
Optimum Fair Bandwidth Allocation Scheme for
IEEE 802.16 Mesh Mode with Directional Antenna

Yanbin Lu∗† and Guoqing Zhang∗
∗Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China

Email: {yanbinlu, gqzhang}@ict.ac.cn
†Graduate School of Chinese Academy of Sciences, Beijing 100039, China

Abstract— The IEEE 802.16 standard is providing support
for Mesh networks of which two scheduling mechanisms (i.e.,
centralized scheduling and distributed scheduling) are proposed.
Centralized scheduling which builds on a routing tree behaves
in a centralized manner and therefore presents more QoS
guarantee than distributed scheduling. However, IEEE 802.16
standard doesn’t specify how to schedule traffic in the mesh
mode. In this paper, we focus on centralized scheduling and
extensively explore it’s spatial reuse potential under the condition
of directional antenna. In particular, we propose a scheduling
mechanism which is optimum in terms of schedule length, and
we introduce a bandwidth scaling algorithm in case the minimum
schedule length is larger than the frame length. Simulation results
show that our proposed scaling mechanism outperforms ordinary
breadth first traversal.

Index Terms— Bandwidth Allocation, IEEE 802.16, Wireless
Mesh Network.

I. INTRODUCTION

The IEEE 802.16 standard [1], also known as WiMax, en-
ables easy and rapid worldwide deployment of low-cost BWA
products, facilitates in broadband access, provides scalable
alternatives to traditional wireline access, and accelerates the
commercialization of BWA systems. There are two modes
of operation in WiMax, Point-to-Multi-Point (PMP) that is
mandatory and Mesh mode that is optional. In the PMP mode,
Subscriber Stations (SSs) can only interact with the base
station (BS) while, in mesh mode, SSs, without direct links
with Mesh BS which serves as the interface to the backhaul,
may route their traffic through other SSs to BS.

The Mesh mode, by permitting direct communications be-
tween SSs, allows multi-hop connections, the maintenance of
which is provided by two specific scheduling mechanisms–
centralized scheduling and distributed scheduling. Distributed
scheduling is further classified into two types–coordinated
and uncoordinated distributed scheduling. Coordinated dis-
tributed scheduling, by coordinating their transmissions in
their extended two-hop neighborhood, suffers no collision.
Uncoordinated distributed scheduling, used for setup of tem-
porary bursts between a pair of neighboring nodes, acts more
like ad-hoc. On the contrary, centralized scheduling relies
on BS which determines the flow assignments and schedule
transmissions for SSs.

This research work was supported by ICT innovation fund under contract
number 20066033.

Centralized scheduling maintains a routing tree to schedule
traffic to and from BS which is the root of the tree. Each
SS periodically issue its flow request to BS by the order of
its appearance in the routing tree. BS ensures collision-free
scheduling over the links in the routing tree through warily
granting flow assignments in the tree as per those requested
by SSs. Some research work has identified that relaying traffic
can increase the wireless throughput [2]. In addition, given
a routing tree structure, the cycle time of SSs to relay new
flow request is fixed, due to which, centralized scheduling is
more suitable for QoS sensitive application than is coordinated
distributed scheduling. Owing to these factors, we focus our
attention on centralized scheduling mesh mode.

WiMax centralized scheduling mesh mode is based on
TDMA, each frame of which is divided into 256 minislots.
Mesh BS is responsible for assigning minislots to each link
in the routing tree such that no collision occurs. However,
how to schedule collision free transmission in the routing
tree is left to the discretion of the implementor. Finding
optimum link scheduling for general graph topology is NP-
hard [3]. Furthermore, link scheduling is closely related to
classic graph theoretic problem of vertex coloring [4], which
is believed not to have bounded approximation algorithms [5].
But given a tree structure, reference [6] note there exists a
optimum scheduling algorithm. What’s more, by employing
directional antenna, the problem of scheduling reduces to
edge coloring for which P. Gupta and P. R. Kumar [7]
has proposed a polynomial optimum sheduling algorithm,
capable of dealing with any topology. Nevertheless, the high
order time complexity makes it impractical for engineering
implementation. Therefore, one objective of this paper is
to propose an lightweight optimum scheduling algorithm by
taking advantage of the combination of routing tree topology
and edge coloring.

