

Network Quality
of Service

Volume Editor: Adrian Farrel, Old Dog Consulting, UK

Network Quality
of Service

Know It All

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Gerald Ash

Bruce Davie

John Evans

Adrian Farrel

Clarence Filsfi ls

Pete Loshin

Deepankar Medhi

Monique Morrow

Rogelio Martinez Perea

Larry L. Peterson

Karthik Ramasamy

John Strassner

Kateel Vijayananda

Zheng Wang

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400,
Burlington, MA 01803

This book is printed on acid-free paper.

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
scanning, or otherwise, without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Farrel, Adrian.
 Network quality of service : know it all / Adrian Farrel et al.
 p. cm. — (Morgan Kaufmann know it all series)
 Includes bibliographical references and index.
 ISBN 978-0-12-374597-2 (alk. paper)
 1. Computer networks—Quality control. 2. Computer networks—Reliability.
 I. Title.
TK5105.5956.F37 2008
004.6 —dc22 2008040329

For information on all Morgan Kaufmann publications, visit
our Website at www.mkp.com or www.books.elsevier.com

Printed in the United States
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Contents

Preface ... ix
Contributing Authors .. xvii

CHAPTER 1 Network QoS: The Big Picture 1
1.1 Resource Allocation ... 2
1.2 Performance Optimization ... 7
1.3 Summary .. 10
1.4 Resources ... 11

CHAPTER 2 Traffi c Engineering and QoS Optimization
Technology .. 13

2.1 Multiprotocol Label Switching .. 13
2.2 Generalized Multiprotocol Label Switching 17
2.3 QoS Mechanisms .. 20
2.4 Integrated Services ... 26
2.5 Resource Reservation Protocol .. 27
2.6 Differentiated Services ... 28
2.7 MPLS-Based QoS Mechanisms .. 32
2.8 Further Reading ... 33

CHAPTER 3 Quality of Service .. 35
3.1 Application Requirements ... 36
3.2 Integrated Services and RSVP .. 41
3.3 Differentiated Services—EF and AF 51
3.4 Equation-Based Congestion Control 57
3.5 Summary .. 58
3.6 Further Reading ... 60

CHAPTER 4 IP Service Management ... 63
4.1 Choosing How to Manage Services 65
4.2 Differentiated Services ... 67
4.3 Integrated Services ... 71
4.4 Reserving Resources Using RSVP 80
4.5 Further Reading ... 119

CHAPTER 5 Quality of Service Routing .. 121
5.1 Background .. 121
5.2 QoS Attributes .. 126
5.3 Adapting Shortest Path and Widest Path

Routing: A Basic Framework ... 127
5.4 Update Frequency, Information Inaccuracy,

and Impact on Routing .. 131
5.5 Lessons from Dynamic Call Routing in the

Telephone Network ... 133
5.6 Heterogeneous Service, Single-Link Case 134
5.7 A General Framework for Source-Based

QoS Routing with Path Caching .. 138
5.8 Routing Protocols for QoS Routing 148
5.9 Summary .. 150

CHAPTER 6 Quality of Service in IP-Based Services 153
6.1 Quality of Service ... 154
6.2 Voice over IP ... 162
6.3 Operating Voice over IP .. 165
6.4 IP Security .. 172
6.5 Summary .. 181
6.6 Further Reading ... 181

CHAPTER 7 The Foundation of Policy Management 183
7.1 Introduction—A Retrospective .. 183
7.2 Where We Are Today .. 189
7.3 Defi nition of Policy Management 192
7.4 Introduction and Motivation for Policy

Management ... 194
7.5 The Need for a New Shared Information Model 207
7.6 The Benefi ts of PBNM .. 215
7.7 Summary .. 220
7.8 Resources ... 221

CHAPTER 8 QoS Policy Usage Examples in Policy-Based
Network Management ... 223

8.1 Introduction ... 223
8.2 Policy Approaches ... 224
8.3 QoS Policy Usage Examples .. 232
8.4 Resources ... 253

CHAPTER 9 IPv6 Quality of Service .. 255
9.1 QoS Basics .. 256
9.2 Differentiated Services and IPv6 .. 260

vi Contents

9.3 IPv6 Flows .. 261
9.4 Explicit Congestion Notifi cation in IPv6 262
9.5 Summary .. 263

CHAPTER 10 QoS in IP Networks Using SIP 265
10.1 Quality of Service in IP Networks 265
10.2 Mechanisms for QoS .. 267
10.3 Policy-Based Admission Control .. 271
10.4 SIP Integration with Resource Reservation:

The Preconditions Framework .. 273
10.5 SIP Integration with Policy Control: Media

and QoS Authorization... 278
10.6 Summary .. 284
10.7 Resources ... 284

CHAPTER 11 Core Capacity Planning and Traffi c
Engineering in IP and MPLS Networks 287

11.1 Core Network Capacity Planning 287
11.2 IP Traffi c Engineering .. 298
11.3 Resources ... 318

Index ... 321

Contents vii

This page intentionally left blank

Preface

Introduction

It has often been said that the more comfortable people’s lives are, the more likely
they are to complain and the more demanding they will become. This certainly
seems to be the case for the average Internet user. In the past, slow dial-up access
was seen as the zenith of computer networking, providing email exchange and
slow-but-steady fi le transfer. But now the demands are for high-bandwidth links
and seamless, real-time exchange of voice and video traffi c, and users complain if
their online games freeze for even the briefest moment.

From a user’s point of view, therefore, quality of service (QoS) can be quanti-
fi ed according to their expectations and the programs that are being run. Inter-
active or real-time applications are judged according to their ability to send and
receive data so that users do not notice any transmission issues, but other Internet
uses, such as fi le transfer or Web browsing, have less stringent requirements.

People’s perception of the way applications use the Internet can be catego-
rized in terms of the way Internet protocol (IP) packets are delivered. We can
measure behavioral characteristics such as delay (the time to deliver packets),
jitter (the variation in delay), throughput (the rate of delivery), and packet loss or
re-ordering. Each of these properties of an end-to-end traffi c fl ow has a different
effect on different applications. For example, fi le transfer is sensitive to packet
loss, but a voice stream can tolerate a certain amount of packet loss without sig-
nifi cant degradation of the user’s experience. On the other hand, real-time multi-
media (voice and video) conferencing applications are diffi cult to operate with
large delays, and jitter may make audio or video streams diffi cult for human users
to follow. This means that there is a real need to match the QoS delivered by a
network with specifi c application requirements.

The end-to-end quality experienced by an application (and so by a user)
depends on the network equipment that the data packets must traverse within
the network. Low-speed links add to end-to-end delay. Variable loads on routers
may introduce jitter. Overloading of routers or links may cause packet loss, delay,
and jitter. Network QoS, therefore, is all about managing the network resources

x Preface

to ensure that data is delivered in an acceptable way so as to meet the require-
ments of applications.

One approach to delivering network QoS is simply to ensure that all of the
links and routers in the network are suffi ciently well provisioned so that there is
never any congestion. To some extent, this is the case today and many users of
popular voice over IP (VoIP) services are able to place host-to-host phone calls
over the Internet without any issues. However, with increasing demands for video
streaming and audio (e.g., live TV and radio feeds and video-on-demand services),
and a dramatic increase in the number of people using VoIP or multimedia con-
ferencing, we cannot expect the core of the Internet to remain congestion free.
Further, overprovisioning represents wasted capital expenditure (CAPEX) because,
by defi nition, an overprovisioned link or router contains resources that are not
being used.

This book examines the following variety of alternative mechanisms to provide
acceptable levels of service delivery over IP-based networks without having to
rely on overprovisioning.

■ Policing of traffi c that is input to a network can be crucial to ensuring that the
right quality of service guarantees can be met for a specifi c application and for
other users of the network. If an application exceeds its prearranged rate of
data generation, it may be impossible to meet promised delivery targets, and
attempting to do so may impact other traffi c fl ows in the network.

■ Differentiating between traffi c that exists for various services and applications
allows traffi c to be treated in different ways within the network. This means
that packets that are high priority, or where the applications are sensitive to
delay, can be expedited, while other packets may be queued. Alternatively,
packets for applications that cannot tolerate data loss can be handled carefully,
whereas other packets can be discarded by congested routers.

■ Resources can be preallocated or reserved within the network for use by spe-
cifi c traffi c fl ows. This can ensure that there will always be adequate provision
for the needs of specifi c applications so that their QoS needs can be met.

■ Measurement and monitoring of the level of service provided by the network
is an important way to understand network QoS and to ensure that users’ needs
and expectations are met. By recording and reporting the behavior of the
network, it is possible to gather information that can be used to tune it and to
optimize both users’ experience and the use made of the network resources.

■ Network planning and traffi c engineering (TE) are tools to ensure that suffi cient
network capacity and resources are in place to support the demands of
user traffi c, and that the traffi c is placed within the network in such a way as
to make best use of the available resources while continuing to meet QoS
commitments.

The purpose of this book is to give a broad introduction to the subject of network
QoS and the mechanisms that can be used to satisfy application requirements for

Preface xi

traffi c delivery in today’s Internet. By drawing on material from books by many
experts in the fi eld, we hope to provide many views and opinions on the same
subject, allowing readers to build solid foundations in the topic.

A Note about the Internet Engineering Task Force

The Internet Engineering Task Force (IETF) is the main body responsible for stan-
dardizing protocols and procedures for use of the Internet. As such, the IETF has
developed most of the network QoS solutions described in this book. It publishes
its standards as Request For Comment (RFC) documents, and you will see plenty
of these referenced throughout the book. Each is identifi ed by a separate docu-
ment number, so, for example, RFC 2205 is the document that specifi es the
Resource Reservation Protocol (RSVP). All of the RFCs can be downloaded free
of charge from the IETF’s web site at www.ietf.org/rfc.html.

The IETF is not a membership organization and encourages contributions from
everyone and anyone who has something to add in any of the areas in which it
works. Although most participants are sponsored (i.e., paid) by a company, the
IETF minimizes the emphasis on corporate affi liations and focuses on what indi-
viduals have to add to the process of developing new standards. Most of the work
of the Internet Engineering Task Force is carried out informally on mailing lists
dedicated to working groups set up to deal with specifi c topics. To fi nd out more,
visit the IETF’s web site at www.ietf.org.

This Book’s Contents

This book contains eleven chapters arranged so as to introduce the material
starting with the basics and leading through different interpretations of the
term quality of service as well as different mechanisms to provide the network
user with suitable traffi c-delivery characteristics to make the network usage expe-
rience fi t with the demands of the applications being run. Most chapters include
a further reading section from the original text to give readers advice about where
to go for more information and details about the topics introduced in the
chapter.

