
A Real-time Streaming Media File Sharing Mechanism Based on P2P and SIP

Deguo Yang, Hui Wang, Yuhui Zhao, Yuan Gao
 School of Information Science & Engineering Northeastern University,

110004 Shenyang, China
Yangdeguo2002@163.com

Abstract

P2P systems have high scalability, robustness and
fault tolerance because of its no centralized server and
the network self-organized itself. As the standard
protocol for VoIP and NGN, SIP is a general protocol
for establishing and controlling multimedia session. In
this paper, we proposed a real-time streaming media
sharing mechanism based on P2P and SIP, which uses
Chord as the underlying distributed hash table (DHT).
We use the advanced peer and piece selection
algorithm to solve the real time media stream
transmission. We have a redundancy design on the
Tracker server to solve the Tracker server failure and
bottleneck problem. The P2P combined with SIP real
time stream transport mechanism supports user
registration, media resource location, media streaming
session establishment, and real-time media streaming
playback online. Additionally, we give a simulation and
test result.

Keywords: P2P, SIP, real time stream, file sharing.

1. Introduction

With the development of mobile wireless
communication, the requirement of multimedia on
mobile telephone and other handset has increased.
Because the store space and bandwidth of this kind of
equipment is limited, the suitable method is getting the
multimedia file on line, playing while downloading. The
other users of PC also prefer to watch the media file
without waiting until the file is downloaded. It is
necessary to develop a real time media system to
transmit the media among the users.

Peer-to-peer (P2P) system is inherently scalable and
reliable because of the lack of a single point of failure
[1]. P2P system, in the purest form, has no concept of
servers. All participants are peers and communicate in
distributed to achieve a certain objective. Although
Peer-to-peer media streaming system has received more
and more attention, general peer-to-peer system only
offer the function of file sharing, and the mode could
not satisfy the demand of real time media stream
transport. On the other hand, Session Initiation
Protocol(SIP)[2] is an IETF standard for Voice over IP
(VoIP). As SIP media application have increased in
popularity, situation have emerged where centralized

server are either inconvenient or undesirable. But as the
IETF standard, SIP application is popular in
communications systems. Using the open SIP standard
helps us meet our requirement for compatibility and
reuse the open source stacks and the application can be
integrated with the tremendous number of existing SIP
terminal.

In this paper, we design the P2P integrated with SIP
real time media stream transport mechanism (named as
P2P-SIP in the following). P2P-SIP combines the SIP
family of IETF standards for VoIP(Voice Over Internet
Protocol) with the Self Organizing properties of a
Distributed Hash Table (DHT) P2P mechanism. The
result is a standard-based, decentralized online media
sharing system. Our design allows for compatibility with
and reuse of existing SIP network elements. The P2P
overlay is built using a DHT created through
exchanging SIP messages, which are typically well-
supported by existing firewalls, and therefore retain
compatibility with the current network infrastructure.
The uses OTSp2p and DACp2p [3] based media stream
hand out algorithm to solve real time media transport
problem.
The main contributes of this work are:

Creating a fully distributed, P2P and SIP based real-
time multimedia file sharing system.

In the design of system, using advanced media
streaming hand out mechanism to support playback the
media while downloading.

Add the redundancy Tracker server to solve the
Tracker bottleneck and failure problem.

2. Background and Related Work

2.1 P2P and SIP

The fundamental principle behind peer-to-peer (P2P)
architectures is that each and every member of the
network has equal importance in the transactions that
take place on the network, and that these nodes
communicate with each other to accomplish tasks. The
best known use of P2P technology is file sharing system.
But the ordinary peer-to-peer file sharing system is not
suitable for the real time media transport for the lack of
optimized peers and pieces mechanism for the real time
stream media. Such as BitTorrent[5], although its peers
selection policy effectively prevent the free rider[4], it
limits the overall throughout and reduces the peer

2006 1st International Symposium on Pervasive Computing and Applications

731

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

bandwidth utilization rate of the system, which is a
important defect for the real time stream transport.
Another peer-to-peer live multimedia stream system is
Chainsaw[6]. Although Chainsaw is pull-based and
effectively utilizes the source uplink bandwidth, but it
has not the pieces optimal selection policy, and is not
scalable.