Moreover, if, after optimum scheduling, the duration of
all resulting non-conflicting minislot allocation exceeds frame
length, mesh BS must scale all the bandwidth requests fairly.
Though standard [1] recommends scaling all allocations pro-
portionally, yet it does not specify the process in detail. In
this paper, by taking advantage of the benefits reaped from
directional antenna, we propose a scaling scheme that can
maximize minislots utilization while still treating fairly to each
bandwidth request.

The rest of the paper is organized as follows. In section
II, we provide some definitions and assumptions that we

1-4244-0063-5/06/$20.00 ©2006 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

Fig. 1. Interference region

employ throughout the paper. In section III, we presents the
optimum scheduling algorithm. Section IV presents the scaling
algorithm in case the minimum schedule length is larger than
frame length. Performance evaluation is described in section
V. Finally, section VI concludes the paper.

II. PRELIMINARIES

In this paper, we assume that there is only one Mesh BS
working in the network and providing the function of central-
ized scheduling in the routing tree. And we only account for
two types of traffic–uplink traffic which transmits from SSs to
BS and downlink traffic which transmits from BS to SSs–and
these traffic may be relayed by other SSs.

We assume that all nodes work on a shared channel. Each
node is assumed to be equipped with multiple directional
antennas which can enhance or cancel out the radiating elec-
tromagnetic waves in certain directions [8]. A transmission
is successful if and only if the transmitting node is in the
reception beam of receiving node and the receiving node is in
the radiation beam of the transmitting node. We assume that
the number of antennas installed by one node is enough for
covering all directions. With the advance of DSP technologies,
an directional antenna is able to accurately control its beam
pattern. So we assume that the beam of each antenna is
adjusted such that the transmission between two nodes does
not interfere with the transmission between two other nodes
and that two nodes can communicate if and only if there is a
link between them in the routing tree. The capacity of each
link in the routing tree is not necessarily the same, and we
assume it not to vary with time. Since SSs are generally mesh
routers which are fixed at a specific position, we can simply
steer the directions of antennas and control the beam pattern
beforehand. We also assume that simultaneous transmission or
reception by the same node is not allowed, which is justifiable
for nodes under the control of single CPU.

In Fig. 1(a), the lines indicate the RF radiation beams and
reception beams. The solid and dotted lines is of no difference,
just for clarity. The resulting routing tree is shown in Fig. 1(b).
From what has been discussed in last paragraph, the activeness
of any two links with neither of their two ends in common can
occur simultaneously. For example, transmission from node a
to c and transmission from node d to b can happen concurrently
though b is in the radiation beam of both node a and d and
they are in the reception beam of node b. The reason is that
the antenna at b for receiving data from a and the antenna for
receiving data from d is not the same one.

Combining the assumptions discussed above, the resulting
tree topology generated by directional antenna requires that
any two links incident on the same node not be simultaneously
active. Thus, the link scheduling problem reduces to edge
coloring problem as introduced by [7].

III. OPTIMUM SCHEDULING

In this section, we give an algorithm of optimum scheduling
for the routing tree formed by directional antenna. We repre-
sent the routing tree with a directed graph T = (V,L) where V
represents the set of nodes in the tree, and L denotes the set of
links. We use L(i) to represent the set of links incident on node
i. We fix BS at node 0 with other nodes being SSs. Given a link
l, we define cl as the capacity of link l, h(l) as the receiving
end of l, and t(l) as the transmission end of l. We use li,j to
indicate the link directed from node i to node j. We denote ru

i

and rd
i as the uplink and downlink bandwidth request of node

i respectively. Children(i) indicates the set of children nodes
of node i. Subtree(i) stands for the set of subtree nodes of
node i including i itself. ip represents the parent node of i. A
node located at k hops away from the root is at level k. A link
is at level k if the higher level of its two endpoints is k. We
define UPLINK as the set of uplinks whose receiving end is
at lower level than whose transmission end, DOWNLINK
as the set of downlinks whose transmission end is at lower
level than whose receiving end. Tf signifies the total number
of minislots of a frame.