Chapter 1 sets the scene for the rest of the book by painting the big picture
of network Internet QoS. It presents a high-level description of the problems with
the current Internet, the rationales behind the new technologies being developed
for deployment, and the approaches these technologies use to address QoS issues.
The chapter introduces four technologies that have emerged in the past few years
as the core building blocks for enabling QoS in the Internet.

Chapter 2 reviews some of the key traffi c engineering and QoS optimization
(TQO) technologies: MPLS, GMPLS, QoS mechanisms, IntServ, RSVP, DiffServ, and
MPLS-based QoS mechanisms. The chapter is intended as a refresher or a brief
introduction for those unfamiliar with these technologies. Ample references are
provided for more detailed coverage of these important topics. A focus of TQO
protocol design is the development of MPLS- and GMPLS-based networks, where

xii Preface

MPLS and GMPLS are used at the MPLS label switched path (LSP) and GMPLS LSP
design layers, respectively.

Chapter 3 examines quality of service application requirements with special
focus on real-time applications. It goes on to describe the mechanisms developed
for use in today’s Internet to help meet the requirements and deliver QoS to
users.

Chapter 4 details some popular mechanisms for categorizing packets, for
describing fl ows, and for reserving resources. Although packet categorization can
be implemented differently in each router, for the provision of services within a
network it is important that there is a common understanding of the service level
being applied to the packets within a fl ow. This chapter provides the details of
how various service management techniques are achieved in data and control
protocols, and compares the costs and benefi ts of the various mechanisms.

Chapter 5 discusses what QoS routing means and how different routing algo-
rithms may be extended to fi t the QoS routing framework. It also presents a
representative set of numerical studies so that we can understand the implications
of routing schemes and roles played by different network controls.

Chapter 6 examines the techniques and protocols used to meet QoS expecta-
tions of IP network users. The mechanisms discussed can help service providers
to enhance and add new IP-based services to their portfolios to meet the additional
requirements of their customers. The demand for QoS in an IP network is increas-
ing every day. With the rapid emergence of applications, such as VoIP and video-
on-demand (VOD), customers’ expectations are also increasing. Separate sections
describe QoS and various applications.

Chapter 7 provides a brief retrospective of how Policy-Based Network Manage-
ment (PBNM) has been conceived in the past. Policy management means many
things to many people, and this chapter presents the fundamentals. The material
points out two basic problems of previous solutions: the lack of an information
model and the inability to use business rules to drive confi guration of devices,
services, and networks. A path forward, and benefi ts resulting from this improved
approach, are described.

Chapter 8 contains several examples of how policy is used in different situa-
tions in PBNM systems. The policy continuum fi gures prominently in the recom-
mended approach for building PBNM systems because it enables business, system,
and implementation views to be seamlessly integrated. The chapter shows how
policy can be used to provide QoS for IP services and examines how two contrast-
ing views of policy can be harmonized: that policy is a way to change lines in the
confi guration fi le of a device and that policy is only appropriate for expressing
rules in the business world.

Chapter 9 covers the IPv6 approach to quality of service, including the use of
the DiffServ fi eld in IPv6, and a discussion of IPv6 Flow Labels and the use of
Explicit Congestion Notifi cation with IPv6.

Chapter 10 introduces the QoS topic as applicable to IP communication sce-
narios where the Session Initiation Protocol (SIP) is in use. It describes some basic

Preface xiii

QoS ideas that allow the reader to understand the mechanisms and protocols that
exist to provide quality of service. Starting by looking at some of the available
architectures at the IP transport level to provide QoS, the chapter introduces the
framework for policy control, and then shows how these constructs are applied
in a SIP-based communication scenario.

Chapter 11 addresses core capacity planning and how TE can be used as a tool
to make more effi cient use of network capacity. Core network capacity planning
is the process of ensuring that suffi cient bandwidth is provisioned such that the
committed core network service level agreement (SLA) targets of delay, jitter, loss,
and availability can be met. In the core network where link bandwidths are high
and traffi c is highly aggregated, the SLA requirements for a traffi c class can be
translated into bandwidth requirements, and the problem of SLA assurance can
effectively be reduced to that of bandwidth provisioning. Therefore, the ability to
guarantee SLAs is dependent on ensuring that core network bandwidth is ade-
quately provisioned, which is in turn depends on core capacity planning.

Source Material

Of course, many of the topics covered here have already been described at length
in other books. The Morgan Kaufmann Series in Networking includes a compre-
hensive range of titles that deal with many aspects of network QoS. However,
each book in the series has as its main focus a particular function or technology.
In some cases source texts are entirely devoted to the subject, while other chap-
ters are included from more general works in which network management is
presented as one aspect of some specifi c technology.

What we have done in this book, therefore, is to bring together material from
ten sources to provide you with a thorough grounding in what is meant by quality
of service within the Internet. When necessary we have edited the source mate-
rial; however, on the whole the original text provides a rounded view of particu-
lar authors’ thoughts on the subject and is simply reproduced here. This results
in a single reference that introduces network QoS and explains the basics. Readers
wanting to know more about a particular topic are encouraged to go to the
sources and read more.

There is some intentional overlap in the subject matter presented in this book.
Each of the contributing authors has their own specifi c take on how to present the
problems of network quality of service, and their own views on how issues should
be solved. By providing readers with the full text from the selected chapters, we
hope that this provides you with a broad view of the problem-space to allow you
to make up your own mind about the challenges that must be addressed.

In producing Network Quality of Service: Know It All, we have drawn on
material from the following Morgan Kaufmann books.

Internet QoS: Architectures and Mechanisms by Wang—This book provides
a guide to Internet quality-of-service techniques, addressing the special chal-

xiv Preface

lenges unique to QoS in an Internet environment. It includes personal insights
from the author who served time as a Bell Labs engineer, and it emphasizes
integrated services, MPLS, traffi c engineering, and differentiated services.

Traffi c Engineering and QoS Optimization of Integrated Voice and Data
Networks by Ash—This book describes, analyzes, and recommends traffi c
engineering and quality-of-service optimization methods for integrated voice/
data dynamic routing networks. These functions control a network’s response
to traffi c demands and other stimuli such as link failures or node failures. TE
and QoS optimization is concerned with measurement, modeling, characteriza-
tion, and control of network traffi c, and the application of techniques to
achieve specifi c performance objectives.

Computer Networks, 4e, by Peterson and Davie—This is the fourth edition
of a popular book written by two authors who have had fi rsthand experience
designing and using networking protocols and designing today’s computer
networks. The focus is on the why of network design, not just the specifi ca-
tions comprising today’s systems but also how key technologies and protocols
actually work in the real world to solve specifi c problems. Emphasis is given
both to the lower network layers, where established technologies have been
deployed for many years, and to higher levels in the protocol stack, where
there is generally more innovative and exciting work going on at the applica-
tion and session layers than at the link and physical layers.

The Internet and Its Protocols: A Comparative Approach by Farrel—This
book covers all the common IP-based protocols and shows how they combine
to create the Internet in its totality. Each protocol, including the various MPLS
and GMPLS protocols, is described completely, with an examination of the
requirements that each protocol addresses and the exact means by which it
does its job.

Network Routing by Medhi and Ramasamy—Network routing can be broadly
categorized into Internet routing, PSTN routing, and telecommunication
transport network routing. This book systematically considers these routing
paradigms, as well as their interoperability. The authors discuss how algo-
rithms, protocols, analysis, and operational deployment impact the various
approaches.

Developing IP-Based Services by Morrow and Vijayananda—This book
meets the challenge of uniting business and technical perspectives to provide
a cohesive view of the MPLS development and deployment process to enable
networking organizations to leverage IP and MPLS to drive traffi c and boost
revenue.

Policy-Based Network Management by Strassner—PBNM systems enable
business rules and procedures to be translated into policies that confi gure and
control the network and its services. This book cuts through the hype sur-

Preface xv

rounding PBNM and makes it approachable for those who really need to
understand what it has to offer. It discusses system requirements, information
models, and system components for policy-based management.

IPv6: Theory, Protocols, and Practice by Loshin—By presenting a close and
unbiased look at why so much time and effort has been expended on revising
IPv4, this book guides readers through the fundamental requirements of IPv6
and introduces implementation and deployment issues.

Internet Multimedia Communications Using SIP by Martinez—Internet
telephony, Internet multimedia in general, is the latest revolution to hit the
Internet. The Session Initiation Protocol (SIP) is the key that allows this phe-
nomenon to grow by enabling the provision of advanced services over the core
networks that make up the Internet. This book explains the underlying tech-
nologies that facilitate real-time IP multimedia communication services in the
Internet (e.g., voice, video, presence, instant messaging, online picture sharing,
white-boarding).

Deploying IP and MPLS QoS for Multiservice Networks: Theory and Prac-
tice by Evans and Filsfi ls—Quality of service is one of the most important
goals a network designer or administrator will have. Ensuring that the network
runs at optimal precision with accurate data that is traveling fast to the correct
user is the main objective of QoS. The authors provide a comprehensive trea-
tise on this subject, including topics such as traffi c engineering, capacity plan-
ning, and admission control. This book provides real-world QoS case studies
about multiservice networks. The studies remove the mystery behind QoS by
illustrating the how, what, and why of implementing QoS within networks.
Readers will be able to learn from the successes and failures of actual working
designs and confi gurations.

 Adrian Farrel

This page intentionally left blank

Contributing Authors

Gerald Ash (Chapter 2) is from Glen Roc, New Jersey. He graduated
from grammar school, high school, Rutgers, and Caltech, but got sent to Vietnam
instead of being able to attend his Caltech graduation. He spent the fi rst 20
years of his AT&T career as “the consummate BellHead” (as one colleague
put it), but for the next 5 years sought to be a blossoming NetHead. He has
been happliy married for more than 40 years, has three children, and four
grandchildren.

Bruce Davie (Chapter 3) joined Cisco Systems in 1995, and was awarded recog-
nition as a Cisco Fellow in 1998. For many years he led the team of architects
responsible for Multiprotocol Label Switching (MPLS) and IP quality of service
(QoS). He recently joined the Video and Content Networking Business Unit in the
Service Provider group. Bruce has 20 years of networking and communications
industry experience and has written numerous books, journal articles, conference
papers, and networking standards. Prior to joining Cisco, Bruce was director of
internetworking research and chief scientist at Bell Communications Research.
Bruce holds a Ph.D. in computer science from Edinburgh University and is a visit-
ing lecturer at MIT.

