A distributed algorithm
for inter-domain resources provisioning

Marc-Antoine Weisser and Joanna Tomasik
Computer Science Department, Supélec
3, rue Joliot-Curie, 91192 Gif-sur-Yvette cedex, France
Email: {Marc-Antoine.Weisser, Joanna.Tomasik } @supelec.fr

Abstract— The introduction of QoS guarantees from
peer to peer in the Internet requires a mechanism for
finding paths in the inter-domain network. This mech-
anism has to be distributed, support classical constraints
(delay, bandwidth, jitter, loss rate, administrative cost) and
be able to find multi-constraint paths. The second problem
is hard even if global information concerning the resources
available in the network is known, which is impossible in
the Internet. We are convinced that RSVP would not be an
efficient solution in this context. We propose an alternative
solution better adapted for fulfilling the QoS requirements.
It is heuristic and it makes decisions according to routing
tables stored in border routers. The obtained simulation
results have shown that its performance is very satisfactory.

I. INTRODUCTION

The Internet is a network based on IP (Internet
Protocol). Routing between independent sub-networks
(domains) is assured by BGP (Border Gateway Protocol)
which uses IP. In the inter-domain network, there was no
need for QoS (Quality of Service) guarantees when these
two protocols were drawn up and these guarantees are
not integrated within the Internet. Today, the expectations
of the network users have changed. The introduction of
new applications, like voice-over-IP, video-conference or
e-commerce forces the providers to adapt their networks
to include the QoS requirements. It is widely accepted
that resource reservation provides strong QoS guarantees
from peer to peer and not only probabilistic guarantees
such as an access protocol on the borders between the
domains might give.

The existing reservation protocol RSVP (ReSerVation
Protocol) [1] was designed for an IP network considered
as a single domain network. RSVP is not scalable to
the inter-domain level. The scalability problem occurs

This work was partially founded by Research and Development
Department of France Telecom.

because RSVP treats each flow individually. Indeed for
each flow, RSVP has to:

« create for each router a soft state table containing
flow information;

o dedicate a leaky bucket mechanism to control the
traffic of each flow for each router;

o send refresh messages periodically to keep the reser-
vation alive.

RSVP identifies a flow by its sender and destination
addresses. Such an approach forces the protocol to deal
with a great number of flows. Notice that single flow
reservation demands can significantly vary. In particular,
RSVP may reserve paths for a great number of “small”
flows. In the inter-domain context, the need for reserving
path “flow by flow” makes the use of RSVP unrealistic.
The inter-domain resources reservation needs introduc-
tion of a flow aggregation mechanism.

Let us take the hypothesis that this type of mechanism
is implemented in the inter-domain routers. To establish
a reserved path for aggregated flows, we will need a
protocol which :

1) does not have to know the global network state,
meaning the resources available in all the links and
all the routers;

2) finds paths which satisfy a set of criteria like delay,
costs, bandwidth, jitter, lost rate;

3) can create reserved paths independently from BGP
routing tables.

Points 2 and 3 listed above eliminate RSVP from
consideration. Indeed, RSVP uses only the BGP routing
tables to construct the reserved path. Moreover, the only
constraints integrated today in this protocol are delay and
bandwidth.

Furthermore, RSVP uses an upstream reservation
paradigm. In our opinion a downstream reservation ap-
proach will be more efficient because in the context

0-7803-9455-0/06/$20.00 (c) 2006 IEEE

of the inter-domain routing there is no information
concerning the used resources. Before asking a router
whether a reservation is possible, there is no way to know
if the router will accept or reject the demand.