The bandwidth request from all SSs can be converted to
minislots requirement on each link by

tl =




∑
a∈Subtree(t(l))

⌈
ru
a · Tf/cl

⌉
, if l ∈ UPLINK

∑
a∈Subtree(h(l))

⌈
rd
a · Tf/cl

⌉
, if l ∈ DOWNLINK

(1)
In the routing tree T = (V,L), we split link l requesting
tl minislots into links l′1, l

′
2, · · · , l′tl

, each requesting one
minislot. The resulting multi-graph tree is T ′ = (V,L′). We
use L′(i) to represent the set of split links incident on node i.
Note, in the multi-graph, there may be multiple links between a
pair of nodes. The degree of a node will include both indegree
and outdegree. Then the optimum scheduling algorithm is
shown in Algorithm 1.

Theorem 1: Algorithm 1 allocates the minimum number of
minislots.

Proof: The proof is by induction on the link levels, k,
in the tree network. When k = 1, it follows immediately that
algorithm 1 will generate minimum number of minislots since
it is at least the degree of root r.

Assume the theorem holds for all k−1 level links. Without
loss of generality, we focus on an arbitrary node of level k−1,
say node a. Assume that the total number of slots node a needs
to assign to its level k links is γ, that the total number of slots
allocated to the tree so far is ω, and that the total number of
minislots allocated to links between a and its parent is θ. Then
there are two cases.

Case 1: γ ≤ ω − θ. It is obvious that the assignment is
minimum since no new minislots are needed.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

Algorithm 1: Optimum link scheduling

Input: A multi-graph tree network T ′ = (V,L′) with
root r

Output: A slot allocation sa: L → {1, 2, · · · }
Assign the links incident on r minislots 1, 2, · · · ,1

degree(r);
Queue.push(u), ∀u ∈ Children(r)\{r};2

while Queue is not empty do3

v ← Queue.pop();4

E ← {sa(l′) : l′ ∈ L′(v) ∩ L′(vp)};5

foreach l′ : l′ ∈ L′(v) and l′ �∈ L′(vp) do6

Let s be the least minislot �∈ E;7

sa(l′) ← s;8

E ← E ∪ {s}9

end10

Queue.push(u), ∀u ∈ Children(v)\{v};11

end12

Case 2: γ > ω − θ. The total number of minislots utilized,
including those allocated to node a, is ω+[γ−(ω−θ)] = γ+θ,
which is the degree of node a. Therefore, the assignment is
minimum since the minimum number of minislots is at least
the degree of node a.

Lemma 1: The minimum scheduling length yielded by Al-
gorithm 1 is maxa∈V

(∑
l∈L(a) tl

)
.

Proof: When k = 1, the total number of minislots
assigned to level 1 links is the degree of the root. And
it follows from theorem 1 that each time the total number
of allocated minislots, ω, increases, it increases to a new
node’s degree. Therefore the final ω is equal to or less than
maxa∈V

(∑
l∈L(a) tl

)
. However, maxa∈V

(∑
l∈L(a) tl

)
is the

lower bound on minimum scheduling length. So the lemma
follows.

IV. FAIR BANDWIDTH ALLOCATION

Algorithm 1, be it producing a minimum scheduling length,
is meaningless if the minimum scheduling length is larger than
the frame length Tf . In this section, we will deal with the case
that minimum scheduling length is greater than Tf and intro-
duce an algorithm that fairly scales each bandwidth request, as
well as maximizing the total throughput. By fairness, we mean,
at each node, a subtree node cannot increase its minislots
allocation without diminishing the minislots allocation of
another node that has a smaller ratio of bandwidth provisioned
by its minislots allocation to the bandwidth it requests.