SIP has emerged as the standard protocol for VoIP.
SIP supports the initiation, modification, and
termination of media sessions between user agents.
Although some systems use other standards or
proprietary mechanisms such as H.323, the majority of
new VoIP development uses SIP. SIP with SIMPLE
extensions is also extensively used by existing IM
clients, for example in Microsoft’s MSN messenger.
Using the open SIP standard helps us meet our
requirement for compatibility, and allow the system to
leverage open source stacks[1]. Although the
applications of SIP are increasingly popular
communications systems for private, corporate, and
academic purpose, some of the SIP applications face
some deficiency. For example, companies concerned
about intellectual property typically ban the use of
current, centralized services, instead deploying their
own in-house services. Under some condition,
completely distributed system may be the best choice.

2.2 Distributed Hash Table (DHT) Systems:
Chord

To improve the peer and resource locating efficiency,
most systems locate resource by a Distributed Hash
Table (DHT). The Chord[7] system is one particular
DHT algorithm. In this system, every node have a
Node-ID which is get by hashing the IP address and port
of the node; and every resource has a Resource-ID,
which is obtained by hashing some keyword or value
that uniquely identifies the resource. The node is
responsible for storing all resources that have Resource-
IDs near the node’s Node ID. Chord uses a ring-type
structure for the nodes in the overlay. In this structure, if
the hash has 2n bits in the range, each node will keep a
finger table of pointers at most n other nodes. The ith
entry in the finger table contains a pointer to a node at
least 2i units away in the hash space. These highest
finger table entries thus point to a range 1/2 of the way
across the hash space, the next 1/4, and so on, and the
smallest entry points to a range only 1 away in the hash
space. Searching in Chord is accomplished by sending
messages to the node in the finger table that is closest to
the destination address. That neighbor will have finer
resolution detail about the area and can route the
message closer to the desired node. This process is
repeated until the message reaches the node responsible
for the destination.

2.3 Real-time media streaming transport

To send or receive a live media over the Internet or
Intranet, you need to be able to receive and transmit
media streams in real-time. Although there have been
significant research efforts in real time media stream
deliver during the past two years, such as Real-Time
Transport Protocol(RTP) and Real-time Transport
Control Protocol(RTCP), but peer-to-peer media real-
time streaming system has received less attention. The
character of its play-while-downloading mode of peer-
to-peer system is different from the ordinary one. In [3],
the algorithms OTSp2p and DACp2p are proposed. The
algorithm OTSp2p offers an optimized piece choice
policy which computes the media data assignment for
each peer-to-peer streaming session. The assignment
will lead to the minimum buffering delay experienced
by the requesting peer. After computing the media data
assignment, it will initiate the peer-to-peer streaming
session by notifying each participating supplying peer of
the corresponding assignment. The algorithm DACp2p
offers a peer selection policy which can rapidly amplify
the peer-to-peer system capacity. It chooses the peers on
the uploading bandwidth and the decision is made in a
probabilistic fashion.

3. P2P-SIP Mechanism Design

Our design has no central servers and nodes
communicate directly with one another, there are some
differences between our approach and traditional SIP. A
peer connects to a few other peers in the overlay
network and use SIP message to search file message and
locate nodes. Nodes act both as UAs and Proxies
simultaneously. When it gets message and searches file
it acts as UA; and when it maintains and records the file
message and response the request node, it acts as
proxies and replace the functionality of SIP registrars
and proxies. Each node is responsible for those roles for
some portion of the overlay.

We use the SIP REGISTER message to pass the
overlay information between nodes, as well as the
original use of sending user location information to a
registrar (peer). We use INVITE message with SDP
information to request suitable user to transfer needed
peer information and media pieces. If a new node joins
the system, a number of REGISTER messages should
be exchanged. At first, the node is assigned a Node-ID
created by hashing (using SHA-1) the real IP address
and appending a port. Then send a REGISTER message
to a node which is responsible for the region, and insert
itself into the overlay. Once the new node has joined the
overlay, it will be responsible for storing information
(user registrations) associated with the portion of the
overlay mapped to that calculated Node-ID, and transfer
the information for the region from the node presently
storing that data which should belong to the new joining
node.

2006 1st International Symposium on Pervasive Computing and Applications

732

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

There is an example of a node join in Figure 1. When
a new node wishes to join the overlay it must locate
some node already in the overlay, referred to as a
bootstrap node. Presently this node is located via out-of-
band mechanisms. The joining node calculates its Node-
ID, 143, in our example, and sends it in a REGISTER to
the bootstrap node, which has Node-ID 143 (1).