John Evans (Chapter 11) is a Distinguished Systems Engineer with Cisco Systems,
where he has been instrumental in the engineering and deployment of QoS and
policy control. His current areas of focus include policy/resource control, admis-
sion control, QoS, and traffi c management with associated work in the DSL Forum,
the Multiservice Forum, and ETSI/TISPAN. Before joining Cisco in 1998, John
worked for BT where he was responsible for the design and development of large-
scale networks for the fi nancial community. Prior to BT, he worked on the design
and deployment of battlefi eld communications networks for the military. He
received a B.Eng. degree with honors in electronic engineering from the Univer-
sity of Manchester Institute of Science and Technology (UMIST—now part of the
University of Manchester), UK, in 1991 and an M.Sc. in communications engineer-
ing from UMIST in 1996. He is a Chartered Engineer and Cisco Certifi ed Internet-
work Expert.

Adrian Farrel (Chapter 4) has more than two decades of experience designing
and developing portable communications software. At Old Dog Consulting, he is
an industry-leading freelance consultant on MPLS, GMPLS, and Internet routing.
Formerly he worked as MPLS Architect for Data Connection Ltd. and as Director
of Protocol Development for Movaz Networks Inc. He is active within the Internet
Engineering Task Force, where he is co-chair of the CCAMP working group
responsible for GMPLS, the Path Computation Element (PCE) working group, and
the Layer One VPN (L1VPN) working group. Adrian has coauthored and con-
tributed to numerous Internet Drafts and RFCs on MPLS, GMPLS, and related
technologies.

Clarence Filsfi ls (Chapter 11) is a Cisco Distinguished System Engineer and a
recognized expert in routing and QoS. He has been playing a key role in engineer-
ing, marketing, and deploying the Quality of Service and Fast Routing Conver-
gence technology at Cisco Systems. Clarence is a regular speaker at conferences,
has published several journal articles, and holds more than 30 patents on QoS and
routing mechanisms.

Pete Loshin (Chapter 9), writer and technology consultant, started working as a
TCP/IP network engineer is 1988 in a research lab in Cambridge, MA. Since then
he has written about TCP/IP networking for BYTE Magazine, ComputerWorld,
Information Security Magazine, PC World, PC Magazine, and many other
publications.

Deepankar Medhi (Chapter 5) is professor of computer networking in the
Computer Science and Electrical Engineering Department at the University of
Missouri–Kansas City. He has worked extensively with network providers in the
deployment and operations of network routing and design for different technolo-
gies. His research has been funded by NSF, DARPA, and various industries.

Monique Morrow (Chapter 6) is currently CTO Consulting Engineer at Cisco
Systems. She has 20 years of experience in IP internetworking, including design
implementation of complex customer projects and service deployment. Morrow
has been involved in developing managed network services such as remote access
and LAN switching in a service provider environment. She has worked for both
enterprise companies and service providers in the United States and in Europe
and, in 1999, led the Engineering Project team for one of the fi rst European MPLS-
VPN deployments. Morrow has an M.S. in telecommunications management and
an M.B.A. in marketing and is a Cisco Certifi ed Internetworking Expert.

Rogelio Martinez Perea (Chapter 10) holds an M.Sc. degree in telecommunica-
tions engineering from Universidad Politecnica de Madrid in Spain. He has worked
for the Vodafone Group for more than 12 years leading a team of technical spe-
cialists devoted to mobile applications design and implementation. Rogelio has

xviii Contributing Authors

also been extensively involved in the deployment of SIP-based technology for
operators all around the world.

Larry L. Peterson (Chapter 3) is professor and chair of Computer Science at
Princeton University. He is the director of the Princeton-hosted PlanetLab Consor-
tium and chair of the planning group for NSF’s GENI Initiative. His research
focuses on the design and implementation of networked systems. Peterson is a
Fellow of the ACM.

Karthik Ramasamy (Chapter 5) has 10 years of industrial experience working
in companies such as Juniper Networks, Desana Systems, and NCR. His technical
expertise is in networking and database management. In addition to several pub-
lished papers, Karthik holds 7 patents.

John Strassner (Chapters 7 and 8), chief security offi cer of Intelliden Corpora-
tion, has occupied high-level roles for a number of prominent IT companies. At
Cisco, where he held the distinguished title of Cisco Fellow, he was responsible
for defi ning the overall direction and strategy for creating and deploying intelligent
networks and policy-driven networked applications. Strassner has led or served
on several standards committees, currently including the DMTF Working Group.
He is frequently an invited speaker at conferences and regularly teaches PBNM
tutorials.

Kateel Vijayananda (Chapter 6) is currently a design consultant at Cisco Systems,
has 10 years of experience in data networking, featuring design, implementation,
management of IP networks, and software development devoted to OSI protocol
stack implementation. He has also been involved in developing managed network
service, such as LAN switching and LAN interconnect, in a service provider envi-
ronment. Vijayananda has worked as a network engineer/architect for a European
service provider where he was part of teams that designed and implemented an
MPLS network and developed and managed IP-based services on top of an MPLS
network. He holds an M.S. and a Ph.D. in computer science and is a CCIE.

Zheng Wang (Chapter 1) has been involved in Internet-related research and
development for the last 14 years. He is currently with Bell Labs–Lucent Tech-
nologies working on high-speed routers and optical transport systems. He has
been published in many journals and magazines and holds patents in IP routing,
QoS mechanisms, differentiated services, MPLS, traffi c engineering, and optical
networking.

Contributing Authors xix

This page intentionally left blank

CHAPTER

1Network QoS: The
Big Picture

In this fi rst chapter, taken from Chapter 1 of Internet QoS: Architectures and
Mechanisms for Quality of Service by Zheng Wang, we present a high-level
description of the problems in the current Internet, the rationales behind these
new technologies, and the approaches used in them to address QoS issues.

The current Internet has its roots in the ARPANET, an experimental data
network funded by the U.S. Defense Advanced Research Projects Agency (DARPA)
in the early 1960s. An important goal was to build a robust network that could
survive active military attacks such as bombing. To achieve this, the ARPANET
was built on the datagram model, where each individual packet is forwarded
independently to its destination. The datagram network has the strength of sim-
plicity and the ability to adapt automatically to changes in network topology.

For many years the Internet was primarily used by scientists for networking
research and for exchanging information among themselves. Remote access, fi le
transfer, and email were among the most popular applications, and for these
applications the datagram model works well. The World Wide Web, however, has
fundamentally changed the Internet. It is now the world’s largest public network.
New applications, such as video conferencing, Web searching, electronic media,
discussion boards, and Internet telephony, are coming out at an unprecedented
speed. E-commerce is revolutionizing the way we do business. At the beginning
of the twenty-fi rst century, the Internet is destined to become the ubiquitous
global communication infrastructure.

The phenomenal success of the Internet has brought us fresh new challenges.
Many of the new applications have very different requirements from those for
which the Internet was originally designed. One issue is performance assurance.
The datagram model, on which the Internet is based, has few resource manage-
ment capabilities inside the network and so cannot provide any resource guaran-
tees to users—you get what you get! When you try to reach a Web site or to make
an Internet phone call, some parts of the network may be so busy that your
packets cannot get through at all. Most real-time applications, such as video

2 CHAPTER 1 Network QoS: The Big Picture

conferencing, also require some minimal level of resources to operate effectively.
As the Internet becomes indispensable in our life and work, the lack of predictable
performance is certainly an issue we have to address.

Another issue is service differentiation. Because the Internet treats all packets
the same way, it can offer only a single level of service. The applications, however,
have diverse requirements. Interactive applications such as Internet telephony are
sensitive to latency and packet losses. When the latency or the loss rate exceeds
certain levels, these applications become literally unusable. In contrast, a fi le
transfer can tolerate a fair amount of delay and losses without much degradation
of perceived performance. Customer requirements also vary, depending on what
the Internet is used for. For example, organizations that use the Internet for bank
transactions or for control of industrial equipment are probably willing to pay
more to receive preferential treatment for their traffi c. For many service providers,
providing multiple levels of services to meet different customer requirements is
vital for the success of their business.

The capability to provide resource assurance and service differentiation in a
network is often referred to as quality of service (QoS). Resource assurance is
critical for many new Internet applications to fl ourish and prosper. The Internet
will become a truly multiservice network only when service differentiation can
be supported. Implementing these QoS capabilities in the Internet has been one
of the toughest challenges in its evolution, touching on almost all aspects of Inter-
net technologies and requiring changes to the basic architecture of the Internet.
For more than a decade the Internet community has made continuous efforts to
address the issue and developed a number of new technologies for enhancing the
Internet with QoS capabilities.

Four technologies have emerged in the last few years as the core building blocks
for enabling QoS in the Internet. The architectures and mechanisms developed in
these technologies address two key QoS issues in the Internet: resource allocation
and performance optimization. Integrated Services and Differentiated Services are
two resource allocation architectures for the Internet. The new service models
proposed in them make possible resource assurances and service differentiation
for traffi c fl ows and users. Multiprotocol Label Switching (MPLS) and traffi c engi-
neering, on the other hand, give service providers a set of management tools for
bandwidth provisioning and performance optimization; without them, it would be
diffi cult to support QoS on a large scale and at reasonable cost.

Before we get down to the details, however, it is useful to look at the big
picture. The next sections of this chapter present a high-level description of the
problems in the current Internet, the rationales behind these new technologies,
and the approaches used in them to address QoS issues.

1.1 RESOURCE ALLOCATION
Fundamentally, many problems we see in the Internet come down to the issue of
resource allocation—packets get dropped or delayed because the resources in

1.1 Resource Allocation 3

the network cannot meet all the traffi c demands. A network, in its simplest form,
consists of shared resources such as bandwidth and buffers, serving traffi c from
competing users. A network that supports QoS needs to take an active role in the
resource allocation process and decides who should get the resources and how
much.

The current Internet does not support any forms of active resource allocation.
The network treats all individual packets exactly the same way and serves the
packets on a fi rst-come, fi rst-served (FCFS) basis. There is no admission control
either—users can inject packets into the network as fast as possible.

The Internet currently relies on the Transmission Control Protocol (TCP) in
the hosts to detect congestion in the network and reduce the transmission
rates accordingly. TCP uses a window-based scheme for congestion control. The
window corresponds to the amount of data in transit between the sender and the
receiver. If a TCP source detects a lost packet, it slows the transmission rate by
reducing the window size by half and then increasing it gradually in case more
bandwidth is available in the network.

