable to 
deploy over current non-real-time OS and best effort network 
environment. 

In adaptation-based QoS research, progresses have been 
made in the directions of ‘QoS-aware applications’ and ‘QoS 
middleware’. Most work done in the application layer is 
related to the transmissions of continuous media streams (e.g. 
variable bit rate codec, media compression, frame-dropping 
and layered encoding scheme), and hence is rather media 
specific and restrictive in certain application domains [I] [2] 
[3]. In recognition of these limitations, more active research 
efforts have been spent in the middleware approaches. QoS 
middleware approach is popular for at least two main reasons 
despite of its performance overhead: (1) the QoS solutions are 
likely to be independent of the network and OS platforms, and 
(2) the QoS controls can be transparent to applications. 

However, QoS should be more than just delay and 
throughput as is considered by current projects. Nowadays, 
application programmers could be overwhelmed by the 
problems of heterogeneous run-time environments and 
resource diversity, which makes applications hard to be 
developed. To gracefully and efficiently manage QoS for 
multimedia applications, these issues also need to be handled. 
In this paper, we propose our design philosophy to restore the 
flexibility of applications, Instead of specifying the names of 
the services, applications may specify the desirable properties 
of the services. For example, instead of “RSVP,  applications 
can specify “resource reservation”. In bind-time, an available 
service that offers resource reservation can be selected. If the 
selected service fails to deliver at runtime, it can be quickly 
replaced by another service instead of dully reporting to the 
application for rescue. This design philosophy assists 
applications to regain their flexibility and ensure that 
applications can be deployed easily and rapidly in large scale. 

0-7R07-8783-X/04/$20.00 0 2004 IEEE 791 

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore.  Restrictions apply.



An adaptive QoS Management architecture (QMan) has 
been developed based on such a design philosophy. It enables 
end-to-end QoS management and control in both unicast and 
multicast settings. The remainder of this paper is organized as 
follows: Section II discusses related work; Section III 
describes the architecture of QMan in detail; Section IV 
explains QMan QoS management mechanisms; Section V 
evaluates the functionalities and performance characteristics of 
our current implementation. This is followed by a conclusion 
and future work in section VI. 

11. RELATED WORK 
The open problems of providing Quality of Service have 

been addressed by various research efforts in the past years. In 
end-host QoS research, various projects have been proposed to 
provide QoS supports as middleware services. Agilos [I I ]  is a 
middleware control architecture to determine application- 
aware adaptations. The main contribution of this project is the 
introduction of Fuzzy Control Model to make QoS adaptation 
decisions. 2KQ [ 121 proposes a resource-aware service 
configuration model. Multi-tie QoS translation and discovery 
server have been designed for distributed QoS compilation and 
runtime instantiation. DaCaPoti- [7] is a middleware QoS 
project that integrates various fimctionalities, e.g., security and 
multicast. It supports a range of multimedia applications and 
automatically configures itself at start-up time to provide 
suitable communication protocols and multimedia oriented 
services that are adaptable to application needs. MCF [I31 
from the same research group offers flexible multipoint 
communication services through protocol configuration at 
start-up time. DJINN [SI and RWANDA [9] follow 
component-based approaches, which provide high level QoS 
re-configuration. Components can be stacked and re-stacked in 
a variety of ways to meet the communication demands of 
applications. 

Although great strides have been made in current projects, 
there still remain some problems toward a better QoS 
middleware: 

1. Lack of meta-information model for specifiration of QoS 
1-equirements, adaptation rules andpolicy. 

Adaptive QoS Gameworks, like DaCaPoH, DJINN, 
ADAPTIVE [15], and RWANDA offer the ability to re- 
configure their components. However, the reconfiguration 
needs guidance from applications when violations occur, since 
such guidance is not included in the QoS specification. As it is 
unlikely to anticipate all possible QoS violations at the design 
phase of an application, expensive software re-engineering 
process is needed to 'update' the QoS awareness of existing 
applications, including adding new codes and re-compilations 
of applications [IO]. In our view, this tedious process should 
be de-coupled from the applications by defining a meta- 
information model. This is the approach taken in the design of 
QMan, with details to be presented later. 

2. Lack of integrated framework utilizing both end-host and 
network QoS capabilities in aflexible manner. 

A middleware system can deliver much better end-to-end 
QoS if it collaborates with the host OS and network QoS 
support. However, previous frameworks that provide flexible 
end-host adaptation, such as Agilos and 2KQ, did not address 
this essential issue. We believe an integrated framework that 
utilizes both end-host and network QoS capabilities is essential 
to end-to-end QoS provisions. 