In the RSVP approach, the algorithm finds a complete
path from the source to the receiver and then asks each
router on the path if the demand is accepted. The path’s
finding is downstream, but the reservation process is
upstream. If one of the routers rejects the demand, the
whole path is rejected and the reservation procedure
has to be restarted from the beginning. As we said,
RSVP uses the routing table of BGP to find the path.
The path is created independently of the constraints, so
it may be inadequate to QoS requests. It seems more
efficient to construct the path downstream and to reserve
the resources simultaneously. Indeed, it is possible to
verify hop by hop that the constraints are still satisfied.
If they are not, the algorithm can return one hop and
try another solution without rejecting the whole path.
Finally, RSVP allows the receiver to choose QoS level.
In the downstream reservation approach, it could also
be possible for the receiver to specify its QoS level. In
this case the sender has to ask the receiver about the
QoS request at the beginning of the reservation. The
drawback is that it increases the number of messages by
one exchange although it can improve searching for the
path. We think that it is a negligeable loss in comparison
with the difficulties of the multi-constraint path finding.

In the next section, we will give more details con-
cerning our goal. In section III, we present the multi-
constraint path problem and its modelisation. In section
IV, we propose an heuristic algorithm to solve this
problem and we study its complexity. Section V contains
simulation model and the results. We formulate the
conclusions about our algorithm performance in the last
section.

II. GOALS OF THE INTER-DOMAIN QOS ROUTING

Our work focuses on the inter-domain routing includ-
ing a mechanism of aggregation. Our goal is to provide
an algorithm finding multi-constraint paths from a router
in a domain to another router in another domain. In this
context, the algorithm has to satisfy some requirements.
Providers want to limit the broadcast of information
about their domain topologies. For this reason the al-
gorithm cannot be centralized or semi-distributed such
as the ones proposed for the bandwidth allocation [2],
[3], [4] or the multi-constrained path reservation [5]. Our
algorithm has to be distributed. In a distributed approach
presented in [6], control packets collect measurements in

10

a network. We think that operators do not want to allow
external agents to measure their domains’ performence
parameters. Moreover, this solution does not require a
found route to satisfy strictly each of the given con-
straints.

The network’s state, ie. the resources available on
links and in routers, is continuously changing. Today,
the overhead caused by the number of messages for each
routers in order to keep the global state of the network is
too important. Therefore algorithms such as [7] are not
adapted, because they use the knowledge of the global
network’s state. Our algorithm does not have to use
this knowledge. As domains are managed independently
by their operators, it may happen that the proposed
reservation protocol is not applied in some of them. The
algorithm should be able to work and to reserve a path
excluding domains which do not use it.

Finally, new needs for QoS may appear with coming
into view of new applications. The algorithm has to be
adaptable to take into account emerging constraints. In
the context of the networks, the algorithm has to work
with contraints which are additive, multiplicative and
convex. Well known constraints are: delay (additive),
cost (additive), bandwidth (convex), lost rate (multiplica-
tive), jitter (additive).

The problem of finding multi-constraint paths with
more than one additive and multiplicative constraint in
a network is a NP-complete problem [8]. This result
implies that, even in a centralized model, to compute
a path in a polynomial time, we need to use an heuristic
algorithm. The lack of complete network’s state infor-
mation leads us to choose a probabilistic approach.

We will present an algorithm finding multi-constraint
paths which satisfy the following properties :

o it is distributed;

« it is able to work without global information about
the resources available in the links and in the
routers;

o its installation can be incremental, this means that
it works even if it is deployed in a subset of the
domains;

e it can support any additive, multiplicative or convex
constraints;

o it works in polynomial time, ie. in each node the
algorithm is in polynomial time and the number of
communication steps is also polynomial;

e it is a Las Vegas algorithm, this means that it
produces correct results but does not always find
a solution (even if it exists).

Our algorithm is based on a work presented in [9].

The main idea is to send a probe message from a source
router within a domain to a destination router in another
domain. The probe is going from domain to domain
through the network. In each visited domain, the probe
demands a reservation. The reserved path is constructed
hop by hop. When the probe reaches its destination, a
validating message comes back to the source validating
the reservation demand made by the probe message. The
probe has a limit on the number of domains visited.
If the number of visited domains becomes greater than
this limit, a failure message is send back to the source,
discarding the reservation demand.

Because our algorithm is not deterministic, we need
simulations to validate it. We have developed a simulator
to model the behavior of the algorithm.

