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Abstract—In this paper, we focus on the polling mechanism
adopted in IEEE 802.16 networks operating in PMP (Point-to-
Multipoint) mode between the base station and the subscriber
stations. We develop a queueing model for computing the perfor-
mance of the polling service traffic, which takes into account the
polling period amongst the various subscriber stations served by
a single base station. Using our model, the waiting time distri-
bution, the blocking probability, and other relevant performance
measures are computed. The model can be used to investigate
how the traffic in the polling service for each subscriber station
can be allocated the necessary network resources to meet some
certain Quality-of-Service (QoS) requirements.

I. INTRODUCTION

Network service differentiation and QoS considerations
make up a significant part of the IEEE 802.16 protocol. This
is achieved by assigning the network traffic to one of three
priority levels/services: 1) Unsolicited Granted Service (UGS)
which handles traffic of the highest priority, 2) Polling Service
(PS), and 3) Best-Effort service (BE) for traffic that requires
no QoS guarantee. Bandwidth allocation for UGS traffic is
usually handled in a static manner, while BE traffic exploits
the remaining bandwidth after enough has been allocated for
the other two higher priority services, namely PS and UGS.

In this work, we will focus our attention on IEEE 802.16
networks that operate in the Point-to-Multipoint (PMP) mode.
The nodes are organized in cellular-like structure (see Figure
1) with a central base station (BS), as opposed to the Mesh
mode with ad hoc structure. According to the polling mech-
anism defined in the standards for the PMP mode, the BS is
responsible for polling each subscriber station (SS) in specific
intervals for their PS traffic [1]. The PS supports some level of
QoS guarantee, and the amount of bandwidth that is allocated
to each of the polled stations typically remains fixed, which
depends on the amount of bandwidth assigned to the UGS
traffic. However, each SS may be given a different service
time period T (or slot times) during each polling period by
considering the possible unbalance of traffic load in each SS.

The objective of this paper is to present a queueing model
for computing the performance of the polling service traffic,
which takes into account the polling periods amongst the
various subscriber stations served by a single base station. Our
model is used to compute the various performance measures
such as blocking probability and waiting time distribution. The
model could eventually provide a guideline as to how one can
assign T for each SS with queued traffic, subject to some
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Fig. 1. Example of IEEE 802.16 Wireless Network Topology in PMP Mode.

QoS constraints such as the blocking probability, mean waiting
time, and other higher moments of waiting-time which can be
computed from the distribution.

This paper is organized as follows. After briefly reviewing
some related works in Section II, the details of our model is
described in Section III. Section IV presents the derivations
of the relevant performance measures. A simple numerical
example is given in Section V, followed by some conclusions
in Section VI.

II. PREVIOUS WORKS

Recent works, such as [2] and [3], have focused on simu-
lating systems running the IEEE 802.16 protocol and studying
how the performance of the system varies with several factors
in terms of throughput and delay. The authors in [4] and
[5] have proposed their own admission control policies and
scheduling algorithms to meet certain QoS requirements in
such networks, and have demonstrated their effectiveness using
simulations.

In [6], a queueing model was presented for dynamically
allocating the bandwidth to the PS according to some varia-
tions in traffic load. However, their work does not consider
the correlation with the other SSs in the network. Dynamic
bandwidth allocation for PS in terms of mean queue-length and
transmission period was modeled in [7] using the generating
function approach. In [8], the authors considered the queueing
performance of the PS, and proposed a bandwidth allocation
scheme for the entire set of priority services that depends on
the variations in the queue and traffic source, but ignored the
polling period which likely underestimate their delay statistics.
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III. MODEL DESCRIPTION

We consider a system of a single BS serving N SSs. Each
SS maintains its own packet buffer numbered 1, 2, · · · , N for
PS traffic, and each buffer i has a finite capacity of size Ki <
∞. There is only one server that attends to the buffers in
a cyclic order. Each buffer i is attended by the server for a
maximum of Ti time slots. The server attends to buffer i until
the buffer becomes empty or the server has been attending to
it for Ti time slots, whichever comes first. This results in an
exhaustive time-limited polling system.