Fig. 1. An example of a new node joining the
overlay
Assuming that the bootstrap node is not the node
currently responsible for this region, it responds with
information about the nodes it knows nearest to where
the joining node will be placed in the overlay—in this
case, Node B, with Node-ID 266. This information is
passed back in our new headers within a SIP 302
Moved Temporarily response (2). The joining node
repeats the process, using this nearer node as the new
bootstrap node (3-4). Finally, the joining node reaches
the node that is currently responsible for maintaining the
appropriate section of the overlay, In this case Node C,
with Node-ID 638. Node C responds with a SIP 200 OK
response including detailed information about nearby
neighbors in the headers (5-6), allowing the joining
node to insert itself into the overlay. Further messages,
not shown, are sent between the joining node and the
node previously responsible to exchange the actual
information (registrations) in the overlay the new node
must store. Additionally, the new node will send
messages to other nodes in the overlay to update their
finger tables. At this point, the node has joined the
overlay and node registration is complete.

3.2 File publishing and pieces distribution

To start a media file deployment, a static file is
stored on a node according to Chord architecture. The
file contains information about the file, its length, name,
and hashing information and the information which
nodes are downloading it and downloading what part of
it, and the downloaders’ IP addresses and ports. If a
node wants to publish content, it hashes the key word of
the content, and finds the node which should be
responsible for the content according to the Chord peer-

to-peer structure. The node which is responsible for the
content will store the static file.

When a file is published on the overlay network, the
node which stores the file information will acts as a
Tracker. The Tracker is a manager of the file on the
node, it receives from all downloaders and giving them
a random lists of peers. The downloaders periodically
checking in with the Tracker to keep it informed of their
progress, and the Tracker offers the information of the
file information.

For the purposes of playing while downloading with
best effort, the seed file is partitioned into fixed-size
pieces which are all the same length except for possibly
the last one which may be truncated. Piece length is
almost always a power of two, most commonly 28=
256K. The seed computes an SHA1 hash for each piece
and distributes these hash values to each receiver so that
the latter can verify the integrity of the pieces it receives
later on. Each piece is further divided into blocks,
typically of size 16Kbytes. A receiver can download
blocks within the same piece from multiple peers
simultaneously. However, a node can relay blocks of a
piece to other nodes only after it receives the entire
piece and successfully verifies its integrity.

3.3. Peer strategy and piece selection

Once a node wants to download a file, it will hash
the resource file key word, and get a file ID. According
to the file ID, The node searches its finger table and
sends the request information to the overlay network. If
the file is not existed, the node whose node ID is just
equal or follows the file ID will return the response that
the request file is not exist. If the File does exist, the
Tracker on the node who is responsible the file will
return the request node a file information including the
nodes random lists table with which the request node
can download the file from. Then the request node
chooses the node from the list in some policy to
download the file pieces which it needs.

3.3.1 Pieces selection. Once a BitTorrent client
establishes connections with its potential peers, it needs
to determine which pieces to download from which
peers, based on the knowledge of the set of file pieces
available in all it peers. As shown in Figure A, different
assign policy leads to different buffering delays.

In the Figure 2(a), the requesting peer is Pr; and the
supplying peer are Ps1, Ps2, Ps3, Ps4. with out-bound
bandwidth of R0/2, R0/4, R0/8, and R0/8 respectively. In
assignment��Ps1 is assigned media data segments 8k,
8k+1, 8k+2, 8k+3 (k=0,1,2,3…), Ps2is assigned 8k+4,
8k+5; Ps3 is assigned segments 8K+6; Ps4 is assigned
segments 8k+7.the start time is 5�t. However, if
assignment�is used the buffering delay will be reduced
to 4�t.

 We adopt an optimized media data assignment
algorithm OTSp2p to reduce the buffering delay. Let Ro

2006 1st International Symposium on Pervasive Computing and Applications

733

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

denotes the playback rate of the media data. We assume
that each requesting peer Pr will be able to set aside all
in-bound bandwidth of Rin(Pr) � R0 to receive the
streaming service. And the out-bandwidth Rout(Ps)
offered by the supplier Ps has one of the following
values, R0 R0/2, R0/22… R0/2n. According to the out-
bound bandwidth, the peers are classified in to N classes.