III. THE MULTI-CONSTRAINT PATH PROBLEM

We focus on the inter-domain network. We consider
a graph G = (V, A). V is a set of vertices, each vertex
represents a domain in the Internet. A is a set of arcs
which represent connections between domains.

We define K weight functions on the arcs w; : A — N,
i € [1; K]. These functions represent the global char-
acteristics of a link (physical proprieties such as the
delay of propagation or the available bandwidth) and
of a domain (the QoS guarantees which a domain can
provide). There are three types of weights :

o an additive weight for delay, cost, and jitter;

« a multiplicative weight for loss rate;

o a convex weight for bandwidth.
Let W; : path(G) — N, i € [1; K] be a weight function
on the paths of G. For an additive characteristic, the
weight function of a path is defined as a sum of arc

weigths:
Wi(p) = > wi(u)
uep

We can transform a multiplicative weight into an addi-
tive one using a logarithm. For a convex characteristic,
weight functions are:

Wi(p) = min w;(u)

uep
Finally, we define K satisfaction functions,
S; : path(G) x N — {true, false}. ~ For arguments

these functions have a path and a constraint. They
return true if the path satisfies a given constraint
and false otherwise. We use these functions to test
if a path satisfies given constraints. For additive and
multiplicative constraints; the functions are :

11

_f true, if Wj(p) <c
Sjp.c) = { false, otherwise
and for convex constraints :
| true, if Wy(p)>c
Sy (p,c) = { false, otherwise

where p is a path and c is the demanded value of the ;"
constraint.

Prob. 1 The multi-constraint path problem
Entries:

a graph G = (V, A);

a set of weight functions on the arcs: w;;

a set of weight functions on the paths: W;;

a set of satisfaction functions: S;;

Vo,vq € V, the origin and the destination;

e a set of K constraints ¢; € N.

Question: Find a path p from v, to v4 for which

Vi € [1; K], Si(Wi(p), ¢i) = true

We use the definitions given above to describe the
multi-constraint path problem: Prob. 1. In the next sec-
tion we propose an heuristic algorithm to solve it.

IV. PROPOSED HEURISTIC SOLUTION

Korkmaz and Krunz presented in [9] an heuristic
algorithm to find a multi-constraint path in a graph.
Their approach is based on a depth first search algorithm
with some cut mechanisms. These mechanisms use the
shortest path matrix for each constraint. The Internet’s
protocols do not provide this knowledge. The only quite
reliable information available in the global network is the
number of domains between a source and a destination.
The information needed for the QoS implementation
such as delay or bandwidth are unknown. There are
some suggestions, for instance, to estimate the available
bandwidth [10] but no solution has been commonly
accepted.

The design of the algorithm proposed in our article
is inspired by the one described in [9]. The advantage
of our algorithm is that we do not need to use distant
matrices for each constraint.

A. Algorithm description

Our distributed algorithm uses three types of mes-
sages. Probe messages are used to find a path from the
source to the destination. These paths are found hop by
hop and their descriptions are stored into the probes.
A current path (between the source and the node by
which actually a probe is passing) satisfies the demanded

QoS parameters. For a given request, a visited node is
a node by which the probe passed once. The visited
nodes are stored in a field of the probe. Two mechanisms
are used to control the search time: a node is never
visited more than once and a maximum number of visited
nodes is set in advance. This parameter is noted Npp,.
The two other messages types are acknowledgments: the
validating ACK and the aborting ACK. They are used to
validate and definitively accept resources allocation or to
abort and reject ressources allocation.

Let us describe the algorithm more precisely. When a
source node wants to establish a multi-constraint path to
a destination node, it creates a probe message containing:

« the invariant part of the request (origin, destination,
set of constraints);

o the current path starting from the origin by which
the probe has gone through up to a current node (a
node containing the probe);

o the weight of the current path for the different
constraints;

o the list of the visited nodes.