Motivated by the shortcomings above, QMan is designed 
to provide QoS management functions in an integrated, 
seamless and efficient manner. XML-based adaptation rules 
are included into QoS specification. Application designers can 
define their rules according to application characteristics, 
while network administrators defme rules according to 
network policy. QMan allows these rules to he combined and 
assigned to the framework. The introduction of communication 
component and management component allow collaboration 
between end-host QoS management and network QoS 
management. Moreover, all management functions are 
extensible to support one-to-many and many-to-many 
communications. 

111. OVERVIEW OF QMAN ARCHITECTURE 

An overview of the QMan architecture is shown in Figure 
1, QMan consists of two principal components: QoSAgent and 
QoS Manager. The former resides in each end-host to collect 
local QoS information and holds references of available 
components, whereas the latter directs participating QoS 
Agents to perform QoS management operations via a control 
channel. A data channel between participating hosts can 
subsequently be established according to application 
requirements. The data channel is referred to as Adaptive 
Communication Tunnel (AC Tunnel); whereas the protocol 

Figure I :  Overvicw ofQMAN Architechm 

stacks in the respective end-host is referred to as Adaptive 
Communication Stack (AC Stack). Details of various key 
components in QMan are described below. 

A .  QoS Manager 

QoS Manager is a distributed component that is responsible 
for overall QoS management of a session. A QoS Manager 
enters an imbound mode once created. It is subsequently b o n d  
when a sender attaches to it. This is the pre-condition for the 
QoS Manager to make sure there is at least one sender in a 
group session before any receivers can be accepted to join the 
group. 
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QoS Manager provides Binding operation to allow 
senderireceiver to create an AC Tunnel under its supervision. 
QoS requirements of AC Tunnel are specified as parameters of 
the binding operation. QoS Manager also extends an interface 
for applications to specify adaptation rules about the AC 
Tunnel; other functionalities provided by QoS manager 
include Session Status Q u e v  and Session Instrument, which is 
useful to interested third parties (e.g., authorized ISP) to shape 
an on-going session under regulation. 

B. QoSAgent 

QoS Agents reside in each participating end-host to 
schedule the local QoS management. QoS Agents hold 
references of Communication Components (C-Components) 
and Management Components (M-Components) in the same 
end-host. (Definitions of C-Components and M-Components 
can be found in next section). QoS Agents provide a set of 
APls for applications to access QoS management functions. 
Methods provided by the QoS Agent include Defining local 
QoS requirements ondpolicy, Setting DataSource' and Getting 
DataSource. 

C. 

The outcome of the binding operation is an AC Stack, 
which is created at each end-host according to negotiated QoS 
requirements. Subsequently Adaptive Communication Tunnel 
(AC Tunnel) between end-hosts will be established for 
transmitting multimedia data from the sender to the receiver(s). 
AC Tunnel covers from sender's AC Stack, networks and 
along the way to receivers' AC Stack. In AC Tunnel, 
applications may specify QoS requirements in term of 
reliability, security, and etc.; data can be sent and received via 
DataSozrrce object. AC Stack capitalizes on functions provided 
by Dynamic Protocol Framework (DPF) [5]. The AC Stack is 
richer in functionality than the Berkeley Socket where it can 
adapt itself to maintain the required QoS. 

AC Stack and AC Tunnel 

D. Control Channel 
The control channel is mainly used for the exchange of 

control information and signaling messages between QoS 
Manager and QoS Agent. Inspired by the OMG AudioNideo 
Streaming. Service specification, QMan separates the control 
channel from the data channel to ensure that additional control 
overhead will not degrade processing of media data [6]. In 
order to ensure the delively of messages, the channel should be 
established over a reliable connection such as a TCP 
connection or a reliable lightweight connection with ARQ 
running over a unreliable UDP connection [4]. 

E. Communication Components (C-Component) 

QMan regards a protocol component as its C-Component, 
which is composed of a dynamic executable code and a XML 
file. The executable code contains mechanism to process data 
and to generate default parameters automatically. In our 

' DataSourcc. a tcrm in Java Mcdia Framcwork, is used to manage the 
Ransfcr of media-contents. A DataSource encapsulates both the location of 
mcdia and thc protocol and saftwarc uscd to delivcr thc mcdia. Oncc obtained 
thc DataSource object cannot bc rcuscd to dclivcr athcr medias. 

