
A Session Aware Admission Control Scheme for
Next Generation IP Services

Narjess Ayari and Denis Barbaron
Orange Labs - France Telecom R&D

2, Avenue Pierre Marzin, 22307 Lannion, France
{narjess.ayari,denis.barbaron}@orange-ftgroup.com

Laurent Lefèvre and Pascale Primet
INRIA RESO - LIP (UMR 5668 CNRS, ENS, INRIA, UCB)
Université de Lyon, 46, allée d'Italie - 69364 LYON, France

{laurent.lefevre,pascale.primet}@ens-lyon.fr

Abstract-Under overload condition, a processing server

contributes to the poor QoS through sustaining heavy request
queuing delays and prolonged processing time. Admission control
is a well known mean to prevent a server overload. Most state of
the art research advocate session oblivious mechanisms where the
dropping of the requests pertaining to an accepted session can
occur at any time during the session lifespan. From an operator
perspective, this means that the server, which seems to sustain a
high throughput, is in reality wasting its resources on failed or on
reduced QoS sessions. In this work, we advocate an innovative
architecture for session aware admission control of an offered IP
traffic to a cluster-based server. The proposed system is enhanced
with means for maximizing the useful throughput in terms of
completed sessions per unit of time. It particularly achieves an
improved responsiveness and a better stability. Finally, it is open
to adapt to any multiple-flow based NGN service such as voice
over IP or streaming video.

I. INTRODUCTION

The over provisioning of the core network has contributed in
reducing the network Quality of Service failure rate even for
large rich media and time constrained flows. However, the
measure of the end-to-end QoS involves the edge processing
server as well. Indeed, under overload condition, a processing
server has no sufficient resources to provide the service to all
the clients. Hence, it contributes to the poor QoS through
sustaining heavy request queuing delays and prolonged
processing time.

Since a poor perceived performance is a foremost
impediment for the success of any service, an operator needs to
provide an acceptable QoS for the admitted network traffic.
Meanwhile, the processing server does not only require having
enough processing resources, it requires also to prevent its
resources from overloading.

The concept of admission control is a well known mean to
prevent a server or a network route from overloading. It
consists of regulating the acceptance of the offered network
traffic according to the usage of the controlled resources.

In previous works [1], we questioned the appropriateness of
the flow-aware processing when dealing with multiple-flow
based Internet services. We showed that some services are built
upon a session model which involves multiple and
heterogeneous flows required for the signalling and for the data
exchange all along the session lifespan. Typical examples
include some of the current regular services such as file
transfer using FTP as well as most of the next generation

Internet services such as video streaming using
RTSP/RTP/RTCP and voice over IP using SIP.

When a server is admission control oblivious or when it uses
a session unaware admission control policy, the dropping of
the requests pertaining to an already accepted session is likely
to occur at any time during the session lifespan. This leads the
concerned sessions to experience either QoS degradation or at
an extreme, the interruption of the service [1].

From an operator's perspective, this means that a server,
which seems to be fully satisfying the client demands at a high
throughput, is in reality wasting its resources on failed or on
reduced QoS sessions. Indeed, the server throughput has been
usually defined as the number of connections processed per
unit of time. Hence, session aware admission control is
required in order to reduce the number of aborted sessions
while preventing the overload of the server resources.

On the other hand, Internet server clustering is widely used
by operators to improve the scalability of the rendered services
under heavy load condition. Indeed, a cluster consists of a set
of networked servers which transparently offer to clients a
single system image while providing additional processing
capabilities. The network traffic is offered to the entry point to
the cluster where a load balancer diverts each incoming request
to the appropriate processing server. Server clustering adds a
further dimension to the QoS-aware resource management.
Indeed, the session aware admission control must take into
account the usage of the available resources both of the cluster
entry point and the cluster internal nodes.

In this work1 , we advocate an innovative architecture for
session aware admission control of an offered network traffic
to a cluster of servers. By session awareness, we raise the
challenge of considering both the session integrity constraint of
the offered network traffic as well as its characteristics in terms
of volume, rate or duration while admitting or while rejecting
the offered network traffic to the cluster.