TCP-based resource allocation requires all applications to use the same conges-
tion control scheme. Although such cooperation is achievable within a small
group, in a network as large as the Internet, it can be easily abused. For example,
some people have tried to gain more than their fair share of the bandwidth by
modifying the TCP stack or by opening multiple TCP connections between the
sender and receiver. Furthermore, many UDP-based applications do not support
TCP-like congestion control, and real-time applications typically cannot cope with
large fl uctuations in the transmission rate. The service that the current Internet
provides is often referred to as best effort. Best-effort service represents the sim-
plest type of service that a network can offer; it does not provide any form of
resource assurance to traffi c fl ows. When a link is congested, packets are simply
pushed out as the queue overfl ows. Since the network treats all packets equally,
any fl ows could get hit by the congestion.

Although best-effort service is adequate for some applications that can tolerate
large delay variation and packet losses, such as fi le transfer and email, it clearly does
not satisfy the needs of many new applications and their users. New architectures
for resource allocation that support resource assurance and different levels of
service are essential for the Internet to evolve into a multiservice network.

In recent years the Internet community came up with Integrated Services and
Differentiated Services, two new architectures for resource allocation in the Inter-
net. The two architectures introduced a number of new concepts and primitives
that are important to QoS support in the Internet:

■ Frameworks for resource allocation that support resource assurance and
service differentiation

■ New service models for the Internet in addition to the existing best-effort
service

■ Language for describing resource assurance and resource requirements
■ Mechanisms for enforcing resource allocation

4 CHAPTER 1 Network QoS: The Big Picture

Integrated Services and Differentiated Services represent two different solu-
tions. Integrated Services provide resource assurance through resource reserva-
tion for individual application fl ows, whereas Differentiated Services use a
combination of edge policing, provisioning, and traffi c prioritization.

1.1.1 Integrated Services

Although the problems with the best-effort model have long been recognized, the
real push for enhanced service architectures came in the early 1990s after some
large-scale video conferencing experiments over the Internet. Real-time applica-
tions such as video conferencing are sensitive to the timeliness of data and so
do not work well over the Internet, where the latency typically is unpredictable.
The stringent delay and jitter requirements of these applications require a new
type of service that is able to provide some level of resource assurance to the
applications.

In early 1990 the Internet Engineering Task Force (IETF) started the Integrated
Services working group to standardize a new resource allocation architecture and
new service models. At that time the World Wide Web, as we know it today, did
not yet exist, and multimedia conferencing was seen by many people as a poten-
tial killer application for the Internet. Thus the requirements of the real-time
applications had major impacts on the architecture of Integrated Services.

The Integrated Services architecture is based on per-fl ow resource reservation.
To receive resource assurance, an application must make a reservation before it
can transmit traffi c onto the network. Resource reservation involves several steps.
First, the application must characterize its traffi c source and the resource require-
ments. The network then uses a routing protocol to fi nd a path based on the
requested resources. Next a reservation protocol is used to install the reservation
state along that path. At each hop, admission control checks whether suffi cient
resources are available to accept the new reservation. Once the reservation is
established, the application can start to send traffi c over the path for which it has
exclusive use of the resources. Resource reservation is enforced by packet clas-
sifi cation and scheduling mechanisms in the network elements, such as routers.

The Integrated Services working group proposed two new service models that
a user can select: the guaranteed service and the controlled load service models.
The guaranteed service model provides deterministic worst-case delay bound
through strict admission control and fair queuing scheduling. This service was
designed for applications that require absolute guarantees on delay. The other
service model, the controlled load service, provides a less fi rm guarantee—a
service that is close to a lightly loaded best-effort network. The Resource Reserva-
tion Setup Protocol (RSVP) was also standardized for signaling an application’s
requirements to the network and for setting up resource reservation along the
path.

The Integrated Services model was the fi rst attempt to enhance the Internet
with QoS capabilities. The research and development efforts provided valuable

1.1 Resource Allocation 5

insights into the complex issues of supporting QoS in the Internet. The resource
allocation architecture, new service models, and RSVP protocol were standardized
in the late 1990s.

But deployment of the Integrated Services architecture in the service provider’s
backbone has been rather slow for a number of reasons. For one, the Integrated
Services architecture focused primarily on long-lasting and delay-sensitive applica-
tions. The World Wide Web, however, signifi cantly changed the Internet land-
scape. Web-based applications now dominate the Internet, and much of Web
traffi c is short-lived transactions. Although per-fl ow reservation makes sense for
long-lasting sessions, such as video conferencing, it is not appropriate for Web
traffi c. The overheads for setting up a reservation for each session are simply too
high. Concerns also arose about the scalability of the mechanisms for supporting
Integrated Services. To support per-fl ow reservation, each node in a network has
to implement per-fl ow classifi cation and scheduling. These mechanisms may not
be able to cope with a very large number of fl ows at high speeds.

Resource reservation requires the support of accounting and settlement
between different service providers. Since those who request reservation have to
pay for the services, any reservations must be authorized, authenticated, and
accounted. Such supporting infrastructures simply do not exist in the Internet.
When multiple service providers are involved in a reservation, they have to agree
on the charges for carrying traffi c from other service providers’ customers and
settle these charges among them. Most network service providers are currently
connected through bilateral peering agreements. To extend these bilateral agree-
ments to an Internet-wide settlement agreement is diffi cult given the large number
of players.

The Integrated Services architecture may become a viable framework for
resource allocation in corporate networks. Corporate networks are typically
limited in size and operated by a single administrative domain. Therefore many of
the scaling and settlement issues we discussed above vanish. Integrated Services
can support guaranteed bandwidth for IP telephony, video conferencing over
corporate intranets. RSVP can also be used for resources allocation and admission
control for traffi c going out to wide area networks.

The ideas, concepts, and mechanisms developed in Integrated Services also
found their way into later work on QoS. For example, controlled load service has
infl uenced the development of Differentiated Services, and similar resource reser-
vation capability has been incorporated into MPLS for bandwidth guarantees over
traffi c trunks in the backbone networks.

1.1.2 Differentiated Services

The Differentiated Services architecture was developed as an alternative resource
allocation scheme for service providers’ networks. By mid-1997 service providers
felt that Integrated Services were not ready for large-scale deployment, and at the
same time the need for an enhanced service model had become more urgent. The

6 CHAPTER 1 Network QoS: The Big Picture

Internet community started to look for a simpler and more scalable approach to
offer a better than best-effort service.

After a great deal of discussion, the IETF formed a new working group to
develop a framework and standards for allocating different levels of services in
the Internet. The new approach, called Differentiated Services, is signifi cantly
different from Integrated Services. Instead of making per-fl ow reservations, Dif-
ferentiated Services architecture uses a combination of edge policing, provision-
ing, and traffi c prioritization to achieve service differentiation.

In the Differentiated Services architecture, users’ traffi c is divided into a small
number of forwarding classes. For each forwarding class, the amount of traffi c
that users can inject into the network is limited at the edge of the network. By
changing the total amount of traffi c allowed in the network, service providers can
adjust the level of resource provisioning and hence control the degree of resource
assurance to the users.

The edge of a Differentiated Services network is responsible for mapping
packets to their appropriate forwarding classes. This packet classifi cation is
typically done based on the service level agreement (SLA) between the user
and its service provider. The nodes at the edge of the network also perform
traffi c policing to protect the network from misbehaving traffi c sources. Noncon-
forming traffi c may be dropped, delayed, or marked with a different forwarding
class.

The forwarding class is directly encoded into the packet header. After packets
are marked with their forwarding classes at the edge of the network, the interior
nodes of the network can use this information to differentiate the treatment of
the packets. The forwarding classes may indicate drop priority or resource prior-
ity. For example, when a link is congested, the network will drop packets with
the highest drop priority fi rst.

Differentiated Services do not require resource reservation setup. The allo-
cation of forwarding classes is typically specifi ed as part of the SLA between
the customer and its service provider, and the forwarding classes apply to
traffi c aggregates rather than to individual fl ows. These features work well with
transaction-orientated Web applications. The Differentiated Services architecture
also eliminates many of the scalability concerns with Integrated Services. The
functions that interior nodes have to perform to support Differentiated Services
are relatively simple. The complex process of classifi cation is needed only at the
edge of the network, where traffi c rates are typically much lower.

The Differentiated Services approach relies on provisioning to provide resource
assurance. The quality of the assurance depends on how provisioning is carried
out and how the resources are managed in the network. These issues are explored
in the next section, where we discuss performance optimization in the networks.
Because of the dynamic nature of traffi c fl ows, precise provisioning is diffi cult.
Thus it is generally more diffi cult, and certainly more expensive, to provide deter-
ministic guarantees through provisioning rather than reservation.

1.2 PERFORMANCE OPTIMIZATION
Once the resource allocation architecture and service models are in place, the
second issue in resource allocation is performance optimization: that is, how to
organize the resources in a network in the most effi cient way to maximize the
probability of delivering the commitments and minimize the cost of delivering the
commitments.

The connection between performance optimization and QoS support may
seem less direct compared with resource allocation. Performance optimization is,
however, an important building block in the deployment of QoS. Implementing
QoS goes way beyond just adding mechanisms such as traffi c policing, classifi ca-
tion, and scheduling; fundamentally, it is about developing new services over the
Internet. Service providers must make a good business case so that customers are
willing to pay for the new services and the new services will increase the return
of their investment in the networks. The cost-effectiveness of the new services
made possible by QoS capabilities is a major factor in the rollout of these
services.

The Internet’s datagram routing was not designed for optimizing the perfor-
mance of the network. Scalability and maintaining connectivity in the face of
failures were the primary design objectives. Routing protocols typically select the
shortest path to a destination based on some simple metrics, such as hop count
or delay. Such simple approaches are clearly not adequate for supporting resource
allocation. For example, to make a reservation, we need to fi nd a path with certain
requested resources, such as bandwidth, but IP routing does not have the neces-
sary information to make such decisions. Simply using the shortest-path algorithm
for selecting paths is likely to cause high rejection rate and poor utilization. The
shortest-path routing does not always use the diverse connections available in the
network. In fact, traffi c is often unevenly distributed across the network, which
can create congestion hot spots at some points while some other parts of the
network may be very lightly loaded.

Performance optimization requires additional capabilities in IP routing and
performance management tools. To manage the performance of a network, it is
necessary to have explicit control over the paths that traffi c fl ows traverse so that
traffi c fl ows can be arranged to maximize resource commitments and utilization
of the network. MPLS has a mechanism called explicit routing that is ideal for this
purpose. MPLS uses the label switching approach to set up virtual circuits in IP-
based networks. These virtual circuits can follow destination-based IP routing, but
the explicit routing mechanism in MPLS also allows us to specify, hop by hop,
the entire path of these virtual circuits. This provides a way to override the
destination-based routing and set up traffi c trunks based on traffi c-engineering
objectives.