Since the uplink and downlink bandwidth request of a node
is of no difference to our algorithm, we use ri to represent the
bandwidth request of node i. In other words, we only consider
the uplink or downlink bandwidth request. But this is totally
for the purpose of brevity and we will show later how to deal
with the case that both uplink and downlink bandwidth request
exist. The scaling factor of ri is called αi. In order to reference
the bandwidth request corresponding to a specific scaling
factor α, we use α.n to indicate the node issuing the request,
so the corresponding request can be referenced by rα.n. For
terseness, we define vector α = [α1, α2, · · · , α|V |]. Every

Algorithm 2: Scale(a,α)
Input: node a and α which is both input and output

variable
if

∑
i∈Subtree(a)

(
	ταiri

lFa(i)

 + 	ταiri

lSa(i)

)
≤ Tf then1

return2

end3

Scale τ ri

lFa(i)
, τ ri

lSa(i)
,∀i ∈ Subtree(a) proportionally4

so that the sum of them equals T , and then round
down the fraction with the result being
tri

lFa(i)
, tri

lSa(i)
,∀i ∈ Subtree(a);

foreach i ∈ Subtree(a) do5

βi ← min
(
blFa(i)

(
tri

lFa(i)

)
, blSa(i)

(
tri

lSa(i)

))/
ri;6

βi.n ← i;7

if βi ≥ αi then8

βi ← αi;9

B ← B ∪ {βi.n};10

end11

tri

lFa(i)
← 	τβiri

lFa(i)

;12

tri

lSa(i)
← 	τβiri

lSa(i)

;13

end14

Trem ← Tf − ∑
i∈Subtree(a)

(
tri

lFa(i)
+ tri

lSa(i)

)
;15

while Trem > 0 and Subtree(a)\B �= φ do16

select β′, the smallest β where17

β.n ∈ Subtree(a)\B and denote αβ′.n to be α′.
When there are more than one smallest β, select
arbitrary one;
if blFa(β′.n)

(t
rβ′.n

lFa(β′.n)
) < blSa(β′.n)

(t
rβ′.n
lSa(β′.n)

) then18

t
rβ′.n
lFa(β′.n)

← t
rβ′.n
lFa(β′.n)

+ 1;19

Trem ← Trem − 1;20

else if blFa(β′.n)
(t

rβ′.n
lFa(β′.n)

) > blSa(β′.n)
(t

rβ′.n

lSa(β′.n)
)21

then
t
rβ′.n
lSa(β′.n)

← t
rβ′.n

lSa(β′.n)
+ 1;22

Trem ← Trem − 1;23

else if blFa(β′.n)
(t

rβ′.n
lFa(β′.n)

) = blSa(β′.n)
(t

rβ′.n

lSa(β′.n)
)24

then
if Trem ≥ 2 then25

t
rβ′.n
lFa(β′.n)

← t
rβ′.n

lFa(β′.n)
+ 1;26

t
rβ′.n
lSa(β′.n)

← t
rβ′.n
lSa(β′.n)

+ 1;27

Trem ← Trem − 2;28

else29

B ← B ∪ {β′.n};30

continue;31

end32

end33

β′ ←34

min
(
blFa(β′.n)

(
t
rβ′.n
lFa(β′.n)

)
, blSa(β′.n)

(
t
rβ′.n

lSa(β′.n)