Studying this polling system with N SSs will result in a
Markov Chain with huge dimensions. Instead we approximate
this system by an exhaustive time-limited polling model with
vacation [9] and analyze each queue separately. We focus on
an arbitrary buffer i, and from the point of view of this queue
the server is either attending to it or is away attending to
other buffers. When the server is away attending to the other
buffers this target buffer i sees the server as being away on
a vacation. Our model further considers the correlation of the
vacation periods and the service periods amongst all the PS
buffers in the system, whereby each buffer’s vacation period
is equivalent to the service period of the other buffers in the
polling system.

According to the scheduling service in IEEE 802.16, PS
traffic can be categorized into two different classes: real-
time PS (rtPS) for delay sensitive traffic and non-real-time
PS (nrtPS). For simplicity, we will focus our attention on a
single class of PS traffic. Moreover, we remove the descriptor
i for notational convenience since we are only modeling one
buffer.

A. Arrival Process

In our discrete-time model, time is discretized into time
slots. During each time slot, we assume that exactly one packet
that is at the head of the queue in service is processed, i.e. the
service time for a single packet is one time slot. Our time slot
quantum assumption implies that our packet arrivals could be
in batches.

To capture the correlation in arrivals, if any, packets are as-
sumed to arrive at the buffer according to the Batch Markovian
Arrival Process (BMAP) [10] described by the sub-stochastic
matrices Dx of order n, where x = 0, 1, 2, · · · , η. The matrix
Dx represents x packet arrivals during a time slot, with η
being the maximum number of arrivals. Let D =

∑η
x=0 Dx

and πD = π, π1 = 1 (where 1 is a column vector of ones),
the average packet arrival rate can be computed as

λ =
η∑

x=1

xπDx1. (1)

B. Server Vacation Period

In our model, we let the server vacation period of buffer
i be a phase type distribution (δ, L) of order θ. The server
vacation period for buffer i is equivalent to the sum of the
server visit periods of the remaining N − 1 SSs.

In an exhaustive time-limited polling system, the server visit
period at one station depends on the server visit periods at the
remaining stations (see [11] and [12] for more details). Note
that the server visit period depends on the station’s queue
length and may be less than the service time-limit T . This
implies that there is a correlation in the queueing performance
among all the polling stations. Hence, a station’s vacation
period is dependent on the remaining stations’ server visit
periods.

Since the focus of this paper is not on accurately modeling
(δ, L) for the buffer under consideration, and for the sake of
simplifying the presentation of our model, our analysis will
assume the simple case where the buffers are so busy that it is
not often that a server leaves a buffer before its limited visit
time is up. This is especially true if each of the SS buffers
experiences high traffic load, which accounts for the worst
case conditions. Hence, buffer i’s server vacation period is
equivalent to the sum of the polling periods of the other N−1
SSs, which has a phase type distribution with L = Ī(θi − 1)
and δ = [1, 0, 0, · · · , 0], where θi =

∑N
k=1 Tk − Ti, such that

Ī(υ) �
[

0 I(υ)
0 0

]

where I(υ) is an identity matrix of size υ, and 0 is a vector
of zeros.

C. Markov Chain

By assuming that one packet is served during a single time
slot, our BMAP/D/1/K system is operating like a number-
limited vacation queue, i.e. server attends to a maximum of
T packets during its visit. At time slot t ≥ 0, let Xt be the
number of packets in the system (buffer), Yt the phase of
arrival, Ut the clock time of the current visit at the buffer, and
Vt the phase of vacation if the server is on vacation. Then, the
state space of this process can be written as

Δ̄ = {(0, Yt, Vt) ∪ (Xt, Yt, Vt) ∪ (Xt, Yt, Ut)} . (2)

The transition matrix of this Markov Chain is of the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0 C1 C2 · · · Cη

E A1 A2 · · · Aη Aη+1

A0 A1 A2 · · · Aη Aη+1

. . .
. . .

. . .

A0 A1 A2 · · · Âi

. . .
. . .