The process of optimizing the performance of networks through effi cient
provisioning and better control of network fl ows is often referred to as traffi c

1.2 Performance Optimization 7

8 CHAPTER 1 Network QoS: The Big Picture

engineering. Traffi c engineering uses advanced route-selection algorithms to pro-
vision traffi c trunks inside backbones and arrange traffi c fl ows in ways that maxi-
mize the overall effi ciency of the network. The common approach is to calculate
traffi c trunks based on fl ow distribution and then set up the traffi c trunks as
explicit routes with the MPLS protocol. The combination of MPLS and traffi c
engineering provides IP-based networks with a set of advanced tools for service
providers to manage the performance of their networks and provide more services
at less cost.

1.2.1 Multiprotocol Label Switching

MPLS was originally seen as an alternative approach for supporting IP over ATM.
Although several approaches for running IP over ATM were standardized, most of
the techniques are complex and have scaling problems. The need for more seam-
less IP/ATM integration led to the development of MPLS in 1997. The MPLS
approach allows IP routing protocols to take direct control over ATM switches,
and thus the IP control plane can be tightly integrated with the rest of the IP
network.

The technique that MPLS uses is known as label switching. A short, fi xed-
length label is encoded into the packet header and used for packet forwarding.
When a label switch router (LSR) receives a labeled packet, it uses the incoming
label in the packet header to fi nd the next hop and the corresponding outgoing
label. With label switching, the path that a packet traverses through, called
the label switched path (LSP), has to be set up before it can be used for label
switching.

In addition to improving IP/ATM integration, MPLS may also be used to simplify
packet forwarding. Label lookup is much easier compared with prefi x lookup in
IP forwarding. With MPLS, packet forwarding can be done independent of the
network protocols, and so forwarding paradigms beyond the current destination-
based one can be easily supported. However, the driving force behind the wide
deployment of MPLS has been the need for traffi c engineering in Internet back-
bones. The explicit route mechanism in MPLS provides a critical capability that is
currently lacking in the IP-based networks. MPLS also incorporates concepts and
features from both Integrated Services and Differentiated Services. For example,
MPLS allows bandwidth reservation to be specifi ed over an LSP, and packets can
be marked to indicate their loss priority. All these features make MPLS an ideal
mechanism for implementing traffi c-engineering capabilities in the Internet.

The purpose of MPLS is not to replace IP routing, but rather to enhance the
services provided in IP-based networks by offering scope for traffi c engineering,
guaranteed QoS, and virtual private networks (VPNs). MPLS works alongside the
existing routing technologies and provides IP networks with a mechanism for
explicit control over routing paths. MPLS allows two fundamentally different data-
networking approaches, datagram and virtual circuit, to be combined in IP-based
networks. The datagram approach, on which the Internet is based, forwards

packets hop by hop, based on their destination addresses. The virtual circuit
approach, used in ATM and Frame Relay, requires connections to be set up. With
MPLS, the two approaches can be tightly integrated to offer the best combination
of scalability and manageability.

MPLS control protocols are based on IP addressing and transport and therefore
can be more easily integrated with other IP control protocols. This creates a
unifi ed IP-based architecture in which MPLS is used in the core for traffi c engineer-
ing and IP routing for scalable domain routing. In several recent proposals, extend-
ing the MPLS protocols to the optical transport networks has even been considered.
MPLS may well become the standard signaling protocol for the Internet.

1.2.2 Traffi c Engineering

The basic problem addressed in traffi c engineering is as follows: Given a network
and traffi c demands, how can traffi c fl ows in the network be organized so that an
optimization objective is achieved? The objective may be to maximize the utiliza-
tion of resources in the network or to minimize congestion in the network.
Typically the optimal operating point is reached when traffi c is evenly distributed
across the network. With balanced traffi c distribution, both queuing delay and
loss rates are at their lowest points.

Obviously these objectives cannot be achieved through destination-based IP
routing; there simply is not suffi cient information available in IP routing to make
possible such optimization. In traffi c engineering, advanced route selection tech-
niques, often referred to as constraint-based routing in order to distinguish them
from destination routing, are used to calculate traffi c trunks based on the optimi-
zation objectives. To perform such optimization, the traffi c-engineering system
often needs network-wide information on topology and traffi c demands. Thus
traffi c engineering is typically confi ned to a single administrative domain.

The routes produced by constraint-based routing are most likely different from
those in destination-based IP routing. For this reason these constraint-based routes
cannot be implemented by destination-based forwarding. In the past, many service
providers used ATM in the backbone networks to support constraint-based routing.
ATM virtual circuits can be set up to match the traffi c patterns; the IP-based
network is then overlaid on top of these virtual circuits. MPLS offers a better
alternative since it offers similar functions yet can be tightly integrated with IP-
based networks.

The existing Internet backbones have used the so-called overlay model for
traffi c engineering. With the overlay model, service providers build a virtual
network comprising a full mesh of logical connections between all edge nodes.
Using the traffi c demands between the edge nodes as input, constraint-based
routing selects a set of routes for the logical connections to maximize the overall
resource utilization in the network. Once the routes are computed, MPLS can be
used to set up the logical connections as LSPs, exactly as calculated by constraint-
based routing.

1.2 Performance Optimization 9

10 CHAPTER 1 Network QoS: The Big Picture

The downside of the overlay model is that it may not be able to scale to large
networks with a substantial number of edge nodes. To set up a full-mesh logical
network with N edge nodes, each edge node has to connect to the other (N − 1)
edge nodes, resulting in N × (N − 1) logical connections. This can add signifi cant
messaging overheads in a large network. Another problem is that the full-mesh
logical topology increases the number of peers, neighbors that routers talk to, that
a routing protocol has to handle; most current implementations of routing proto-
cols cannot support a very large number of peers. In addition to the increased
peering requirements, the logical topology also increases the processing load on
routers during link failures. Because multiple logical connections go over the same
physical link, the failure of a single physical link can cause the breakdown of
multiple logical links from the perspective of IP routing.

Traffi c engineering without full-mesh overlaying is still a challenge. One heu-
ristic approach that some service providers have used is to adjust traffi c distribu-
tion by changing the link weights in IP routing protocols. For example, when one
link is congested, the link weight can be increased in order to move traffi c away
from this link. Theoretically one can achieve the same traffi c distribution as in the
overlay model by manipulating the link weights in the Open Shortest Path First
(OSPF) routing protocol. This approach has the advantage that it can be readily
implemented in existing networks without major changes to the network
architecture.

1.3 SUMMARY
The need for QoS capabilities in the Internet stems from the fact that best-effort
service and datagram routing do not meet the needs of many new applications,
which require some degree of resource assurance in order to operate effectively.
Diverse customer requirements also create a need for service providers to offer
different levels of services in the Internet.

The Internet community has developed a number of new technologies to
address these issues. Integrated Services and Differentiated Services provide new
architectures for resource allocation in the Internet. Integrated Services use res-
ervation to provide guaranteed resources for individual fl ows. The Differentiated
Services architecture takes a different approach. It combines edge policing,
provisioning, and traffi c prioritization to provide different levels of services to
customers.

MPLS and traffi c engineering address the issues of bandwidth provisioning and
performance optimization in Internet backbones. The explicit route mechanism
in MPLS adds an important capability to the IP-based network. Combined with
constraint-based routing in traffi c engineering, MPLS and traffi c engineering can
help network providers make the best use of available resources and reduce
costs.

1.4 RESOURCES
The basic principles of datagram networks and a detailed design were fi rst
described by Paul Baran in his 1964 RAND report “On Distributed Communica-
tions.” Although the report was discovered after the ARPANET had already started,
the current Internet is remarkably close to what Paul Baran originally had in mind.
This 12-volume historical report is now available on-line at www.rand.org/
publications/RM/baran.list.html.

For a general introduction about data networking and the Internet, we recom-
mend Peterson, L., and B. Davie, Computer Networks: A Systems Approach
(Morgan Kaufmann, 1999).

1.4 Resources 11

This page intentionally left blank

CHAPTER

2Traffi c Engineering and
QoS Optimization
Technology

This chapter, originally Appendix A in Traffi c Engineering and QoS Optimization
of Integrated Voice and Data Networks by Gerald Ash, reviews some of the key
Traffi c Engineering and QoS Optimization (TQO) technologies: MPLS, GMPLS, QoS
mechanisms, IntServ, RSVP, DiffServ, and MPLS-based QoS mechanisms. This is
intended as a refresher and/or a brief introduction for those unfamiliar with these
technologies. Ample references are provided for more detailed coverage of these
important topics. A focus of TQO protocol design is the development of MPLS- and
GMPLS-based networks, where MPLS and GMPLS are used at the MPLS label
switched path (LSP) and GMPLS LSP design layers, respectively. MPLS and GMPLS
are revolutionary new network control capabilities designed and standardized in
the Internet Engineering Task Force (IETF). Networks are rapidly evolving toward
converged MPLS/GMPLS-based technologies, and the technologies described in
this chapter are key building blocks.

2.1 MULTIPROTOCOL LABEL SWITCHING
In this section we give an overview of MPLS technology and begin with a brief
history on the evolution of MPLS and then summarize some of the benefi ts and
technical details. Work on MPLS is carried out in the IETF under the auspices of
the MPLS working group. The charter of the IETF MPLS working group and a list
of working documents and request for comments (RFCs) that have been issued
are listed on the MPLS home page at www.ietf.org/html.charters/mpls-charter.
html.

MPLS groups packets to be forwarded in the same manner into forwarding
equivalence classes (FECs), and labels are used to mark the packets to identify the
forwarding path. The assignment of a packet to an FEC is done once, at the entry

14 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

point to the network. MPLS capable label switching routers (LSRs) then use the
label to make packet forwarding decisions. MPLS packets are able to carry a
number of labels in a last-in fi rst-out stack, which is very useful where two levels
of routing are taking place across transit routing domains, such as in widely
deployed MPLS virtual private networks (VPNs). A sequence of LSRs defi nes a label
switched path, which can be hop by hop, where each node independently decides
the next hop, and explicitly routed where the ingress node specifi es the path to
be taken. MPLS is able to work with any data link technology, connection oriented
and connectionless.