))/
rβ′.n;

if β′ ≥ α′ then35

β′ ← α′;36

B ← B ∪ {β′.n};37

end38

end39

αi ← βi, ∀i ∈ Subtree(a);40

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

Algorithm 3: Breadth first determining α

Input: A tree network T = (V,L) with root r
α ← 1;1

Queue.push(r);2

while Queue is not empty do3

a ← Queue.pop();4

Scale (a,α);5

Queue.push(v), ∀v ∈ Children(a);6

end7

node i’s bandwidth request where i ∈ Subtree(j)\{j}, j �= 0
requires two links incident on j, of which we call the link
farther to BS the first link and the link nearer to BS the second
link, to allocate minislots. We denote the first link at node j for
bandwidth request of node i as lFj(i), the second link as lSj(i).
Note, in the case that j = i or j = 0, there is only one uplink
or downlink incident on j for bandwidth request of i, so we use
lFi(i) and lF0(i) to represent them, and lSi(i) and lS0(i) don’t
exist. For example, in Fig. 2, the uplink bandwidth request of
node 3, requires link l3,1 and link l1,0 incident on node 1 to
allocate minislots, so we denote l3,1 as lF1(3) and denote l1,0

as lS1(3). The only link incident on node 1 for uplink request
of 1 is l1,0 and we call it lF1(1). The only link incident on
node 0 for uplink request of 2 is l2,0 and we call it lF0(2). We
use τ r

l to signify the fractional number of minislots allocated
to l to meet bandwidth request r, in other words, τ r

l = r·Tf

cl
.

Function bl(t) will return t·cl

Tf
, the bandwidth provisioned by

l if given t minislots. Note we define τ r
lSj(j)

, τ r
lS0(j)

, ∀j ∈ V

to be zero and define blSj(j)(t), blS0(j)(t), ∀j ∈ V to be ∞
for the sake of brevity of algorithm description.

Given lemma 1, we can guarantee that the minimum
scheduling length not exceed Tf by scaling the number of
minislots assigned to links incident on each node so that the
sum of them doesn’t exceed Tf , in other words, by requiring

∑
i∈Subtree(a)

(
	ταiri

lFa(i)

 + 	ταiri

lSa(i)

)
≤ Tf , ∀a ∈ V. (2)

We propose Algorithm 2 to do the job of scaling bandwidth
fairly at a specific node a. Steps 1–3 make sure whether
to scale or not. Step 4 proportionally scales each minislot
allocation and rounds them down so that they are integral.
Step 6 takes the smaller bandwidth provided by the first and
the second links, and calculate current scaling factor β. Note
step 6 is correct when a = i or a = 0 since blSi(i)(t),
blS0(i)(t) is set to ∞. Step 7 stores the node label for later
use. If other nodes have scaled the bandwidth and the scaling
factor is smaller than the current one, steps 8–11 will make
the scaling factor replace the current one and add this node
to set B whose nodes are restrained from augmenting scaling
factor later. In step 6, some minislots allocated to the link
providing larger bandwidth is otiose, so steps 12, 13 and 15
are responsible for freeing these unnecessary minislots. Step
17 selects the most unfair (smallest scaling factor) node. If
this node’s first link provides less bandwidth than its second
link under current allocation, step 19 increases the allocations
of the first link by 1. If this node’s first link provides more

Fig. 2. Tf = 8, cl0,1 = cl1,0 = cl0,2 = cl2,0 = 4m/s, cl3,1 = cl1,3 =

2m/s, ru
1 = 4m/s, ru

2 = 2m/s, ru
3 = 1m/s, rd

3 = 4m/s

bandwidth than its second link under current allocation, step
22 increases the allocations of the second link by 1. If the
first link and the second link provides equivalent bandwidth,
step 26–27 add one minislot to both of them. Step 30 prevents
the node whose first and second link provide same bandwidth
from being selected again when residual minislots are less
than two. Steps 34–38 redo the job of steps 6–11. Note we
need not redo step 12–13 since current minislot allocations
can guarantee no unnecessary minislots exist. Step 40 finally
affirm each scaling factor.