A0 A1 ÂK−1

A0 ÂK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

with C0 =
[

D0 ⊗ (L + �δ)
]
, E =

[
0

e ⊗ D0 ⊗ δ

]
,

Cj =
[

Dj ⊗ L e
′
1 ⊗ Dj ⊗ �

]
, j = 1, 2, · · · , η

A0 =
[

0 0
eT ⊗ D0 ⊗ δ Ī(T − 1) ⊗ D0

]
,
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Aj =
[

Dj−1 ⊗ L e
′
1 ⊗ Dj−1 ⊗ �

eT ⊗ Dj ⊗ δ Ī(T − 1) ⊗ Dj

]
, j = 1, 2, · · · , η

Aη+1 =
[

Dη ⊗ L e
′
1 ⊗ Dη ⊗ �

0 0

]
,

Âi =
η∑

j=K−i+1

Aj + Aη+1.

Here, ⊗ is the Kronecker product of two matrices, � = 1 −
L1 is the vector probability denoting the end of the vacation
period, and ex is a column vector of zeros with a single entry
of 1 in position x. In this paper, our attention will be restricted
to the case where K ≥ T and K > η. The case of K < T
and/or K ≤ η can be developed in a similar manner.

In (3), the block matrix C0 represents the transition prob-
ability for the case where the system remains empty due to
no arrivals and the server is still on vacation, or returns from
vacation to find the system empty and starts another vacation.
The block matrices Cj represents the case where j arrivals
have occurred while the server is still on vacation (since the
system was empty) as given by the left-most element, or
the vacation has ended and the server starts serving the first
arriving packet as given by the right-most element.

The block A0 describes the single departure from the system
which can only occur if the system is in a service period (i.e.
not in vacation mode), and there are no arrivals. The lower
left-most element in A0 is the probability that the server goes
on vacation after the departure of the packet at the end of the
buffer’s polling period, while the lower right-most element
is the probability that the server starts processing the next
packet in the non-empty queue after the departure of the served
packet. Note that for the upper elements in matrix A0 which
represent the state when the system is in vacation mode, the
transition probabilities are zero since it is not possible for the
server to be on vacation while having served any packets.

The blocks Aj describe the transitions involving the arrivals
of j − 1 packets into the system if it is in vacation mode as
given by the upper elements in the matrix, or the arrival of j
packets during a server visit period with a service completion
and departure of a single packet from the head of the buffer.

The remaining blocks can be described in a similar manner.

D. System Steady-State Distribution

Let x be the steady-state distribution of the system with
the transition probability matrix given by P, such that x =
xP , and x1 = 1. Then we can obtain x by using standard
linear algebra techniques, where x = [xv

0,x1,x2, · · · ,xK ]
and xi = [xv

i ,xs
i ] for 1 ≤ i ≤ K, with the vectors

xv
i =

{
xv

i,j,k

}
for 1 ≤ j ≤ n 1 ≤ k ≤ θ,

xs
i =

{
xs

i,j,t

}
for 1 ≤ j ≤ n 1 ≤ t ≤ T.

xv
i is the vector probability of the system being in the vacation

period with i packets in the system, and xs
i is the vector

probability of the system being in the service period with i
packets in the system. These steady-state probabilities are next
used to derive our performance measures of interest.

IV. PERFORMANCE MEASURES

A. Blocking Probability

The blocking probability can be computed as the ratio of
the average number of blocked packets due to buffer overflow
to the average number of packet arrivals. Hence, the blocking
probability Pb is given as

Pb =
Average Number of Blocked Packets

Average Number of Arrivals
(4)

=
1
λ

⎡
⎣ K∑

i=K−η+1

η∑
k=K−i+1

(k − (K − i))xv
i (In ⊗ 1θ) Dk

+
K∑

i=K−η+2

η∑
k=K−i+2

T∑
t=1

(k − (K − i) − 1)xs
i,tDk

⎤
⎦1n

where Ix is an identity matrix of order x, and 1x is a column
vector of all ones with length x.