The remainder of this paper is organized as the following. In
section II, we describe the general architecture of the proposed
system. A detailed overview of its operations is provided in
section III. In section IV, we outline the limitations of the
related work on Internet server admission control. Finally, we
conclude by describing the perspectives of this work.

1 Parts of this work are protected by the Intellectual Property National Institute (INPI)
patent disclosure N°FR0756191.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1-4244-1457-1/08/$25.00 © IEEE
306

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

II. GENERAL ARCHITECTURE

The system we advocate achieves session awareness by
means of the explicit identification of the flows pertaining to a
single user session. As shown in Fig. 1, the rejection of an
offered datagram is based both on the information conveyed by
that datagram and on the estimation of the cluster resources
usage.

 Figure 1. The functional architecture of the proposed system.

The incoming traffic, i.e. the traffic flowing from the clients

to the servers, is first offered to the entry point to the cluster. It
is first processed by the session identifier module which
associates each incoming datagram either to a new session or
to an already established one. The traffic is then delivered to
the admission control module which is responsible for its
acceptance or its rejection. Under overload, the admission
control module aims for maximizing the cluster useful
throughput by implicitly giving a higher priority to the already
established sessions against any new incoming one. A load
monitor at the entry point to the cluster and at each cluster
node periodically collects the local load information and sends
it to the peer component located at the cluster head. Finally, the
accepted traffic is forwarded to a processing node inside the
cluster. Fig. 2 below describes the topology on which the
proposed system is deployed.

Figure 2. The general architecture of the proposed system.

All the processing servers are networked within the same
cluster which is reached through its single entry point, the
dispatcher. For the sake of an improved scalability, the system
we advocate is built upon a one-way architecture where the
outgoing traffic, i.e. the traffic flowing from the servers to the
clients, bypasses the dispatcher node. Instead, it is forwarded to
a default gateway configured as the default route for each

processing server inside the cluster. The management traffic
corresponds to the traffic carrying the load information. It is
required by the admission control module to trigger responsive
admission control decisions.

Although the dispatcher stands for a potential single point of
failure, this work focuses on the failure free case and assumes
that all the cluster entities are available at any time.

III. DETAILED ARCHITECTURE

A. The session identifier engine
The session identifier module is built as a stateful engine

which inspects the payload of both the incoming and the
outgoing datagrams searching for given patterns. Datagrams
which are subject to content inspection are those exchanged
over the signalling flows. Indeed, in [1] we showed that a
multiple-flow based session, such as a video streaming or a
voice over IP session, negotiates data flow identifiers and
control data flow identifiers using messages sent over the main
signalling flow. Hence, assuming a typical multiple-flow based
session model [1], a searched pattern corresponds to a
particular application level protocol header field holding the
information required to identify any expected incoming flow
associated to the already established session. The datagram
content inspection is application layer specific and is done with
respect to the syntax of the used signalling protocol.

The session identifier module maintains an in-memory
session table which is updated with the receiving of an
incoming traffic or with the inspection of the outgoing traffic,
either by adding new entries or by updating the already
existing ones.

A session is identified as the set of the transport level flows
used for the signalling and for the data exchange all along its
lifespan. For IPv4, a given flow is identified using a 13 bytes
length vector denoted as <IPsrc,IPdst,Portsrc,Portdst,Prot>,
defining respectively the source and the destination IP
addresses, the source and the destination port numbers as well
as the transport protocol. The flow state maintained within the
session table includes moreover a set of variables necessary to
track a given flow all along its lifespan. These variables
include a timeout, a timestamp, an identity flag and a status
flag. The timeout and the timestamp are used to detect the
inactivity of a tracked flow. The status flag marks new flows,
already established flows and inactive flows. The identity flag
tells whether the handled flow is a signalling flow, an
announced flow or a secondary flow.