Given Algorithm 2, we can easily meet Constraint 2 through
breadth first traversal as shown in Algorithm 3. Here we use
an example whose configuration is shown in Fig. 2 to illustrate
this algorithm. Fig. 2 shows the capacity of each link and the
request of each node. Since there are both uplink and downlink
request in this example, we use βu

i and βd
i to indicate their

corresponding βi in Algorithm 2. First Algorithm 3 visits node
0 and runs Algorithm 2 at node 0. At step 4, τ

ru
1

l1,0
= 8, τ

ru
2

l2,0
=

4, τ
ru
3

l1,0
= 2, τ

rd
3

l0,1
= 8 and after scaling, t

ru
1

l1,0
= 2, t

ru
2

l2,0
= 1,

t
ru
3

l1,0
= 0, t

rd
3

l0,1
= 2. After steps 5–14, βu

1 = 0.25, βu
2 = 0.25,

βu
3 = 0, βd

3 = 0.25 and trl doesn’t change during steps 12–
13. At step 15, Trem = 3, and steps 16–38 will run in three
iterations. In the first iteration, step 17 selects βu

3 , and t
ru
3

l1,0

becomes 1 and βu
3 becomes 0.5. In the second iteration, βu

1

is selected and, t
ru
1

l1,0
becomes 3 and βu

1 becomes 0.375. In

the third iteration, βu
2 is selected and, t

ru
2

l1,0
becomes 2 and

βu
1 becomes 0.5. So the scaling factor for each request after

visiting node 0 is αu
1 = 0.375, αu

2 = 0.5, αu
3 = 0.5 and

αd
3 = 0.25. When Algorithm 3 invokes Algorithm 2 at node 1,

at step 4, τ
ru
1

l1,0
= 8, τ

ru
3

l3,1
= 4, τ

ru
3

l1,0
= 2, τ

rd
3

l1,3
= 16, τ

rd
3

l0,1
= 8

and after scaling, t
ru
1

l1,0
= 1, t

ru
3

l3,1
= 0, t

ru
3

l1,0
= 0, t

rd
3

l1,3
= 3,

t
rd
3

l0,1
= 1. After steps 5–14, βu

1 = 0.125, βu
3 = 0, βd

3 = 0.125,

and t
rd
3

l1,3
becomes 2 at step 12. At step 15, Trem = 4 and

steps 16–38 will run in four iterations. In the first iteration,
step 17 selects βu

3 , both t
ru
3

l3,1
and t

ru
3

l1,0
becomes 1, and βu

3

becomes 0.25. In the second iteration, step 17 selects βu
1 , t

ru
1

l1,0

becomes 2 and βu
1 becomes 0.25. In the third iteration, βd

3 is
selected but step 31 will be reached since Trem = 1. In the
fourth iteration, βu

1 will be selected again, and t
ru
1

l1,0
becomes 3

and βu
1 becomes 0.375. So the scaling factor for each request

after visiting node 1 is αu
1 = 0.375, αu

2 = 0.5, αu
3 = 0.25 and

αd
3 = 0.125. These will be the final scaling factor because no

further scaling is needed when Algorithm 3 visits node 2 and
node 3.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

Algorithm 4: Proposed approach to determining α

Input: A tree network T = (V,L) with level k;
Bandwidth request of each node;
Output: the scaling factor
ψ ← k;1

while ψ ≥ 0 do2

foreach level ψ node a do3

αa ← 1;4

Scale (a,α);5

end6

ψ ← ψ − 1;7

end8

The above example also shows that we can deal with the
case that both uplink and downlink bandwidth request exists
simply by treating them fairly. Although breadth first traversal
can guarantee Constraint 2 at each node, yet it doesn’t fully
use the available bandwidth. In the above example, when
Algorithm 3 visits node 1 and scales the bandwidth request
in Subtree(1), there will be one minislot spared at node 0
which has to be wasted. The reason for this is that the scaling
factors generated by node 1 for bandwidth requests from 3
is smaller than that generated by node 0 and the traversal
order makes it impossible for breadth first traversal to reuse
the spared minislots. If we assign this spare minislot to node
2, the scaling factor of node 2 can increase to 0.75 without
undermining other requests’ scaling factors, therefore keeping
fairness to other requests. In order to fully take advantage
of available minislots at each node, we recommend down-
top traversal of the nodes in the routing tree as shown in
Algorithm 4. By changing the traversal order, it is easy to
see that Algorithm 4, with respect to the configuration of Fig.
2, increases αu

2 from 0.5 to 0.75 while keeping other scaling
factors from deteriorating, compared to Algorithm 3.