(a)

(b)
Fig. 2. different assignment leads to different

buffering delays
The peer who is willing to offer out-bound bandwidth
R0/2n is called class-n peer. For example, a peer which
can offer out-bound bandwidth R0/22 is called class-2
peer. To satisfy the demand of playing while
downloading, the goal is ensure a continuous playback
with minim buffering delay at Pr. We define the buffer
delay as the time interval between the start of media
data segment and the start of playback at Pr. Based on
the assumption above, for a requesting peer Pr and a set
of supply peers Ps1, Ps2… Psm, if every piece buffering

time is tδ , and ()in rR P =
1

()m i
out si

R P
=∑ ≥ 0R

(1≤i≤m), then Algorithm OTSp2p will compute an
optimal media data assignment, which achieves the
minimum buffering delay in the consequent peer-to-peer
streaming session. The minimum buffering delay is

*min
bufT m tδ= .The pseudo-code of algorithm can be

found in[3].
3.3.2. Peer strategy. Peer strategy has a great impact

on local performance. To join a session, a node first
contacts the Tracker to obtain a list of randomly chosen
peers that are currently in the session. Then it

establishes new socket connections with these peers
until the number of connected peers reaches some
threshold, currently 40. In the mean while, it can start
accepting connection requests from other peers, but will
stop accepting new connection requests when the
number of connected peer reaches another threshold,
currently 80. A client will asks the Tracker for a new list
of peers either every some time�generally 30 minutes,
or when the number of neighboring nodes reaches the
minimum, currently 20.

Given a set of file block from its peers, a BitTorrent
node needs to determine which request to service and
which to ignore. In BitTorrent, it employs a fairness
policy to prevent free riders. The policy is that every
client chooses to serve four peers that have contributed
the most uploading bandwidth to it. With the increase of
the heterogeneous degree in the network, in the
BitTorrent peer-to-peer selection policy, some uplink
bandwidth may be wasted[8]. It is obvious that the
admission which favors higher-class requesting peer
will lead to faster amplification of the peer-to-peer
system capacity, and will ultimately benefit requesting
peers of all class. It is especially important for the real
time stream media system. But the policy should not
starve the lower-class request peers. It should ensure
that the higher the out-bound bandwidth pledged by a
requesting peer, the greater the possibility that it will be
admitted. This will create an incentive to encourage
requesting peers to contribute its truly available out-
bound to the system. In this system, the solution is a
distributed admission control protocol DACp2p[3]. To
the requesting peer list, each supplying peer Ps maintain
an admission probability vector<Pr[1], Pr[2]… Pr[N]>.
Pr[i] (1�i�N) will be applied to class-i requesting
peers. Supposed Ps itself is a class-k peer, then the
values in the probability vector of Ps is determined as
follow: for 1�i�k, we initialize Pr[i]=1.0, and for k<i
�N, we initialize Pr[i] = 1/2i-k. if Ps has been idle, then
its probability vector will be updated after some time, if
Pr[i]<1.0, for each K<i � N, Pr[i] = Pr[i] � 2. the
simulation in the section 5 shows the policy is available.

4. The robustness design

Because the Tracker is the only way for the peer to
discovery other peers, and the Tracker is run on an
ordinary node. The central coordination presents the
single point failure of the entire system. Whenever the
Tracker shut off at any time, it will result in system
temporary failure; with the number of requesting peer
increase, the Tracker will become the bottleneck of the
system. To solve the problem, we have a redundancy
design on the Tracker server. We have another copy of
the Tracker information on the other node, generally the
node whose node ID is just next to the Tracker. When
the client number is over 1000, the Tracker will redirect
the request information to the backup Tracker server,

2006 1st International Symposium on Pervasive Computing and Applications

734

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

and the redundancy Tracker will provide the
information which the requesting peers want. When the
Tracker is shut off, the redundancy Tracker will become
the really Tracker, and find another node to be the
redundancy Tracker server.

5. Result and analysis

We simulate the P2P-SIP media streaming system
with p2psim. In first experiment, we contrast the system
with the pure BitTorrent file sharing system on the rate
of bandwidth utilization; then we verify the validity of
piece selection policy in the decrease media transport
latency time; At last, we test the change of system
temporary failure rate brought by the redundancy
Tracker. In the simulation, the uplink bandwidth of seed
is set 2000Kbps; the size of sharing file is 256MB; the
size of each file piece is initialized 256KB; the size of
each block is initialized 16KB; the number of receiver
nodes is 400; the number of neighbors each node has is
40; and the maximal number of concurrent upload
connection per node is 5.

We contrast overall efficiency between the general
BitTorrent system and the P2P-SIP system. We define
the overall throughout ratio between BitTorrent and
P2P-SIP as the evaluation parameter(formula(1)).

2

BT

p p sip

ThroughoutRatio
Throughout −

=
(1)

Figure 3 shows the overall throughout ratio between
BitTorrent and P2P-SIP with the number of node
changing in three different Networks. From the figure,
we can draw a conclusion that the overall throughout of
the P2P-SIP is obviously higher than that of BitTorrent.