A flow is considered new during the receiving of the first
datagram asking for its establishment. The activity of each
established flow is tracked in time. Hence, when no data is
exchanged over an already established flow for a given
duration, its status flag is set to the inactive value.

We define a signalling flow as a flow carrying application
level signalling messages used to establish an end-to-end user
session. The announced flows are either data or control data
flows expected during a session lifespan but which are not yet
established. The goal of the session identifier engine is to guess

Session Identifier
Module

Incoming Traffic
Inspector

Outgoing Traffic
Inspector

Incoming
Traffic

Admission Control
Module

Load Analyzer

Admission Control
Process

Load Manager

Load Monitor #1

Load Monitor #n

S
es

si
on

Id
en

tif
ic

at
io

n

Outgoing
Traffic

Accepted Traffic
Lo

ad
V

ec
to

rs
To the processing nodes

Client #1

Default GW
Client #2

Client #n

 Dispatcher

Server #1

Switch Switch

Server #2

Server #n

Admission Control,
Forwarding.

Session
Identification

Incoming Traffic

Outgoing Traffic

Management Traffic

Caption

Cluster based Server

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

307

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

the identifiers of these flows by inspecting the content, either
of the incoming or the outgoing signalling messages. The
secondary flows are the announced flows which have been
successfully confirmed.

For a given service, the operations of the session identifier
engine are summarized in Fig. 3 below.

Figure 3. The session identifier module activity diagram.

When a datagram is received by the session identifier

module, it is searched against the already maintained flows. If
the offered datagram does not pertain to any recorded flow, it
is assumed to hold a request for the establishment of a new
signalling flow. A new flow structure is therefore created and
added to the session table. In particular, the flow is marked as
new, its identity flag is set to reference a signalling flow and its
timeout is armed. The datagram is then delivered to the next
engine.

If on the other hand the offered datagram is associated to an
already recorded flow, the identity flag of this flow is checked.
The first alternative is that the offered datagram pertains to an
already established signalling flow. The corresponding entry is
then updated. In particular, the flow is marked as established,
its timeout is restarted and its timestamp is updated. The
datagram payload is then inspected searching for a given
pattern. If the searched pattern is not found, the datagram is
delivered to the next engine. Otherwise, the found pattern is
used to build a new entry referencing the expected flow. The
datagram is then delivered to the next engine. In most cases,
the outgoing traffic is required to be inspected so as to
complete the identification of the announced flows. Recalling
that the system we advocate is built upon a one-way
architecture, the outgoing traffic is inspected at the default
gateway. For this reason, we maintain at the default gateway a
process which inspects the outgoing signalling traffic and
which sends the useful information to its peer at the dispatcher.
Once the entire identity of the announced flow is built, the
corresponding flow entry is inserted into the session table.

The second alternative is that the offered datagram pertains
to an announced flow or to a secondary flow. In this case, the
corresponding entry is updated. In particular, an announced
flow is set to a secondary flow. In both cases, the timeout is
restarted and the timestamp value is updated. The datagram is
then delivered to the next engine.

In order to incur a minimal latency to the end-to-end delay
of the handled flows, we require a session table structure which
provides good search and insertion times. On the other hand,
since the number of the handled flows can reach up to some
thousands, each flow is abstracted using a hash transformation
which quickly computes a flow digest while avoiding
collisions. Indeed, hash transformations are well known
techniques to achieve relatively small memory space
occupancy while allowing to uniquely identify a given flow
[2]. Moreover, the detection of the inactive flows is
particularly critical for the session identifier module because it
affects the session table size and therefore the search and
insertion times. In practice, the timeout value ranges between
10 and 60 seconds. Finally, in order to take into account any
possible packet delay inside the network, the inactive flows are
not immediately flushed from the session table when their
timeout expires. Instead, a purging process periodically
removes their entries when at least twice the corresponding
timeout value elapses [3].