XML 

Figure 2: C-Components and Camponcnt Registry Manager 

implementation in Java, the execute code is Java byte-code. 
The XML file, which is called QoS-Meta-information-Based 
(QMIB), stores C-Component properties such as name, version 
and QoS attributes. As can be seen in Figure 2, the necessary 
information from QMIB and executable code of components 
will be translated into ComponentDescripter object, which is 
collected and stored in registry by Component Regisny 
Manager (CRM. Applications can quickly start-up based on 
such pre-loaded information. 

F. Management Component (M-Component) 

M-Components are used to take advantage of QoS services 
provided by extemal entities such as  the host operating 
systems (e.g., real-time OS) or network-level QoS support (e.g. 
DiffServ and RSVP). Each M-Component is designed to be a 
plug-in to QMan rather than a tightly coupled module. 
Consequently, QMan can function even without the presence 
of these management components. Two management 
components have been designed to enhance QoS 
functionalities curiently: Resource Manager and Connection 
Manager. Resource Manager computes and reserves end- 
hostinetwork resources before an AC Stack is created, 
provided such reservation is supported by host OS or QoS- 
aware network. Connection Manager (CM) manipulates group 
level QoS adaptations. For example, CM enables a group of 
users of similar QoS requirements to receive more or less 
layers of encoded data in layered encoding scheme via the 
group joining or disbanding operations. All C-Components 
and M-Components are transparent to applications. The 
combination of the adaptation of C-Components and the 
adaptation of M-Components form the main pillar in the 
QMan holistic approach to adaptive QoS support. 

1V. QOS MANAGEMENT FUNCTIONS 
The sequence diagram presented in Figure 3 provides a 

clear illustration of the workflow of QMan QoS management 
in conjunction with DPF. Applications first specify QoS 
requirements and initiate binding operations to the QoS 
manager in order to construct an AC Tunnel. At the connection 
setup phase, QoS Agents retrieve information of protocol 
components available in each end-host from Component 
Registxy. They then feed this information to QoS Manager, 
which will subsequently conduct the QoS negotiation 
operation. After that, QoS mapping is performed to obtain 
DPF specifications of a functional stack that meets the 
requirements. After the stacks have been synchronized (i.e. the 
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Firmre 3: Workflow of OMan and DPF 

stacks at both hosts are compatible), the sender and the 
receiver will proceed to transmit data via the constructed AC 
Stack. 

During transmission, QoS Agent on the receiver side 
monitors whether the QoS level has been sustained or violated. 
A Qua& Event is sent out to the QoS Manager when a QoS 
violation occurs. The QoS Manager will then conduct QoS 
adaptation according to adaptation rules and policies to derive 
a suitable new configuration of the AC Stack. Finally, the re- 
configuration of the functional stack is performed. Some key 
steps of QMan management hctionalities are outlined below. 

A .  QoS Specification and Mapping 

The QoS specification of QMan is organized in two tiers 
fashions: application level and middleware level. Applications 
can utilize the provided MIS to specify Application Level 
Requirements (ALR), which will be translated automatically or 
manually into Middleware Level Requirements (MLR). MLR 
specifies QoS in XML, and the resulting XML file, as 
mentioned, is known as a QMB. For each level, there exists a 
corresponding set of QoS requirements to be met. Each 
requirement can be represented by a simple data smcture 
consisting of a keyword of QoS parameter with minimum and 
maximum value. For example, the built-in QMan API 
QoSMapper (Figure 4 )  provides simplicity of usage with pre- 
defined keywords such as “reliability” and “bandwidth usage”. 
Application developers can create application-specific GUI for 
QoS specification based on pre-defined QMan APIs, third 
party APIs or directly on top of MLR. These APIs should have 
their desirable QoS requirements translated into the 
corresponding MLR representations in XML (QMIB). It 
should be noted that MLR also allows new keywords to be 
defined which provides the flexibility to extend and customize 
the QMan framework. 

QoSMapper mapper = new QoSMapperO,  
ProtocoiStack stack = null,  

: mapper.setReliabil i ty(true);  
~ m a p p e r . s e t B a n d w i d t h U s a g e ( m a p p e r . B A N D W I D T H ~ l J S A G E ~  

Low); 

.................................................................................................................................................... 