B. Mean Occupancy & Residence Time

Knowing the steady-state probability distribution x of the
system, the mean number of packets in the system, μL, can
be computed as

μL =
K∑

i=1

i (xv
i 1nθ + xs

i1nT ) =
K∑

i=1

ixi1n(θ+T ). (5)

Given that the mean packet arrival rate into the buffer is
λ =

∑η
x=1 xπDx1, and using Little’s Law we can compute

the mean residence time, WL, as

WL =
μL

λ∗ (6)

where the system’s throughput λ∗ = λ (1 − Pb).

C. Waiting-Time Distribution

In order to obtain the waiting time distribution, we need
to first compute the equivalent distribution of the buffer
occupancy size as seen by an arriving packet that gets served.
Let y be the distribution of the buffer occupancy as seen by
the arriving packet that is accepted into the system. Define
y = [y0,y1, · · · ,yK−1], and yi = [yv

i ,ys
i ] for 1 ≤ i ≤ K−1,

with y0 = yv
0 and ys

i =
[
ys

i,1,ys
i,2, · · · ,ys

i,t, · · · ,ys
i,T

]
,

where t is the time phase of service. yv
i is the probability

of an arrival finding i packets waiting in the system when
the server is on vacation. The derivation of yv

i are given as
follows.

yv
0 = (λ∗)−1

[
η∑

k=1

xv
0Dk ⊗ (L + �δ)

+
T∑

t=1

η∑
k=1

xs
1,tDk ⊗ δ

]
(1n ⊗ Iθ) . (7)
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For 1 ≤ i ≤ η − 1,

yv
i = (λ∗)−1

[
η∑

k=i+1

xv
0Dk ⊗ (L + �δ)

+
i∑

j=1

η∑
k=i−j+1

xv
j Dk ⊗ L +

i+1∑
j=2

η∑
k=i−j+2

xs
j,T Dk ⊗ δ

+
T∑

t=1

η∑
k=i+1

xs
1,tDk ⊗ δ

]
(1n ⊗ Iθ) . (8)

For η ≤ i ≤ K − 1,

yv
i = (λ∗)−1

⎡
⎣ i∑

j=i−(η−1)

η∑
k=i−j+1

xv
j Dk ⊗ L

+
i+1∑

j=i−(η−2)

η∑
k=i−j+2

xs
j,T Dk ⊗ δ

⎤
⎦ (1n ⊗ Iθ) . (9)

yv
0 is the probability that an arriving packet is accepted into

the system while it is in vacation mode with no other packets
ahead of it to be served. This is equivalent to the probability of
finding the system empty and in vacation mode in the previous
time slot with the packet arriving at the head of the batch
arrivals (as given by the first summation), or the probability
that the system processed the last packet in the queue at the
previous time slot and forcing the server to go on vacation
with the packet arriving at the head of the batch arrivals in
the current time slot (as given by the second summation). The
remaining yi elements can be interpreted in a similar manner
and is omitted for brevity.

ys
i is the probability of finding i packets in the system when

the server is in service and is derived as follows. For 1 ≤ i ≤
K − 1,

ys
i,1 = (λ∗)−1

⎡
⎣ i∑

j=max{1,i−(η−1)}

η∑
k=i−j+1

xv
j Dk ⊗ �

⎤
⎦1n.

(10)
For 2 ≤ t ≤ T ,

ys
i,t = (λ∗)−1

⎡
⎣ i+1∑

j=max{2,i−(η−2)}

η∑
k=i−j+2

xs
j,t−1Dk

⎤
⎦1n.

(11)
It can be shown that λ∗ is simply the sum of all the terms

inside the main brackets of the elements yi, ∀i, which is
equivalent to the system’s throughput derived in Section IV-B.