B. The session aware admission control engine (SA2C)
 The admission control engine is responsible for the

acceptance and for the rejection of the incoming traffic. Its
main objective is to prevent the overload of the cluster
resources while maximizing the operator profitability by
maximizing the cluster useful throughput, in terms of
completed sessions per unit of time. The system we advocate
prevents the overload of the cluster resources by triggering, for
each offered datagram, a decision which considers both the
information it conveys and an estimation of the short-term
usage of the cluster resources. In order to provide an improved
responsiveness, the proposed system involves two moving
thresholds, T2 and T3, as illustrated in Fig. 4 below.

Figure 4. The proposed admission control mechanism.

SA2C applies a probabilistic dropping of the offered
network traffic such that under heavy load, the datagrams
pertaining to the already established sessions are granted a
higher priority than those holding requests for the
establishment of new sessions. The key features of the
proposed system are the following two equations which
together specify the dropping probability of a given offered
datagram in time.

Cluster
Global Load

Offered
Traffic

T1 T2 T3

Moving thresholds

All session are
accepted

New sessions
are dropped with

probability p

New sessions
are dropped

Requests are
dropped with
probability p’

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

308

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

First, SA2C maintains a measurement based estimation of
the cluster global load, updated with the receiving of the
instantaneous cluster node load vectors each fixed time interval
t and computed at time Ii according to (1).

where:
- Nj ≤≤1 , N is the number of the cluster servers,
- I0 = 0 and Ii+1 = Ii +t,
- i

jl is the mean load of the cluster nodes,
- ()2i

jlσ is the load variance of the cluster nodes,
- α is a smoothing factor having a value within [0,1] and

used to better reveal the load distribution inside the cluster.
The instantaneous cluster global load i

cl and the cluster head
load li determine the drop probability p of the offered
datagrams according to the following equation ()i

c
i llpp ,=

When the cluster experiences a load value under the first

threshold 1T , all the incoming traffic is accepted and forwarded
to a processing node inside the cluster. Once the cluster load
goes beyond 1T , the incoming traffic holding requests for the
establishment of new sessions is dropped with a probability p
computed as described above. When the cluster load exceeds
the second threshold 2T , only the traffic pertaining to the
already established sessions is admitted at the entry point to the
cluster. This rule aims mainly to avoid the interruption or the
QoS degradation of the already established sessions.
Particularly, it reduces the discrimination against long lived
sessions since short lived sessions always have a higher chance
to complete normally.

The cluster global load is considered as critical when it goes
beyond the third threshold 3T . Rather than interrupting the
already established sessions leading them to be restarted from
scratch, we suggest to instantaneously degrade their QoS. The
associated datagrams are dropped with a maximized
probability p as described above. Finally, when the cluster runs
close to its edge capacity C, all the incoming traffic is rejected
waiting for some of the cluster resources to be released.

In practice, the rejection of the incoming traffic is triggered
each time interval iT computed as a function of the dropping
probability p as shown in (3).
 ii TpT *)1(1 −=+

In order to better prevent the persistent overload situations,
we suggest improving the responsiveness of the admission
control policy by involving moving thresholds rather than
static thresholds holding for the whole future. Critical
thresholds are moved proportionally to the instantaneous
cluster global load value. However, since crossing each
threshold portrays a specific overload situation, we suggest to
dynamically and differently adjusting 2T and 3T . The idea is to

linearly decrease 2T and to multiplicatively decrease 3T , as
shown below (4).

where ∆ measures the load excess computed respectively
against 2T and 3T . Finally, once the load gets below 1T , both
thresholds are reset to their initial values set by the operator.

The already described mechanism is designed such that it
fastens the rejection of the new incoming sessions when the
cluster experiences a high load condition. However, when
sudden bursts of load occur due to short lived sessions, slowing
down the rejection of the offered new sessions seems more
appropriate since cluster resources are likely to be released in
the short run. Consequently, in order to allow our approach to
meet the stability constraint, it needs to be more sensitive to the
characteristics of the load sustained within the cluster in time.
To achieve this goal, we suggest to adjusting the admission
control decisions according to an estimation of the short-term
load that the cluster potentially experiences during a time
interval T instead of considering only instantaneous load
feedbacks.