I 
I 

mapper .setClarsofServ ice(mapper .TRAFFlC~CLASS~LOW);  
mapper.setl i t terControl(true);  
mapper.setDelayBound(mapper.DELAY_REALTIME); 
mapper.addPreferredComponent(”1P”); 
stack = mapper .c rea tes tack0;  i ........................................................................................................................................................................... 1 

Figure 4: Sample code of ALR 

QoS Mapping is the process within each end-host to map 
higher-level application QoS requirements into middleware 
requirements. Consequently, QMan selects a set of protocol 
components and deploys them into a functional stack 
according to the application’s QoS requirements. Current 
QMan implementation supports pattern matching based QoS 
mapping, which provides fast searching. One ALR keyword 
may be translated to either one or few of pre-defined MLR 
keywords. Components selection and DPF specification 
translation are needed to complete MLR to DPF specification 
mapping. Since MLR contains keywords indicating the 
required QoS capabilities of C-Components, such mapping can 
be done by retrieving corresponding C-Components from the 
Component Registry. 

B. QoSNegotiation 

Before invoking a binding operation, an application has to 
specify MLR to QoS Manager. If ALR is being used, it will be 
translated to MLR either manually or automatically because 
only MLR elements are exchanged between end-hosts. Hence, 
the application can define application-specific ALR without 
affecting management functions. In the binding operation, the 
first step to perform in a QoS negotiation is to finalize the QoS 
requirements between end-hosts. QMan conduct negotiation in 
two aspects: MLR negotiation and components negotiation. 

I )  MLR Negotiation 

Technically, QoS Manager and QoS Agents negotiate to 
finalize a range of QoS parameter values. If the required range 
of a particular agent is different &om the one selected by the 
QoS Manager, some compromises will have to take place. 
QMan supports three methods of MLR negotiation: system 
driven in which the decision is up to the QoS Manager; sender 
driven in which the negotiation takes place between the sender 
and the QoS Manager; and lastly bilateral decision in which 
sender, receiver and QoS manager are involved in the decision 
making. 

2) Components Negotiation 

Once a MLR have been confmed, components that match 
MLR will be selected. Although the selection is done in QoS 
Mapping step, components negotiation ensures that all 
participants will support the selected components. In a network 
as technologically diverse as the Internet, each end node may 
have its own set of system and network resources available. As 
mentioned early, QMan utilizes a local Component Registly to 
keep track of the protocol components available for use. For 
example, in a system where IPv6 is not supported, an IPv6 
component should not be listed in the local registry. 
Components negotiation is then conducted via the stack 
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synchronization mechanism of DPF. Thus we have solved the 
service diversity problem posed at the beginning of this paper. 

C. QoS Monitoring andAdaplation 

QoS monitoring is the process to detect QoS violations 
throughout the lifecycle of a session. Any piggyhack-like 
protocols, such as RTP and SFP [6] ,  can be deployed in our 
framework for QoS monitoring. In addition to monitor at AC 
Stack, M-Components may also act as monitoring units. For 
example, an MComponent that utilizes Simple Network 
Management Protocol (SNMP) can be deployed to obtain 
network status from network devices. When a violation is 
detected, QoS Monitor will generate a report to the QoS 
Manager, where the actually adaptation choice will he 
determined. This approach has the advantage of preventing 
QoS feedbacks explosion at the sender in case of multicast. 

Upon the receipt of a QoS violations report, QoS Manager 
will consult Adaptation Rules Table to perform QoS 
adaptations. Adaptation rules are predefmed by applications or 
other relevant parties and can be re-installed during runtime. 
Each adaptation rule consists of three parts: 'when to do 
adaptation', 'where to do adaptation' and 'how to do 
adaptation'. Adaptation Rules can be defmed to tune 
performance of a particular protocol (e.g., increase buffer sue 
in case ofjitter) or even to modify AC stack. Figure 5 show an 
example of C-Component adaptation rule: a flow control based 
transport protocol (e.g.. TCP) is to he replaced by another 
protocol without such feature, when the packet loss rate 
exceeds 20%. Upon occurrence of such violation, a suitable 
protocol (e.g., UDP) will be picked out to substitute the 
original protocol according to this d e .  