A probe is sent into the network to find a multi-constraint
path and to reserve the needed resources. It is forwarded
from node to node until it reaches the destination or
aborts the research. We will discuss the aborting mech-
anism later. When a probe comes into a non-visited
node, the node determines the QoS guarantees (for each
constraint) which can be fulfilled for this reservation
request. The path and the weights path fields of the probe
are updated with these guarantees. If the guarantees do
not satisfy all the constraints, then the probe is sent
back to the last visited node and the previous values
of its fields are restored. Otherwise it is sent randomly
to a non-visited node in the neighborhood of the current
node. This behavior allows each node to determine if it
accepts or not an incoming reservation. Moreover, the
QoS parameters have not to be broadcast in the network
before the request arrives.

The two following pseudocodes describe the behavior
of a node which wants to request a multi-constraint path
(Pseudocode 1) and the behavior of the nodes which
receive a probe (Pseudocode 2).

A validating ACK is forwarded from the destination
node to the source. To go back to the source, it passes
by each node included in the probe’s path. In each node
the demanded resources are definitively reserved. The
aborting ACKs also go back to the source but in each
node the resource allocations are discarded.

The mechanism which computes the guarantees avail-
able in a node is left open. Every node can choose

12

Pseudocode 1 Sender protocol
1) Create a probe containing:

source s
destination vg;

path between the origin and the current position: (vs);
weights for the K constraints of this path: {c1,...,ck};
set of visited nodes: {vs};

o set of K constraints to satisfy {w1,...wx };

« maximum number of visited nodes allowed: Npop.

2) Choose randomly a node v in the neighborhood according to
distribution D.

3) Send the probe to v.

4) end of the protocol

Pseudocode 2 Receiver protocol
Current node receiving the probe is noted as v. and the previous
node which sent the probe is noted as vp.
1) if the number of visited nodes is greater than the allowed
maximum Npop
then
« destroy the probe and send an aborting ACK to vp.
o end of the protocol

2) Compute and allocate the QoS guarantees available in the
node.
3) Compute and upgrade the path and its weights contained in
the probe field using the QoS guarantees computed at step 1).
4) if all nodes of the neighborhood have been visited or if the
path’s weights do not satisfy the constraints
then
o remove v. from the probe’s path and downgrade the
path’s weights.
« send the probe back to v,.
o end of the protocol
5) if v, is the destination
then
o destroy the probe and send a validating ACK to vp.
o end of the protocol
6) Choose randomly, according to a distribution D, a non-visited
node v in the neighborhood of v..
7) Send the probe to v.
8) end of the protocol

an appropriate mechanism depending on the internal
configuration.

In point 4) of Pseudocode 1, we have to delete the
last node from the path contained in the probe and to
downgrade the path’s weights. This operation can be
done because the constraints are additive or convex.

B. Number of message exchanges

Since the proposed algorithm is distributed, we have
to consider the complexity in terms of the number of
exchanged messages. For a given request, the maximum
number of exchanged probes is O(min(Np,p, [V])) be-
cause the probe cannot visit a node more than once and

cannot visit more nodes than Np,,. The ACK messages
are sent back from the destination to the origin. In the
worst case, the number of nodes in the current path is
equal to Njep. The order of the complexity in number
of exchanged messages for one request is given by:

O(min(Npop, [V1))

As usual, a problem to find the mean complexity in
number of exchanged messages is a more difficult one.
In the case of a simple topology like chain, binary tree
or ring, the mean complexity can be computed. In these
three cases, the order of the number of exchange mes-
sages is linear. To illustrate the complexity of computing
the number of exchanges messages on the most general
case, we consider a 2-dimension grid and where the
constraints are relaxed. In this case all the paths between
the origin and the destination are a solution. We consider
only the mean number of exchanged messages when
a solution has been found. To compute this mean, we
have to know the number of the simple paths between
two vertices. This problem has already been studied.
Liskiewicz, Ogihara and Toda gave a proof that this
problem is #P-complete [11].

C. Extensions

We can consider the algorithm described above as
a starting point for extensions and modifications. In
the first version of the algorithm, the probe cannot be
transmited towards a node already visited. This is a
strong requirement which reduces the time of the search
but which may also reduce the number of accepted
requests. A flexible alternative algorithm is to accept
the probes to be forwarded to already visited nodes but
to outlaw the probes to be forwarded through already
visited arcs. In this case the complexity is:

O(min(Npep, |V x V).