In practice, we maintain a history of the load sustained
within the cluster during each time interval T. The T-
dimensional space spanned by the cluster node's load samples
for a time period T starting at time Ii is described using a load
history matrix denoted as Li. Li is computed as shown in (5).

where:
{ }1*....*:,..1: −+ TTiTikNj , N being the number of nodes in

the cluster,
and

The load matrix Li is used to estimate the cluster short-term
load at time Ii+1 as shown in (6,7).

where ϕ(x) is described in (1).
An estimation of the load of a given node j at Ii+1 is

calculated as shown in (7).

where:
- φ(x) applies a simple forward linear regression model as

described above in (7),
- erri is a periodically updated error used to regulate the

accuracy of the prediction model. It is computed as the
normalized step between an estimated value and its
effective measure as shown in (8).

()
()

∆=
∆−=

),max(,*
),max(,

333

222
i
c

i

i
c

i

llTTT
llTTT)4(

+=
=

+ TII
I

ii 1

0 0

()6() Njll i
j

i
c ≤≤= ++ 1ˆ:ˆ 11 ϕ

() Njerrlerrll
TTik

Tik
i

k
j

k
ji

k
j

i
j ..0:,*ˆ

1*

*

1 ∑
−+=

=

+ ±=±= αφ ()7

)2(

=

−++

−++

−++

1*1**

1*
2

1*
2

*
2

1*
1

1*
1

*
1

...

.........

...

...

TTi
N

Ti
N

Ti
N

k
j

TTiTiTi

TTiTiTi

i

lll

l

lll

lll

L ()5

()3

)1(() () ()2*1*: i
j

i
j

i
j

i
c llll σααϕ −+==

()() ()

()

−

−
−

=−
=

,1,max
1

,,max1

0

12

1

uu

i
c

i

pp

TT
Tx

xfllf
p

, if ()i
c

i ll ,max ≤ T1

, if {new session} and T1 < ()i
c

i ll ,max ≤ T2

, if {new session} and T2 < ()i
c

i ll ,max ≤ T3

, otherwise ()() ()
3

3,,max1
TC
Txxgllgp i

c
iu

−
−=−=where

where
() ()
() ()

−=∆

−=∆

i
c

ii
c

i

i
c

ii
c

i

llTllT

llTllT

,max),max(,

,max),max(,

33

22

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

309

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

This error is used as a damp coefficient measuring the step
between the stable and the responsive admission control
decisions as shown in (9).

Finally, i

cl and il are substituted in (2) by i
cl and il so as to

provide adaptive and stable decisions. In particular, a value of
erri set to 1 defines an exclusively measurement based session
aware admission control policy.

C. The load management engine
The load management engine involves two peer components

aiming respectively to collect and to monitor the local load
values of the cluster nodes. The collected load vectors are
periodically sent to the monitor component at the entry point to
the cluster over a UDP channel. A measure of the load includes
significant indicators of the usage of the server resources such
as its CPU usage, its memory usage, its network buffer usage,
its I/O queue length as well as its application server's backlog
queue length. Fig. 5 below describes the monitor and the
manager operations.

The Monitor side
Loop forever

- Catch the load vector
- Send the load vector over the UDP channel established
with the peer module at the dispatcher;
- Wait

The Manager side
Loop forever

On receive {Load_Vector} from the Node I
- Store for Analysis

After 3*
Return Load Monitor failed;
Figure 5. The load manager operations.