After scaling and recalculating the total feasible minislots
allocated on each link, we can get the optimum scheduling by
running Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we compare the performance of Algorithm
4 with respect to that of Algorithm 3 in random configuration.
We use randomly generated tree topology whose root is also
randomly selected. Each node has 2 units of both uplink
and downlink bandwidth request. The capacity of each link
is randomly distributed between 10 and 60 units. We set
Tf = 256, the default value of number of minislots in a frame.
We vary the number of nodes in the routing tree from 10 to
50 and measure the ratio of Algorithm 3 to Algorithm 4 in
terms of the sum of all bandwidth requests’ scaling factors.
We present our result in Fig. 3. Each data point is the average
of the ratio attained over 10 random trees with the maximum
degree varying from 3 to 12.

In Fig. 3, the result shows that Algorithm 3 averagely
performs within 85% of Algorithm 4. Since the capacity of
each link is randomly selected, the variation of number of
nodes seems not to have significant impact on the result.

10 20 30 40 50
79

79.5

80

80.5

81

81.5

82

82.5

83

83.5

R
at

io
 o

f t
he

 s
um

 o
f s

ca
lin

g
fa

ct
or

s
at

ta
in

ed
 b

y
A

lg
or

ith
m

 3

 t

o
th

at
 a

tta
in

ed
 b

y
A

lg
or

ith
m

 4
 (

%
)

Fig. 3. Algorithm 3 vs. Algorithm 4

VI. CONCLUSION

We modeled the scheduling problems for IEEE 802.16 cen-
tralized mesh mode with directional antenna as edge coloring
problems and design a lightweight optimum scheduling for
it. In addition, we introduced a fair scaling algorithm that
works in case the minimum scheduling length is longer than
frame length. We also identified the impact of traversal order
of scaling algorithm on the total throughput utilization and
showed that down-top traversal can make use of available
minislots better. Simulation result showed that breadth first
traversal performs within 85% of down-top one.

REFERENCES

[1] IEEE Standard for Local and metropolitan Area Networks Part 16:
Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std.
802.16, 2004.

[2] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inform. Theory, vol. 46, no. 2, pp. 1244–1245, Mar. 2000.

[3] E. Arikan, “Some complexity results about packet radio networks,” IEEE
Trans. Inform. Theory, vol. 30, pp. 681–685, July 1984.

[4] S. Ramanathan and E. L. Lloyd, “Complexity of certain graph coloring
problems with applications to radio networks,” Dep. Comput. Sci., Univ.
Delaware, Tech. Rep. 92-18.

[5] M. R. Garey and J. D. S, Computers and brtracrability: A Guide to the
Theory of NP-Completeness. San Franciaeo, CA: Freeman, 1979.

[6] S. Ramanathan and E. L. Lloyd, “Scheduling algorithms for multihop
radio networks,” IEEE/ACM Trans. Networking, vol. 1, no. 2, pp. 166–
177, Apr. 1993.

[7] P. Gupta and P. R. Kumar, “Link scheduling in polynomial time,” IEEE
Trans. Inform. Theory, vol. 34, no. 5, pp. 910–917, Sept. 1988.

[8] L. Bao and J. J. Garcia-Luna-Aceves, “Transmission scheduling in ad
hoc networks with directional antennas,” in Proc. ACM MOBICOM, Sept.
2002, pp. 48–58.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