In our base algorithm, the probe is sent to any node in
the neighborhood. We may prefer to forward the probe
only to a node which is closer (in number of hops) to the
destination. BGP is based on the shortest hop path. We
can use it to determine the preferred nodes even if the
“political” and economical relations between domains
modify its shortest paths. In this case, we use a shortest
distance matrix of the number of hop but we still do not
use distance matrices of each constraint.

In our simulations, we will test four versions of our
algorithm. The basic one is called vertex algorithm.
The second one, arc algorithm, allows the probe to
pass more than once by the same node but not to use

13

more than once the same link. The third and fourth
ones, vertex+ algorithm and arc+ algorithm, are con-
structed upon the first and the second ones respectively,
but they require that the probes are forwarded to a node
closer to the destination.

V. SIMULATIONS
A. Plan

To test the algorithm, we run simulations on random
topologies representative for inter-domain networks. We
use the generator BRITE [12] to create these random
topologies. We choose this generator because it is based
on the Waxman graphs which are commonly used to cre-
ate random topologies representing telecommunication
networks. Moreover, BRITE is a frequently used tool,
so it can be considered as a benchmark. The topologies
to be analyzed have 20 and 50 nodes.

BRITE creates topologies with delay and bandwidth
parameters attached to the arcs. Delays generated by
BRITE depend only on the distance between two nodes
(propagation time of a physical medium). For our sim-
ulations, we have to introduce a packet delay caused
by its passage through a domain. We assume that the
delay follows a normal distribution with mean p = 80
ms and variance 02 = 20 ms. A bandwidth on the arc
(distributed uniformly between 1 and 100 MB) repre-
sents the maximum bandwidth accepted by a domain
for a request. We assume that a domain does not accept
the requests with bandwidth smaller than 1 MB because
the number of requests to manage will be too important.
A domain rejects also demands with bandwidth greater
than 100 MB which are too significant.

We started to study the behavior of the reservation
algorithm for requests upon one constraint only, the
delay. The requests are generated with a demand of
delay uniformly distributed on [z;x + 20] ms. We gen-
erate N = 10,000 requests for the values of x in
{0;10;...;340}. We choose these values because the
telephony over IP have to guarantee a delay less than 300
ms. We attempt to satisfy each request applying all the
algorithms presented above. In the Internet, the protocol
RSVP tries to establish a path using the BGP routing
tables. For the four algorithms which we designed, we
set Npop to the number of vertices of the graph. Our
topologies were generated by BRITE and they do not
contain all information needed to implement a full BGP
protocol such as economical relationships. Therefore we
use a shortest hop path algorithm to simulate RSVP.
This algorithm serves us as a benchmark. We have five
algorithms to test:

shortest2 hop
vertex+ = b
vertex mmm

7000 -

6000

5000

4000

3000

satisfied requests

2000

1000

T % % R e T Y Y e R % B % %

demanded delay (ms)

Fig. 1. Number of one constraint (delay) paths found in a 50 nodes
Waxman graph in function of demanded delay. Comparaison between
vertex, vertex+ and shortest hop algorithms.

shortest2 hop =
arc+ /=
arc m—

7000 -

6000

5000

4000

satisfied requests

3000

2000

1000

7 pe Z
2 % %

B e S B %
% % "% v o

B % B % %

demanded delay (ms)

Fig. 2. Number of one constraint (delay) paths found in a 50 nodes
Waxman graph in function of demanded delay. Comparaison between
arc, arc+ and shortest hop algorithms.

e vertex algorithm;

e vertex+ algorithm;

e arc algorithm;

e arc+ algorithm;

e shortest hop algorithm (RSVP).

As our algorithm is proposed in order to trace multi-
constraint paths, we analyze its performance for two cru-
cial QoS parameters: delay and bandwidth. We generate
requests with delay and bandwidth uniformly distributed
on [z;z+20] ms and [y; (y+1)] MB with x € {0;...340}
and y € {0,8}. We generate N = 10,000 requests for
each algorithm.