IV. RELATED WORKS

Internet server admission control shares almost the same
objectives with the core network admission control. Chen and
Mohapatra [4] applied the ERD approach [5,6] to regulate the
acceptance of web server requests. They used a double
threshold based admission control to monitor the application
server listen queue. Once the server utilisation exceeds a first
threshold, requests of lower priority are rejected with a higher
probability. All the requests are rejected when the second
threshold is reached. This approach was showed to be effective
to control differentiated services mainly in terms of queuing
delays between lower and higher traffic priority classes. Its
major drawback is that the application server queue length is
not necessarily a good indicator of the server load. Abdelzaher
et al. [7] assumed a linear regression method which estimates
the impact of the handled requests on the system utilization.
They used a linear feedback control theory which admits an
appropriate number of requests while keeping bounded the
system utilization. However, they didn't consider any further
constraints of the handled traffic. Lee et al. [8] focused on web
servers and assumed the knowledge of the request arrival rate

as well as the knowledge of the maximum waiting time for
each incoming traffic class. They suggested two admission
control approaches. The first maximizes the potential profit of
the service provider while the second leads the controlled web
server to admit as many clients as possible.

Most of the state of the art research works on Internet server
admission control provide facilities exclusively adapted to
single-flow based sessions. Our work focuses however on
meeting the specific requirements of the multiple-flow based
services.

V. CONCLUSION AND FUTURE WORKS

Service aware network management is a key issue both for
the current and for the future NGN networks. In this work, we
advocate an innovative open architecture for maximizing the
operator profitability by maximizing its cluster-based server's
useful throughput in terms of completed sessions per unit of
time. The proposed architecture is based on original concepts
which meet the constraints of multiple-flow based sessions.
Indeed, it is first enhanced with means to explicitly identify the
flows pertaining to a single user session. Second, it uses a
three-threshold based responsive admission control policy
where critical thresholds tune themselves according to the
cluster overload ratio. In order to guarantee the fair completion
of sessions independently of their duration, the system is
enhanced with means to ensure stability. Indeed, it adjusts all
its decisions according to an estimation of the short-term
cluster load instead of considering only instantaneous load
feedbacks. At an extreme, during a persistent overload
situation or when the handled session is single-flow based, our
system reacts by slowing down the degradation of the already
established sessions. Near future works will focus on
evaluating our approach in providing an improved useful
throughput in a cluster of Internet servers. Target applications
include video streaming and voice over IP using SIP. Further
works aim to address the client based service differentiation
during the admission control as well.

REFERENCES
[1] N. Ayari, D. Barbaron, L. Lefèvre and P. Primet, "Session awareness issues of the

next generation cluster based network load balancing frameworks", Proceedings of
the ACS/IEEE International Conference on Computer Systems and Applications,
AICCSA07, May 2007.

[2] Z. Cao, Z. Wang, E. Zegura, "Performance of hashing based schemes for Internet
load balancing", Proceedings IEEE INFOCOM, 2000, vol. 1, pp. 332-341.

[3] K.C. Claffy, H.-W. Braun and G.C. Polyzos, "A parameterizable methodology for
Internet traffic flow profiling", Proceeding of the IEEE Journal on Selected Areas in
Communications, vol. 13, Oct. 1995 pp. 1481–1494.

[4] X. Chen and P. Mohapatra, "Providing differentiated services from an Internet
server", Proceedings of the 8th IEEE Transactions on Computer Communication
and Networks, 1999, pp. 214-216.

[5] S. Floyd and V. Jacobson, "Random Early Detection for congestion avoidance",
Proceedings of the IEEE/ACM Transactions on Networking, Aug. 1993, pp. 60-64.

[6] E. Hashem, "Analysis of random drop for gateway congestion control", Technical
report MIT-LCS-TR-467, Laboratory of Computer Science, 1989, pp. 60.

 [7] T. Abdelzaher, K. Shin and N. Bhatti, "Performance guarantee for Web server end-
systems: a control theoretical approach", Proceedings of the IEEE Transactions on
Parallel and Distributed Systems, 2002, pp. 60-131.

[8] S. Lee, J. Lui, Y. Yau, "Admission control and dynamic adaptation for a
proportional delay diffserv-enabled web server", Proceedings of the IEEE
SIGMETRICS'02, 2002, pp. 60.

() i
j

i
j

i
ji lllerr ,ˆ∆= ()8

i
ci

i
ci

i
c lerrlerrl *ˆ*)1(: 1 +−= + ()9

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

310

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