~ <rule name="ru ie2"  p r i o r i t y = ' l ' ' >  
: < w h e n >  
: <condit ion D a r a m = " l o s x r a t e "  b o u n d = " + + 0 . 2 " / >  

Figure 5: An XML-based rulc Io remove a C-Componcnt 

In addition to C-Component configuration and adaptation, 
applications can also specify adaptation rules to perform M- 
Component adaptations. Such adaptations will not intenupt 
transmission of media flow because adaptation is performed at 
external entities, not within the AC Stack 

~ .............................................................. ~~~ ............................................................... ~ . . . . .  . ~~.~ 
<rule  name="rule4"  pr ior i ty="4"  descript ion="modify 
t ra f f ic  c l a s s " )  

< w h e n >  

< / w h e n >  
< w h e r e  

<condit ion param="throughput"  bound=''-SO%"> 

manager=octopus.qos.plugin.resource-manager"> 
<how act ion="modify" param="traff ic-class" 

va lue="rea l_ t ime" / .  

< / r u l e >  
< / w h e r e >  

Figurc 6: An XML-based rulc IO modify M-Componcnl 

Figure 6 shows an M-Component adaptation example 
whether the Resource Manager will perform re-negotiation for 
a new traffic class when the throughput of the media flow is 
less than 80 percent of the required bandwidth. This adaptation 
is actually performed by the network components, such as 
DiffServ. 

D. Group Level QoS Management 

To address the heterogeneity and scalability issues of group 
QoS, we have extended the QMan framework presented so far 
to provide adaptive QoS support for group communication. 
The concept of group layering bas been introduced where 
receivers are divided into groups so that all receivers in the 
same group have the same QoS requirements and share the 
same data flow. For each group, a QoS Manager is created to 
manage the session, the whole of which form a QoS 
management tree to balance loads of root manager and to 
prevent feedback explosion. 

V. IMPLEMENTATION AND EVALUATIONS 
We have implemented a prototype QMan to demonstrate 

the feasibility of our approach as well as to test the basic 
functionalities of the architecture. In our implementation, Java 
was chosen as the programming language due to its platform 
independent feature. The reflective API and dynamic class 
loading features of Java have also found to be essential in the 
implementation of DPF. The control channel between manager 
and agent is implemented using the Remote Method Invocation 
(RM), which enables Java-based application to include 
distributed functionality. 

The configuration of the testbed is as follows: three 
personal computers, each equipped with a 2 GHz Pentium IV 
processor and 5 12MB memory, are used as end-hosts in our 
experiments. Microsoft Windows XP is the primary operating 
system used on these machines. Three additional machines, 
each equipped with a 400 M H z  Pentium 111 processor and 
256MB memory, are used as Linux routers. One of the routers 
supports traffic shaping [14]; the Token Bucket Filter are used 
as queuing discipline. End-hostss and routers are connected via 
IOMbps hubs where each end-host resides in different suhnet. 
Every end-host has ten C-Components: RTP, TCP, UDP, IF' 
(unicastlmulticast), G711 codec, G723 codec, GSM codec, 
MPEG codec, affine encryptioddecryption and stop-and-wait 
flow control. 

A .  Functional Verification 

Two programs have been written to facilitate the testing the 
functionality and measurement of the performance of the 
implemented framework: firstly, an end-host application which 
define the capabilities of local media devices and registers 
these devices to a JINI lookup service. Media devices can be 
discovered by the second application - a JINI control 
application. 

We have then designed several application scenarios to test 
the functionalities of QMan: 
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>%>>., , \ 3 m  Analyzing adaptation table 485 . .~ ~ .. 

adaptation of AC stacks by (a) replacing its TCP stack with a 
UDP stack, (b) changing to a codec with a higher compression 
ratio (e.g., from MP3 to GSM) during runtime. These tests 
were conducted for unicast transmission. 

483 

ii). Create several multicast groups - audio conferencing, 
video multicast, and shared white-board - to test the operation 
of group joining and leaving as well as QoS adaptation. 

We found QMan is functioning in the way as expected. 

B. Latency Evaluaiions 

We subsequently designed some experiments to measure 
the latency of QMan in different phases of operations: before 
establishing a network connection, the QoS requirements are 
mapped into MLR. After that, the QoS Manager conducts QoS 
negotiations to identify AC Stack for both sender and receiver. 
Finally, according to agreed meta-stack, QoS Agents invoke 
DPF to create actual protocol stacks. Time taken for various 
QMan operations is shown in Table I. The first sub-column 
under the time column shows the time taken in QoS 
management when a single QoS Manager is used whereas the 
second one shows the time taken when a management tree 
(tree depth equals to 2) is used for multicast settings. 