Let the waiting time be W and wj = Pr{W = j}, where
wj is the probability that the arbitrary arriving packet has to
wait j units of time in the system before it starts receiving
service, given that the packet arrived successfully into the
system (i.e. not blocked). Define a transition matrix Pw which
captures the transient state of the system as seen by an arbitrary
arriving packet and ignores the subsequent arrivals (assuming
a FIFO system). This is equivalent to analyzing the time
for emptying the buffer of all packets ahead of the arbitrary
arriving packet that is accepted into the system. Pw can be

easily obtained from P in (3) by setting Dx = 0 for x > 0, and
D0 = 1 (i.e. ignoring all future arrivals), with the exception
of the lower boundary conditions B̃ and Ẽ. Hence, the matrix
Pw can be computed as follows.

Pw =

⎡
⎢⎢⎢⎢⎢⎢⎣

B̃
Ẽ Ã1

Ã2 Ã1

Ã2 Ã1
. . .

. . .
Ã2 Ã1

⎤
⎥⎥⎥⎥⎥⎥⎦

, and Ω0 = 1 − Pw1

(12)

where B̃ = L, Ẽ =
[

0
eT ⊗ δ

]
,

Ã2 =
[

0 0
eT ⊗ δ Ī(T − 1)

]
, Ã1 =

[
L e

′
1 ⊗ �

0 0

]
.

Given y and Pw, the waiting time distribution wj can be
studied as a phase type distribution (y, Pw). Therefore,

wj = Pr{W = j} = yP j−1
w Ω0, for j ≥ 1. (13)

Using our expression for wj , we can further compute the
cumulative waiting time distribution. Moreover, the mean
waiting time E[W ] can be computed as

E[W ] = y (I − Pw)−1 1. (14)

Furthermore, we know that each packet requires one unit of
time for service, which is deterministic. Hence, the mean
residence time in the system for an arbitrary packet is

WL = E[W ] + 1 = y (I − Pw)−1 1 + 1 (15)

which is equal to what was computed in Equation (6). Note
that the unit of time used in this model is equivalent to the
time taken to serve a single packet.

Our solution for the waiting time distribution can be used
to obtain higher moments than the first one (i.e. mean), which
can help to provide a better understanding of the system’s
performance in terms of the waiting time. This is particularly
useful when considering delay sensitive applications.

V. NUMERICAL EXAMPLE

In this section, a simple example is presented to both verify
our modeling analysis, and illustrate the behavior of a simple
polling system applied for the case of a single class of PS
traffic in IEEE 802.16. The analysis was carried out using
the performance measures given in the previous section. A
simulation program, written in Matlab, was used to verify the
results obtained from our analysis.

For the purpose of simplicity, we will only consider three
subscriber stations, each with its own buffer for holding the
arriving PS traffic. In our example, the PS buffers in each SS
will have a size of K = 25 and the BMAP arrival process into
all the buffers will be identical. This may not be a realistic
situation but we chose to analyze this type of configuration
due to the symmetry in the performance which can serve as
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Fig. 2. Blocking Probability in SS 1 and SS 2, with varying T1 and T2.

an added check to our analysis. Similar results can be obtained
for the case of heterogeneous traffic into the PS buffers.

In our simulation, the three polling stations were collectively
considered and cyclically processed, such that the exact state
of each of the stations are known at all times. Hence, there
was no need to make any assumptions in the simulation on
the server vacation periods for each of the stations. This was
also useful in verifying our assumption for the server vacation
distribution under heavy traffic load conditions, as mentioned
in Section III-B. A single run of the simulation with a run-time
of 4 million time slots was made for each scenario, which was
found to be sufficient for ensuring that the system reached a
steady-state behavior.

For our BMAP arrival process, we considered the case
where the maximum batch size η = 4 with

D0 =
(

0.1 0.05
0.1 0.2

)
, D1 =

(
0.05 0.1
0.2 0.1

)
, D2 =

(
0.05 0.05
0.05 0.05

)
,

D3 =
(

0.2 0.1
0.05 0.1

)
, D4 =

(
0.1 0.2
0.1 0.05

)
.

With this BMAP, the mean arrival rate into each of the buffers
is λ = 2 packets per time slot.