In the mid-1990s, Internet service providers were often using an overlay model
to run IP over ATM, but this posed scalability problems. Vendors started to
develop means to take advantage of both high-speed ATM switching and lower-
cost (but then slower) IP routing, with developments such as:

■ IP switching—Ipsilon (1996)
■ Tag switching—Cisco (1996)
■ Aggregate route-based IP switching (ARIS)—IBM
■ IP navigator—Cascade/Ascend/Lucent
■ Cell switched router (CSR)—Toshiba (1995)
■ IPSOFACTO

These solutions attempted to improve the throughput and delay performance
of IP by using standard routing protocols to create “paths” between end points.
Packets would follow a particular path based on the packet characteristics, wherein
ATM switches would switch the packets along the path. Tag switching is consid-
ered by some to be the “pre-standard” implementation of the MPLS architecture.

These mid-1990s initiatives led to the development of MPLS in the IETF, start-
ing in March 1997: “multiprotocol” because it can be transported over many
different link layer protocols; “label” because the protocols are transported with
a label changed at each hop; “switching” because labels are of local signifi cance.
By 2001, the IETF MPLS working group issued the fi rst set of proposed standards
for MPLS, and many more RFCs have been issued since then (the RFCs are listed
on the MPLS home page at www.ietf.org/html.charters/mpls-charter.html).

Because today’s IP-based routers perform at comparable speeds to ATM
switches, this negates the original motivation for MPLS. However, MPLS provides
important new networking capabilities, such as QoS, traffi c engineering, fast
reroute, and VPNs. AT&T was one of the early implementers of an MPLS-based
service, with the highly successful development of IP-enabled Frame Relay (FR),
which implements an MPLS-VPN solution.

Now we turn to the technical details of MPLS. In conventional packet net-
works, such as those that use IP and open shortest path fi rst (OSPF) routing, a
packet travels from one router to the next and each router makes an independent
forwarding decision for that packet. Each router analyzes the packet’s header and
independently chooses a next hop for the packet based on the packet header and
routing algorithm. The router periodically runs a network layer routing algorithm,

2.1 Multiprotocol Label Switching 15

such as OSPF, and the results are stored in the routing table for rapid lookup. For
example, in conventional IP forwarding, a router will map an address prefi x X in
its routing tables based on the “longest match” for each packet’s destination
address. As the packet traverses the network, each hop in turn reexamines the
packet and assigns it to a next hop.

The integration of layer 3 datagram forwarding and layer 2 transport switching
uses label lookups to allow more effi cient packet classifi cation, and a fl urry of
vendor-specifi c approaches appeared between 1994 and 1997, as listed above.
Because these approaches were proprietary and not interoperable, the IETF
formed the MPLS working group to address routing scalability, provision of more
fl exible routing services, improved performance, and simplifi ed integration of
layer 3 routing and packet/connection switching technologies, with the overall
goal of providing a standard label-swapping architecture.

In MPLS, the ingress router fi rst classifi es the packet into an FEC based on
header information and then maps the FEC to a next hop based on the routing
algorithm. The assignment of a packet to an FEC is done just once, and the FEC
to which the packet is assigned is encoded as a 4-byte fi xed length value known
as a “label.” The MPLS label formats, also known as a “shim” header, are illustrated
in Figure 2.1. When a packet is forwarded to its next hop, the label is sent along
with it. At subsequent hops, there is no further analysis of the packet’s network
layer header. Rather, the label is used as an index into a table, which specifi es the
next hop and a new label. The old label is replaced with the new label, called
“label swapping” and the packet is forwarded to its next hop.

MPLS is able to be transported over any link layer protocol, including IP,
ATM, Frame Relay, and Ethernet, as also illustrated in Figure 2.1, and hence the
“multiprotocol” terminology is used. We make a clear distinction here between
“multiprotocol,” meaning MPLS over any link layer (layer 2) technology,
and “multiprotocol,” meaning anything over MPLS, which is sometimes used to
also include pseudowire technology carrying encapsulated ATM, Frame Relay, and
Ethernet packets over an MPLS network. A router that supports MPLS is known
as a “label switching router” or LSR.

Each MPLS packet has a shim header that is encapsulated between the link
layer and the network layer. A virtual path identifi er/virtual channel identifi er
(VPI/VCI) pair is a label used in ATM networks to identify bandwidth channels
(or circuits). Note that even though ATM uses the VPI/VCI as the MPLS label, an
MPLS shim header is still used. Conversely, even though a Frame Relay frame
carries a shim header, the label is present in the data link connection identifi er
(DLCI). As illustrated in Figure 2.1, the MPLS header contains a label, time-to-live
(TTL) fi eld, class-of-service (CoS) fi eld, and stack indicator. Note that the CoS fi eld
is also known as the EXP bits fi eld, as these three bits were originally designated
as EXPerimental bits. MPLS defi nes a fundamental separation between the group-
ing of packets that are to be forwarded in the same manner (i.e., the FECs), and
the labels used to mark the packets. At any one node, all packets within the same
FEC could be mapped onto the same locally signifi cant label, given that they have

16 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

the same requirements. The assignment of a particular packet to an FEC is done
once, at the entry point to the network. MPLS-capable LSRs then use only the label
and CoS fi eld to make packet forwarding and classifi cation decisions. Label merging
is possible where multiple incoming labels are to receive the same FEC.

MPLS packets are able to carry a number of labels, organized in a last-in fi rst-
out stack. This can be very useful in a number of applications, such as where two
levels of routing are taking place across transit routing domains or where an MPLS-
based VPN is implemented. Regardless of the existence of the hierarchy, in all
instances the forwarding of a packet is based on the label at the top of the stack.
In order for a packet to travel through a tunnel, the node at the transmitting side
of the tunnel pushes a label relating to the tunnel onto the stack and sends the
packet to the next hop in the tunnel. An ordering of LSRs defi nes an LSP. Two
options are defi ned for the selection of a route for a particular forwarding class.
Hop-by-hop routing defi nes a process where each node independently decides the
next hop of the route. Explicit routing is where a single node, most often the

Label TTLEXP.S

 4 Octets

Label:
EXP:

S:
TTL:

20-bit value
3-bits class-of-service
1-bit bottom of stack
8-bits time-to-live

Layer 2 header IP packet...
MPLS “shim”

headers

PPP header Shim header Layer 3 header

Layer 3 header

Layer 3 header

Layer 3 header

PPP header (packet
over SONET/SDH)

Ethernet

Frame Relay

Ethernet header

FR header

ATM cell header GFC VPI PTIVCI CLP HEC Data

Label

ATM ATM header

Shim header

Shim header

Shim header

FIGURE 2.1

MPLS “shim” header formats.

ingress node of a path, specifi es the route to be taken in terms of the LSRs in the
path. Explicit routing may be used to implement traffi c engineering (TE) algo-
rithms to balance the traffi c load.

There are two approaches to label path control. Independent path control
means that LSRs are able to create label bindings and distribute these bindings to
their peers independently. This is useful when bindings relate to information
distributed by routing protocols such as OSPF. In this case, MPLS distributes labels
using the label distribution protocol (LDP), where paths relate to certain routes.
Ordered path control is used to ensure that a particular traffi c class follows a path
with a specifi ed set of QoS properties. In this case, labels are distributed as part
of the reservation protocol RSVP-TE, which allocates labels to packets of a specifi c
fl ow or to an aggregated set of fl ows. Within the MPLS architecture, label distribu-
tion binding decisions are generally made by the downstream node, which then
distributes the bindings in the upstream direction. This implies that the receiving
node allocates the label. However, there are instances where upstream allocation
may also be useful. In terms of the approach to state maintenance used within
MPLS, a soft-state mechanism is employed, implying that labels will require refresh-
ing to avoid time-outs. Approaches to this include the MPLS peer keep-alive
mechanism and the time-out mechanisms inherent within routing and reservation
protocols (in instances where they are used to carry out label distribution).

MPLS forwarding has a number of advantages over conventional network
forwarding:

■ can be done by traffi c routers capable of label swapping but not capable of
analyzing network layer headers; how an FEC is assigned can be complicated
but does not affect label swapping

■ an ingress router may use any information it has to determine the FEC; for
example, the port on which the packet arrives (conventional forwarding can
only consider information that travels with the packet in the packet header)

■ a packet can be labeled differently based on the ingress router, and forwarding
decisions can then depend on the ingress router (cannot be done with conven-
tional forwarding, as the ingress router identity does not travel with the
packet)

■ a packet can be forced to follow an explicit path rather than being chosen by
the routing algorithm to support TE

■ class of service can be inferred from the label, and routers may then apply dif-
ferent scheduling and discard disciplines to different packets

2.2 GENERALIZED MULTIPROTOCOL LABEL SWITCHING
GMPLS is an extension of MPLS to include the packet layer as well as the transport
layer, with its optical network elements. As with MPLS, the GMPLS standard

2.2 Generalized Multiprotocol Label Switching 17

18 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

focuses on both routing and signaling parts of the control plane. By providing a
common control plane for packet and transport layers, GMPLS enables end-to-end,
dynamic bandwidth provisioning, and optical transport networks, and thereby is
a key enabler of intelligent optical networking.

Work on GMPLS is carried in the IETF under the auspices of the CCAMP
working group and, to some extent, the L1 VPN working group. The charter of
the IETF CCAMP working group and a list of working documents and RFCs that
have been issued are listed on the CCAMP home page at www.ietf.org/html.
charters/ccamp-charter.html. The charter of the IETF L1 VPN working group and
a list of working documents and RFCs that have been issued are listed on the
L1VPN home page at www.ietf.org/html.charters/l1vpn-charter.html.

GMPLS differs from MPLS in that it supports multiple types of transport
switching, including TDM, lambda, and fi ber (port) switching. Support for addi-
tional transport switching types requires GMPLS to extend MPLS, which includes
how labels are requested and communicated, how errors are propagated, and
other extensions. Interfaces on label switching routers can be subdivided into the
following classes.

Packet Switch Capable (PSC): Interfaces that recognize packet boundaries and
can forward data based on the packet header. Examples include interfaces on
routers that forward data based on the IP header and the MPLS label.

Layer 2 Switch Capable (L2SC): Interfaces that recognize frame/cell boundaries
and can switch data based on the frame/cell header. Examples include Ethernet
bridges that switch data based on the content of the MAC header and ATM-LSRs
that forward data based on the ATM VPI/VCI.

Time Division Multiplex Capable (TDM): Interfaces that switch data based on
the time slot in a repeating cycle. Examples include SONET/SDH cross-
connects, terminal multiplexers, or add-drop multiplexers.

Lambda Switch Capable (LSC): Interfaces that switch data based on the wave-
length. Examples include optical cross-connects (OXCs) that can operate at
the individual wavelength level.