B. One constraint (delay) paths

Fig. 1 and 2 shows the number of paths found for each
algorithm depending on the demanded delay. All the
algorithms give almost the same results for the strongest
constraint requests (with a delay varying from 0 to 230
ms). The best algorithm in this case is the shortest hop
algorithm. Its good performance can be explained by

14

satisfied requests

10000
8000
6000
4000
2000

bandwidth (MB) % 50 oty (me)
elay (ms

100 0
Fig. 3. Number of two constraints (delay and bandwidth) paths
found in a 20 nodes Waxman graph.

satisfied requests

10000
8000
6000
4000
2000 W
0 S0\ 0\

bandwidth (MB)

100 0

Fig. 4. Number of two constraints (delay and bandwidth) paths
found in a 50 nodes Waxman graph.

the correlation between the path’s delay and the nodes
number in a path. The worst results are given by the
arc algorithm. This fact is not astonishing and can
be explained. To limit search time, the probes have a
given maximum number of visited arcs but they can
visit the same node many times (if they use different
arcs to access it). This approach can be advantageous to
find a better solution but its major drawback is that the
probes may lost themselves in the graph without reaching
their destination. The vertex, vertex+ and arc+
algorithms give better results. In contrast with arc algo-
rithm, arc+ probes do not lost themselves in a network
and for this reason its results are better. The topology
of the network has an influence upon the algorithm
performances. The irregularity of the tested topologies
causes the irregularities of the obtained curves.

satisfied requests

bandwidth (MB)

100 0

Fig. 5. The difference between the number request accepted by the
arc+ and shortest hop algorithm for a graph of size 20.

satisfied requests

3000
2500
2000
1500
1000
500

0
-500
-1000
-1500

LU I B B B B B |

100

10
bandwidth (MB)

1350 delay (ms)

Fig. 6. Back view of the Fig. 5

C. Two constraints (delay and bandwidth) paths

For the multi-constrained path search, the most ef-
ficient algorithm is our arc+ algorithm. Fig. 3 shows
the number of satisfied requests obtained with the arc+
algorithm. The studied graph is composed of 20 nodes.
The number of satisfied requests is greater to 8,000 for
delays greater than 200 ms and bandwidth smaller than
20 MB. The number of satisfied requests falls rapidly for
smaller delays and greater bandwidth. There is not any
satisfied request for delay smaller than 50 ms because
even for one constraint, there is not any path with delay
smaller than 50 ms. The results for the graph of size 50
(Fig. 4) are similar but the number of satisfied requests
is decreasing faster.

Fig. 5 and 6 present the difference between the number
of results found by our algorithm and the one found by
the shortest hop algorithm. Our algorithm gives better
results for the strong constraint requests. For the request

15

satisfied requests

bandwidth (MB)
delay (ms)

100 0

Fig. 7. The difference between the number request accepted by the
arc+ and shortest hop algorithms for a graph of size 50.

satisfied requests

LU I B B I o |

100

1
bandwidth (MB)

delay (ms)

Back view of the Fig. 7

with delay around 150 ms, the number of satisfied re-
quests is 35% greater. For the requests with a demand of
small bandwidth, the shortest hop algorithm finds more
results. In this case, the behaviors of both the algorithms
are close to their behaviors when they are used to satisfy
requests with one constraint only. This case is not critical
and the difference of the number of requests satisfied
between the shortest hop algorithm and the four
others is smaller.

Fig. 7 and 8 present the same difference for a graph
of size 50. For delays smaller than 200 ms, the two
algorithms satisfy the same number of requests. For
the requests with big delay and little bandwidth, the
shortest hop algorithm gives better results. The
number of satisfied requests is 20% greater. Starting from
3 MB, the number of requests satisfied by our algorithm
is greater than the number of requests satisfied by the
shortest hop one. For the requests with bandwidth

demand greater than 30 MB, the results obtained with
our algorithm are significantly better, up to 35%.