Fig.3. Overall throughout ratio change
between BitTorrent and P2P-SIP with the
number of node changing in three different
Networks.
The higher bandwidth utilization efficiency of P2P-SIP
is benefit from the peer selection policy. Because the
peer in P2P-SIP chooses the peer with more uplink

bandwidth to upload media data, the overall throughout
of the system is improved.

Figure 4 shows the influence brought by the different
piece selection. It is obvious that the P2P-SIP with
OTSp2p piece selection policy has less buffering delay
time than that of non-OTSp2p. The system with P2P-SIP
has average 200ms buffering delay less than the non-
OTSp2p. The reason is because the OTSp2p algorithm can
compute an optimal media assignment, which achieves
the minimum buffering delay in the consequent peer-to-
peer streaming session.

Fig.4. Different influence brought by the piece
selection.

At last, we test the Tracker failure rate under the
situation of with redundancy Tracker and without
redundancy Tracker. Figure 5 shows the tracker have no
failure rate with in some time. The period unit we test is
3 hours. We can see that the failure is improved with the
redundancy, and the average Tracker failure rate is
lower than 19 percent, while without the redundancy
Tracker, the average Tracker failure rate is over 30
percent.

Fig.5. The change of Tracker failure rate
without redundancy and with redundancy
Tracker

6. Conclusions and future work

SIP is expected to be the communication standard in
the future, and the peer to peer media stream system

0

0.2

0.4

0.6

0.8

1

100 300 500 700 900
Number of nodes

Th
ro

ug
ho

ut
ra

tio

Group�
Group�
Group�

0
100
200
300
400
500
600
700
800
900

0 200 400 600 800 1000
number of nodes

a
v
e
ra

g
e

b
u
f
f
e
r
i
n
g

d
e
l
a
y
(
m
s
)

OTS_p2p
NOTS_p2p

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 3 6 9 12 15 18 21 24

Time(h)

T
r
a
ck

e
r

f
a
i
l
ur

e
r
a
t
e

Non RT
With RT

2006 1st International Symposium on Pervasive Computing and Applications

735

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

becomes more and more popular. In this paper, we
combine the SIP family of IETF standards with Self
Organizing properties of a Distributed Hash Table
(DHT) P2P mechanism. To achieve the goal of playing
while downloading, we apply the OTSp2p media
assignment algorithm, and the DACp2p peer selection
mechanism. To ensure the robustness of the system on
the Tracker bottleneck problem, we choose another
node as the backup Tracker. The simulation shows the
P2P-SIP system can meets the need for the distributed
real time media communication without the central
server.

The future work includes the encoded technique
which will recover the original file in the face of block
loss and remove the last block problem. The Multiple
Description Coding(MDC) which is used to encode the
multimedia data to accommodate a set of heterogeneous
client, will be the suitable choice. Another problem to
be solved is the fairness, i.e. without decreasing the
overall throughout, how to let the peers who contribute
the Networks most have the highest priority and
discourage free riders.
References

1. David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings,
“SOSIMPLE: A Serverless, Standards-based, P2P SIP
Communication System” Proceedings of the 2005
International Workshop on Advanced Architectures and
Algorithms for Internet Delivery and Applications (AAA-
IDEA 2005),2005.

2. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A.,Peterson, J., Sparks, R., Handley, M. and E. Schooler
“SIP: Session Initiation Protoco”, RFC 3261, 2002.

3. Dongyan Xu, Mohamed Hefeeda, Susanne E. Hambrusch,
Bharat K. Bhargava “On Peer-to-Peer Media Streaming”.
ICDCS, 2002, 363-371

4. E. Adar, B. A. Huberman “Free Riding on Gnutella” First
Monday, (2000), 5(10).

5. B. Cohen “Incentives Build Robustness in BitTorrent”. The
1st Workshop on Economics of P2P Systems, Berkeley, CA,
2003.

6. Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay
Sambamurthy, Alexander E. Mohr “Chainsaw: Eliminating
Trees from Overlay Multicast”. 4th International
Workshop on Peer-to-Peer Systems. February, 2005.

7. Ion Stoica, Robert Morris, David Liben-Nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, Hari
Balakrishnan “Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications”. IEEE/ACM
Transactions on Networking, Vol. 11, No. 1, 2003. 17-32.

8. Gang Wu, Tzi-cker Chiueh “How Efficient is BitTorrent?”.
Thirteenth Annual Multimedia Computing and Networking
(MMCN'06), San Jose, CA., January, 2006.

2006 1st International Symposium on Pervasive Computing and Applications

736

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