Fiber-Switch Capable (FSC): Interfaces that switch data based on real-world phys-
ical spaces. Examples include an OXC that can operate at the single or multiple
fi ber level.

In MPLS, LSRs recognize either packet or cell boundaries and are able to
process packet or cell headers. With GMPLS, non-PSC LSRs recognize neither
packet nor cell boundaries and therefore cannot forward data based on the infor-
mation carried in either packet or cell headers. Instead, GMPLS non-PSC LSRs
include devices where the transport switching decision, in addition to packet
switching decisions, is based on time slots, wavelengths, or physical ports.
However, note that GMPLS PSC LSRs do recognize packet and cell boundaries and

therefore can forward data based on the information carried in either packet or
cell headers.

A bandwidth channel, or circuit, can be established only between, or through,
interfaces of the same type. Depending on the particular technology being used
for each interface, different channel names can be used (e.g., SDH circuit, optical
trail, and light path). In GMPLS, all these channels are LSPs. The concept of nested
LSP (LSP within LSP) in MPLS facilitates building a forwarding hierarchy of LSPs.
This hierarchy of LSPs can occur on the same interface or between interfaces. For
example, a hierarchy can be built if an interface is capable of multiplexing several
LSPs from the same technology—for example, a lower-order SONET/SDH LSP
(e.g., VT2/VC-12) nested in a higher-order SONET/SDH LSP (e.g., STS-3c/VC-4).

The nesting can also occur between interface types (e.g., at the top of the
hierarchy are FSC interfaces), followed by LSC interfaces, followed by TDM inter-
faces, followed by L2SC interfaces, and followed by PSC interfaces. This way, an
LSP that starts and ends on a PSC interface can be nested into an LSP that starts
and ends on an L2SC interface, which in turn can be nested into an LSP that
starts and ends on a TDM interface, which in turn can be nested into an LSP that
starts and ends on an LSC interface, which in turn can be nested into an LSP
that starts and ends on an FSC interface.

MPLS defi nes the establishment of LSPs that span only PSC or L2SC interfaces;
GMPLS extends this control plane to support each of the fi ve classes of interfaces
defi ned above. GMPLS is based on extensions to MPLS-TE. In order to facilitate
constraint-based routing of LSPs, nodes need more information about the links in
the network than standard intranetwork routing protocols provide. These TE
attributes are distributed using the transport mechanisms in routing protocols
such as OSPF (e.g., fl ooding) and are taken into consideration by the LSP routing
algorithm. GMPLS extends routing protocols and algorithms to carry TE link infor-
mation and extends signaling protocols to carry explicit routes.

Transport technologies supported by GMPLS can have a very large number of
parallel links between two adjacent nodes. For scalability purposes, multiple data
links can be combined to form a single TE link, and the management of TE links
can be done using the out-of-band link management protocol (LMP). LMP runs
between adjacent nodes and provides mechanisms to maintain control channel
connectivity, verify the physical connectivity of the data links, correlate link infor-
mation, suppress downstream alarms, and localize link failures for protection/res-
toration purposes. Traditional IP routing requires that each link connecting two
adjacent nodes must be confi gured and advertised. Having such a large number
of parallel links does not scale well; for example, link state routing information
must be fl ooded throughout the network.

GMPLS adapts the MPLS control plane to address this issue with the concept
of link bundling and automated confi guration and control with LMP. In some cases
a combination of <TE link identifi er, label> is suffi cient to unambiguously identify
the appropriate resource used by an LSP. In other cases, a combination of <TE
link identifi er, label> is not suffi cient: for example, a TE link between a pair of

2.2 Generalized Multiprotocol Label Switching 19

20 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

SONET/SDH cross-connects, where this TE link is composed of several fi bers. In
this case the label is a TDM time slot; moreover, this time slot is signifi cant only
within a particular fi ber. Thus, when signaling an LSP over such a TE link, one
needs to specify not just the identity of the link, but also the identity of a particu-
lar fi ber within that TE link, as well as a particular label (time slot) within that
fi ber. Such cases are handled by using the link bundling construct, which is
described in RFC 4201. Link bundling addresses the issues of confi guration and
scalability of advertisement.

GMPLS extends MPLS to control TDM, LSC, and FSC layers, as follows:

■ An MPLS LSP can include a mix of links with heterogeneous label
encoding (e.g., links between routers, links between routers and ATM-
LSRs, and links between ATM-LSRs). GMPLS extends this by including links
where the label is encoded as a time slot, a wavelength, or a position in
physical space.

■ An MPLS LSP that carries IP has to start and end on a router. GMPLS
extends this by requiring an LSP to start and end on similar types of
interfaces.

■ The type of a link-layer protocol transported by a GMPLS LSP is extended
to allow such payloads as SONET/SDH, G.709, 1-Gb or 10-Gb Ethernet,
and so on.

■ MPLS LSPs are unidirectional, and GMPLS supports the establishment of
bidirectional LSPs.

Note that both MPLS and GMPLS bandwidth allocation can be performed only
in discrete units, which is a function of the lower layer technology. That is, band-
width can only be assigned in units that the physical medium can handle, and in
PSC routers this is usually bytes per second; sometimes 1000s of bytes per second.
At the transport layer, one could assign bandwidth, for example, in fractions of a
wavelength, which could have some advantages on end-system equipment.

2.3 QOS MECHANISMS
In this section we discuss QoS mechanisms, including IntServ, DiffServ, and MPLS
combined with DiffServ. We will not attempt to review queuing theory basics,
as the topic is vast and there are many excellent books, papers, and other refer-
ences on the topic. Some of my favorite books on the topic include those by
Cooper and Kleinrock as listed in the References section at the end of this chapter.
You should also consult my book on Dynamic Routing in Telecommunications
Networks for some applications of queuing theory to tele-traffi c-related topics,
such as derivation of the Erlang B formula, Neal-Wilkinson theory, and other
topics.

QoS is usually associated with hard, quantifi able metrics related to bandwidth,
delay, jitter, and so on. To achieve QoS requires the defi nition of service classes,

signaling, and connection admission control (CAC). QoS mechanisms include (a)
conditioning, for example, policing, shaping, or dropping; (b) queue manage-
ment, for example, random early detection (RED); (c) queue scheduling, for
example, weighted fair queuing (WFQ); and (d) link-layer mechanisms.

2.3.1 Traffi c Shaping and Policing Algorithms

Traffi c shaping controls network traffi c in order to optimize or guarantee perfor-
mance, low latency, and/or bandwidth. Traffi c shaping entails packet classifi ca-
tion, queue disciplines, enforcing policies, congestion management, QoS, and
fairness. It provides a mechanism to control the volume of traffi c being sent into
the network and the rate at which the traffi c is being sent. For this reason, traffi c
shaping is implemented at the network edges to control the traffi c entering the
network. It may also be necessary to identify traffi c fl ows that allow the traffi c-
shaping mechanism to shape them differently. Traffi c shaping works by smooth-
ing, or debursting, traffi c fl ows by smoothing the peaks and troughs of data
transmission. A before-and-after example of how traffi c shaping works is as follows.
Before traffi c shaping: 10 packets in one second, 0 packets in the next second,
10 packets in the next second, 0 packets the next second. After traffi c shaping:
1 packet per 0.2 s.

Shaping removes jitter at the expense of some latency. Two predominant
methods for shaping traffi c are the leaky-bucket and token-bucket mechanisms.
Both of these algorithms have different properties and are used for different pur-
poses. The leaky bucket imposes a hard limit on the data transmission rate,
whereas the token bucket allows a certain amount of burstiness while imposing
a limit on the average data transmission rate.

In contrast to traffi c shaping, traffi c policing is a method of marking/dropping
packets in excess of the committed traffi c rate and burst size. Policing may be
performed at network ingress or logical policing points. Next we give an example
of traffi c policing.

Leaky-Bucket Algorithm
The leaky-bucket algorithm is used to control the rate at which traffi c is sent to
the network and provides a mechanism by which bursty traffi c can be shaped to
present a steady stream of traffi c to the network, as opposed to traffi c with erratic
bursts of low-volume and high-volume fl ows. An analogy for the leaky bucket is
a scenario in which four lanes of automobile traffi c converge into a single lane. A
regulated admission interval into the single lane of traffi c fl ow helps the traffi c
move. The benefi t of this approach is that traffi c fl ow into the major arteries (the
network) is predictable and controlled. The major liability is that when the volume
of traffi c is vastly greater than the bucket size, in conjunction with the drainage-
time interval, traffi c backs up in the bucket beyond bucket capacity and is
discarded.

2.3 QoS Mechanisms 21

22 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

The algorithm is as follows:

■ Arriving packets are placed in a bucket with a hole in the bottom.
■ The bucket can queue at most b bytes.
■ A packet that arrives when the bucket is full is discarded.
■ Packets drain through the hole in the bucket into the network at a

constant rate of r bytes per second, thus smoothing traffi c bursts.

The size b of the bucket is limited by the available memory of the system.
The leaky bucket may use available network resources effi ciently when traffi c

volume is low and network bandwidth is available. The leaky-bucket mechanism
does not allow individual fl ows to burst up to port speed, effectively consuming
network resources at times when there would not be resource contention in the
network. The token-bucket implementation does, however, accommodate traffi c
fl ows with bursty characteristics. The leaky-bucket and token-bucket implementa-
tions can be combined to provide maximum effi ciency and control of the traffi c
fl ows into a network.

Token-Bucket Algorithm
The token bucket is similar in some respects to the leaky bucket, but the primary
difference is that the token bucket allows bursty traffi c to continue transmitting
while there are tokens in the bucket, up to a user-confi gurable threshold. It
thereby accommodates traffi c fl ows with bursty characteristics. The token-bucket
mechanism dictates that traffi c can be transmitted based on the presence of tokens
in the bucket. Tokens each represent a given number of bytes, and when tokens
are present, a fl ow is allowed to transmit traffi c up to its peak burst rate if there
are adequate tokens in the bucket and if the burst threshold is confi gured appro-
priately. The algorithm is as follows (assume each token = 1 byte):

■ A token is added to the bucket every 1/r seconds.
■ The bucket can hold at the most b tokens.
■ If a token arrives when the bucket is full, it is discarded.
■ When a packet of n bytes arrives, n tokens are removed from the bucket,

and the packet is sent to the network.
■ If fewer than n tokens are available, no tokens are removed from the

bucket, and the packet is considered to be nonconformant.