These results shows that our algorithm is better than
the shortest hop one satisfying requests with large
bandwidth demand. For small bandwidth demand (from
1 to 3 MB), the algorithms still works well. Notice that
these requests are found in a small number of cases.

VI. CONCLUSION

We studied a problem of inter-domain resource pro-
visioning taking into account multi-constrainst requests.
We proposed a ditributed algorithm to find multi-
constraint paths which is a NP-complete problem. We
designed our algorithm in order to reply to the following
expectations:

e using local state knownledge only;

e preserving the domains’ independence;

o working with well known constraints (delay, band-
width, lost rate, jitter) or any emerging constraint
which would be additive, multiplicative or convex.

Our heuristic algorithm is based on a depth first search
with cut mechanisms. The search is made by a probe
sent into the network. The probe contains the information
needed for fulfilling the search. The nodes use their local
information and the probe’s contents only. We proposed
also four extensions of our algorithm.

The proposed algorithms give very good results for
multi-constrained reservation and they still work cor-
rectly for one constraint only. The simulation shows that
the stronger the constraints are, the better the perfor-
mences are.

We have to remark that the application of shortest
hop algorithm which we have taken as a reference for
simulations is not realistic in the Internet. The behavior
of BGP is more complex and the routes selected by
BGP are different from the shortest hop routes. It will
be interesting to test the algorithm on real inter-domain
network with a BGP mechanism to compare our results.

REFERENCES

[1] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
“RFC 2205 - resource reservation protocol (RSVP) — version
1 functional specification,” Standards Track RFC 2205, The
Request for Comments, September 1997.

Murali Kodialam and T. V. Lakshman, “Minimum interface
routing with applications to MPLS traffic engineering,” in /EEE
INFOCOM, 2000, pp. 376-385.

Subhash Suri, Marcel Waldvogel, Daniel Bauer, and
Priyank Ramesh Warkhede, “Profile-based routing and
traffic engineering,” Computer Communications, vol. 26, no.
4, pp. 351-365, 2003.

(2]

(3]

16

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(1]

(12]

Su-Wei Tan, Sze-Wei Lee, and Benoit Vaillaint, “Non-
greedy minimum interference routing algorithm for bandwidth-
guaranteed flows,” Computer Communications Journal, vol. 25,
no. 17, pp. 1640-1652, November 2002.

Hans De Neve and Piet Van Mieghem, “TAMCRA: A tunable
accuracy multiple constraints routing algorithm,” Computer
Communications, vol. 23, pp. 667-679, 2000.

Erol Gelenbe, Michael Gellman, Ricardo Lent, Peixiang Liu,
and Pu Su, “Autonomous smart routing for network QoS,” in
Proceedings of International Conference on Autonomic Com-
puting. 2004, pp. 232-239, IEEE Computer Society.

Douglas S. Reeves and Hussein F. Salama, “A distributed
algorithm for delay-constrained unicast routing,” IEEE/ACM
Trans. Netw., vol. 8, no. 2, pp. 239-250, 2000.

J. M. Jaffe, “Algorithms for finding paths with multiple
constraints,” Networks, , no. 14, pp. 95-116, 1984.

Turgay Korkmaz and Marwan Krunz, “A randomized algorithm
for finding a path subject to multiple QoS requirements,”
Computer Networks (Amsterdam, Netherlands: 1999), vol. 36,
no. 2-3, pp. 251-268, 2001.

Li Xiao, King-Shan Lui, Jun Wang, and Klara Nahrsted, “Qos
extension to bgp,” in ICNP ’02: Proceedings of the 10th IEEE
International Conference on Network Protocols, Washington,
DC, USA, 2002, pp. 100-109, IEEE Computer Society.
Maciej Liskiewicz, Mitsunori Ogihara, and Seinosuke Toda,
“The complexity of counting self-avoiding walks in subgraphs
of two-dimensional grids and hypercubes,” Theor. Comput. Sci.,
vol. 304, no. 1-3, pp. 129-156, 2003.

“BRITE, Boston University Representative Internet Topology
gEnerator,” http://www.cs.bu.edu/brite/.