TABLE I. TIME-TAKEN IN QOS MANAGEMENT FUNCTIONS 

"..6?": Analyzing components 432 438 

2; ..,.., :e", Attaching to QaS Manaaer I 1192 I 1191 

;ii " . 
.. .n , . 

C. Invocation delay o f R M  

As mentioned early, RMI is used to establish the control 
channel between QoS manager and QoS agents. Table II 
shows the invocation delay of RMI. In this delay measurement, 
a client simply invoked a remote method, passing difference 
sizes (16, 32, 64 ... 32768 bytes) of message to the sender. 
Measurements were taken under different network operational 
conditions. The first three series were performed in IO Mbps, 
100 Kbps and 40 Khps connections (slightly overlapped with 
the line represents 100 Kbps) respectively, without other 
network program running. The connection bandwidths other 
than IO Mbps are simulated by running traffic shaping at the 
intermediate Router. Another four series of experiment were 
performed under violated environment; for example, Violate1 
was performed in a 100 Kbps connection, with another 
network progratn sending media data at the rate of 129 Kbps. 

Table 11: Handover timc YS. notification dclay 

According to the results, RMI does not contribute 
significant additional delay to QoS functions at binding-time. 
As the largest control message is set lo 4 Kbytes, RMI 
produces delay that is less than lOms (under I O  Mbps network). 
The loading of configuration files, including available 
components and adaptation table, incurs around 430 ms and 
480 ms of delay respectively, while registering and discovery 
services (due to JINI) take around I second each. However, the 
reflective API adopted in DPF and its messaging have 
contributed a significant delay to stack creation which suggests 
that further investigation and improvement of DPF 
performance is needed. 

In the presence of QoS violations, RMI incurs higher delay 
where QMan has to issue QoS adaptation commands via the 
control channel. The receiver's QoS Agent will send the 
notifications of violations when detecting the violation within 
a specific time interval of 2.7 seconds. This is to reduce the 
chances of false raising an alarm on the violation (stability 
consideration). Notification of violations and delivering action 
objects to the sender take around 0.7 seconds each. However, 
processing of QMan takes less than 0.1 seconds because the 
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RMI has already produced the delay of approximate 0.6 
seconds (see the delays of the upper four lines in Table 11). 
Although notification has to be delivered from the receiver’s 
QoS Agent to the leaf, the QoS manager will then forward it 
directly to the root manager, thereby reducing the delay 
incurred by half. Therefore, the notification takes 10 ms to be 
delivered from the leaf manager to the root manager. This is 
one of the benefits of separating the control path from the data 
path. 

VI. CONCLUSIONS AND FUTURE WORK 
A holistic approach for end-to-end QoS control and 

management has been adopted in the design of QMan. It has 
the following key features: (i) the ability to provide a high 
level QoS specification for applications, a QoS-Meta- 
Information-Based (QMlB) for the specification of QoS 
requirements and adaptation rules at middleware level, and the 
translation of the former to the latter; (ii) the ability to provide 
QoS monitoring and signaling between end-hosts, which 
allows the QoS requirements and the rules for adaptation to be 
configurable prior to sessions setup and re-configurable during 
sessions; (iii) component-based approach where C-Component 
and M-Component can he dynamically selected, configured 
and adapted; (iv) the ability to provide multiple strategies for 
QoS adaptation - from adaptation of hosts’ protocol stacks and 
network QoS support to re-adjustments of QoS requirements 
by applications during runtime; (v) multicast QoS management 
tree which can be created to balance the working loads of QoS 
Manager and prevent feedback explosion. 

Leveraging on Dynamic Protocol Framework, QMan offers 
greater functionality and flexibility in the end-to-end QoS 
management. Results of tests show that QMan does not 
introduce unacceptable overhead while offers enhanced 
functionalities for distributed multimedia applications. Future 
work can be canied out in several directions. Firstly, a study of 
DifBerv model and its integration into QMan is needed as the 
extension to current architecture. Secondly, the validation of 
adaptation rules should be examined since QMan allows 
different stakeholders (e.g., application, network administrator) 
to define rules and policies, which may potentially conflict 
with each other. Lastly, application QoS requirements should 
be modeled to prepare QMan with the ability to better support 
applications from various domains. 
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