In the analysis and simulation, the single polling period was
fixed at T1 + T2 + T3 = 20. In order to evaluate the effects of
Ti on the system’s performance, we fixed T3 = 5 and varied
T1 and T2 with the constraint T1 + T2 = 15. Note that a
single packet is served during each time slot. Given our system
parameters, the buffers are under heavy traffic load and thus
the server vacation period for each buffer is approximately the
sum of the polling time-limit for the other two buffers.

Figures 2 and 3 show both the blocking probability and
the mean waiting time of an arriving packet into SS 1 and
SS 2 with T1 varying from 4 to 11, respectively. Note that
T2 also varies with T1 since we fix T1 + T2 = 15. The
graphs clearly show how our simulation verifies our results
from the analysis. The results suggest that a linear increase in
T1 (with a simultaneous linear decrease in T2) causes a linear
decrease in the blocking probability as shown in Figure 2,
which simultaneously decreases the mean waiting time E[W ]
at a faster rate. In addition, note that due to the symmetry of
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Fig. 3. Mean Waiting Time in SS 1 and SS 2, with varying T1 and T2.

our parameters in the two systems, the performance for the
SS 2 with T2 is the direct opposite of that for SS 1.

Focusing only on the case where T1 = 6 and T2 = 9,
while keeping all other system parameters the same as before
(with T3 = 5), Figures 4 to 7 show our results for the waiting
time distribution and the cumulative distribution for both SS
1 and SS 2, respectively. These graphs also show how our
simulation verifies our results from the analysis. For SS 1,
note how the peak of 80 time units in Figure 4 is close to
the mean for T1 = 6 in Figure 3. This peak of 80 time units
corresponds to the waiting time that a packet may experience
in SS 1 as a result of 4 server vacation periods with a length
T2 + T3 each and the time taken to serve a buffer with K − 1
packets, with the waiting packet being the last packet in the
buffer. The lower peak of 94 time units is the result of an
extra server vacation period to the higher peak of 80 units.
This suggests that a packet waiting in SS 1 is more likely
to witness 4 vacation periods as opposed to 5. Note that for
this example, 5 server vacation periods (i.e. �K/T1	) is the
maximum for a packet that is waiting in SS 1. The peaks in
Figure 6 can be interpreted in a similar manner, whereby the
lower peak is the result of the final packet in the queue waiting
for two vacation periods (T1 + T3) and the service of K − 1
packets before being served, and the higher peak corresponds
to the packet waiting an extra vacation period.

A second look at the results reveal that an arriving packet
in SS 2 has a higher likelihood of experiencing the maximum
number of server vacations when compared to SS 1. The
difference is attributed to the size of the service periods of
the two stations since it is the only factor that differentiates
both stations. However, the waiting time in SS 2 is much less
compared to SS 1. This behavior could provide some insight
on how to select the polling times for each station and is
currently being investigated.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we presented a queueing model for analyzing
the performance of the polling service mechanism adopted in
IEEE 802.16 networks. The model considers the correlation of
the vacation and service periods amongst the PS buffers in the
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Fig. 4. Waiting Time Distribution in SS 1, with T1 = 6 and K = 25.
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Fig. 5. Cumulative Distribution of Waiting Time in SS 1, with T1 = 6 and
K = 25.

system. Our proposed vacation period approximation helped in
capturing the correlation between the SSs under heavy traffic
load conditions. The model can be utilized for assigning a
suitable polling service time-limit T for each PS buffer with
different traffic loads, while adhering to some QoS constraints,
based on the blocking probabilities, mean queue lengths and
waiting time.

Our model assumes that the network resources available
to the UGS and PS traffic are completely partitioned amongst
them, which allowed for an independent analysis of PS traffic.
Other scenarios call for the resources to be shared between
these types of traffic, which implies that the performance of
UGS traffic will have an influence on the PS traffic. This
influence will be considered in our future work. Moreover,
under heavy traffic conditions, the correlation between the SSs
play a minor role and hence our proposed server vacation
period is a good approximation. The case of lighter traffic
loads will also be investigated.
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Fig. 6. Waiting Time Distribution in SS 2, with T2 = 9 and K = 25.
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