The algorithm allows bursts of up to b bytes, but over the long run the output
of conformant packets is limited to the constant rate, r. Nonconformant packets
can be treated in various ways:

■ Dropped
■ Queued for subsequent transmission when suffi cient tokens are in the

bucket
■ Transmitted but marked as nonconformant and possibly to be dropped

subsequently if the network is overloaded

Policing checks conformance to a confi gured (or signaled) traffi c profi le. As
illustrated in Figure 2.2, a token-bucket algorithm enforces behavior such that in-
profi le traffi c is injected into the network and out-of-profi le traffi c may be marked,
delayed, or discarded. The treatment of a series of packets leaving the shaping
queue depends on the size of the packet and the number of bytes remaining in
the conform bucket. These packets are policed based on the following rules.
Tokens are updated in the conform bucket at the token arrival rate r. If the number
of bytes in the conform bucket b is greater than or equal to the packet bytes p,
the packet conforms and the conform action is taken on the packet. If the packet
conforms, p bytes are removed from the conform bucket and the conform action
is completed for the packet. If the number of bytes in the conform bucket b is
fewer than p, the exceed action is taken.

For example, if the token bucket is confi gured with the average rate r of 1000
bytes/second and the normal burst size is 1000 bytes, if the initial token bucket
starts full at 1000 bytes, and a 450-byte packet arrives, the packet conforms
because enough bytes are available in the conform token bucket. The conform
action (send) is taken by the packet and 450 bytes are removed from the token
bucket (leaving 550 bytes). If the next packet arrives 0.25 s later, 250 bytes are
added to the token bucket (0.25 * 1000), leaving 800 bytes in the token bucket. If
the next packet is 900 bytes, the packet exceeds and the exceed action (drop) is
taken. No bytes are taken from the token bucket.

Token

Packet

r (token/sec)

b (tokens)

Shaping queue

FIGURE 2.2

Token-bucket algorithm.

2.3 QoS Mechanisms 23

24 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

2.3.2 Queue Management and Scheduling

Queue management and queue scheduling can improve on traditional FIFO
queuing, which provides no service differentiation and can lead to network per-
formance problems. QoS requires routers to support some form of queue schedul-
ing and management to prioritize packets and control queue depth to minimize
congestion. Queue management is important to prevent full queues, which are
problematic because (a) new connections cannot get through, called lock-out; (b)
it can lead to all packets from existing fl ows being dropped, resulting in across-
the-board TCP slow starts (called congestive collapse); and (c) it causes inability
to handle bursts of traffi c.

Approaches to queue management include random early detection. As illus-
trated in Figure 2.3, RED monitors average queue length (AvgLen) and drops arriv-
ing packets with increasing probability as AvgLen increases. No action is taken if
AvgLen < MinTH; however, all packets are dropped if AvgLen > MaxTH. Variants
of RED include fl ow RED (FRED), which implements per-fl ow RED queues, and
weighted RED (WRED), which provides per-class RED queues. RED is somewhat
heavy handed in its sometimes over-control and should be used with caution.

Queue scheduling decides which packet to send out next and is used to
manage bandwidth. There are different approaches to queue scheduling, as there
are no standard mechanisms. Most router implementations provide some sort of
priority queuing mechanism. Fair queuing objectives are to provide fair access to
bandwidth and other resources and ensure that no one fl ow receives more than
its fair share of resources. Fair queuing assumes that queues are serviced in a bit-
by-bit round-robin fashion in which one bit is transmitted from each queue
(in actuality bits are not interleaved from different queues). As illustrated in
Figure 2.4, the scheduler computes when the packet would have left the router
using bit-by-bit round-robin as follows:

P(i) = packet length of fl ow i
S(i) = when router begins sending packet
F(i) = when router fi nishes sending packet
A(i) = when packet arrives at router

Queue

MinTH

AvgLen

MaxTH

FIGURE 2.3

Queue management using random early detection.

Therefore,

F i S i P i() = () + ()

or

F i F i A i P i() = −() ()() + ()MAX 1 ,

Each F(i) (time stamp) is computed for each packet and the one with the smallest
F(i) value is transmitted.

Fair queuing assumes equal service for all fl ows, wherein each fl ow gets 1/Nth
of bandwidth for N fl ows. That is, each fl ow has a weight = 1. Weighted fair
queuing enables more than a fair share of bandwidth to be provided to a given
fl ow based on a “weight” assigned to the fl ow. In WFQ, the bandwidth allocation
is in proportion to the sum S of the weights of the fl ow sources. For example, if
a fl ow has weight of 4 and S = 8, then the fl ow gets 4/8 or 50 percent of the
bandwidth.

WFQ is work-conserving; that is, a router will always transmit packets if they
are present in the queue. This means that the link is never idle as long as packets
have arrived and are ready for transmission. In the example illustrated in Figure
2.4, the WFQ scheduler orders packets for departure based on the weights assigned
to each source. Source 1 gets 50 percent, source 2 gets 33 percent, and source 3
gets 16.67 percent of the bandwidth. WFQ provides fl ow protection and can be
used to bound delay.

Voice requires low latency and jitter, and queuing strategies are augmented
with strict priority queues for voice. However, voice must be a small percentage
of traffi c or other queues will get “starved” (i.e., they will not be served adequately
and will drop packets).

Scheduler

3

2

1Source 3

Source 2

Source 1

FIGURE 2.4

Weighted fair queuing.

2.3 QoS Mechanisms 25

26 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

Link effi ciency mechanisms address the problem that big packets can get in
the way of small voice packets on slow speed links. To address this, big packets
can be fragmented and interleaved with voice packets, which is known as link
fragment interleaving. Of course, segmentation and reassembly create additional
processing overhead.

2.4 INTEGRATED SERVICES
Integrated Services (IntServ) QoS mechanisms modify the basic IP model to
support real-time and best-effort fl ows, in which a fl ow can be host to host or
application to application. IntServ is achieved by performing admission control
and installing per-fl ow state along the path. IntServ uses a setup protocol, the
Resource Reservation Protocol (RSVP), so that applications can signal their QoS
requirements into the network. IntServ/RSVP signaling maintains per-fl ow state in
the core network, and thereby IntServ scalability has posed several challenges;
however, these have been addressed by mechanisms discussed later in this
section.

In the IntServ architecture, three classes of service are used based on an
application’s delay requirements:

■ Guaranteed-service class, which provides for delay-bounded service
agreements

■ Controlled-load service class, which provides for a form of statistical delay
service agreement (nominal mean delay) that will not be violated more
often than in an unloaded network

■ Best-effort service, which is further partitioned into three categories:
interactive burst (e.g., Web), interactive bulk (e.g., FTP), and
asynchronous (e.g., email)

Guaranteed service and controlled load classes are based on quantitative
service requirements and both require signaling and admission control in network
nodes. These services can be provided either per fl ow or per fl ow aggregate,
depending on fl ow concentration at different points in the network. Best-effort
service, on the other hand, does not require signaling. Guaranteed service is
particularly well suited to the support of real-time, delay-intolerant applications.
However, critical, tolerant applications and some adaptive applications can
generally be effi ciently supported by controlled load services. Other adaptive and
elastic applications are accommodated in the best-effort service class. Because
IntServ leaves the existing best-effort service class mostly unchanged (except for
a further subdivision of the class), it does not involve any change to existing
applications.

2.5 RESOURCE RESERVATION PROTOCOL
The Resource Reservation Protocol provides traffi c control by supporting the fol-
lowing functions: (a) admission control, which determines if a QoS request can
be granted; (b) packet classifi er, which maps packets to a service class by looking
at the contents of the IP header; and (c) packet scheduling, which forwards
packets based on service class using queuing mechanisms such as WFQ. Admission
control is supported by RSVP Path messages, which mark a path and deliver the
path QoS information to the receiver, and Resv messages, which fl ow upstream
to the sender and mark the QoS state. RSVP uses a “soft-state” mechanism, in
which Path and Resv refresh messages fl ow periodically to refresh the fl ow state
in each router.

Any continuing work on RSVP is carried in the IETF under the auspices of the
TSVWG working group. The charter of the IETF TSVWG working group and a list
of working documents and RFCs that have been issued are listed on the TSVWG
home page at www.ietf.org/html.charters/tsvwg-charter.html.

RSVP is based on the concept of a session, which is composed of at least one
data fl ow defi ned in relation to the 5-tuple source address, source port, destination
address, destination port, and protocol id. Path messages are sent periodically
toward the destination and establish a path state per fl ow in the routers. RESV
messages are periodically sent toward the sources and establish the required res-
ervations along the path followed by the data packets. The style of reservation in
RSVP is receiver oriented, as receivers initiate the requests for resources to be
reserved. Teardown messages (PathTear and ResvTear) are used for immediate
release of the path state and reservations. Teardown requests can be initiated by
a sender or receiver, or any intermediate RSVP router upon state time-out or
service preemption.

A lifetime L is associated with each reserved resource, and the timer is reset
each time an Resv message confi rms the use of the resource. If the timer expires,
the resource is freed. This principle of resource management based on timers is
called soft state. Soft state is also applied to the path state in the routers; in this
case, the timer is reset upon reception of a Path message. By default, L is 2 min
37.5 secs. Because RSVP messages are delivered unreliably and acknowledgements
are not used, RSVP uses the soft state protocol mechanism to ensure reliable state
information in the routers.

Although it is recognized that the support of per-fl ow guarantees in the core
of the Internet poses severe scalability problems, various enhancements have
allowed RSVP to be far more scalable than the original design. These include RSVP
aggregation mechanisms and refresh reduction mechanisms. With RSVP aggrega-
tion, hosts generate normal end-to-end RSVP messages, which are ignored in the
aggregated region, where routers generate aggregate RSVP messages creating
single aggregate reservations from ingress to egress. The aggregate reservation
should equal the sum of all the RSVP fl ows, and a policy dictates how often

2.5 Resource Reservation Protocol 27

28 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

aggregated RSVP messages fl ow. In order to reduce RSVP overhead with refresh
reduction, a bundle message reduces overall message handling load, an identifi er
identifi es an unchanged message more readily, a message acknowledge supports
reliable message delivery, and a summary refresh message enables refreshing state
without the transmission of whole refresh messages.

2.6 DIFFERENTIATED SERVICES
DiffServ mechanisms use edge-based packet marking, local per-class forwarding
behaviors, and resource management to support multiple service levels over an
IP-based network. DiffServ terminology is as follows:

■ Per-hop behavior (PHB): the DiffServ treatment (scheduling/dropping)
applied by a router to all the packets that are to experience the same
DiffServ service

■ Differentiated services code point (DSCP): the value in the IP header
indicating which PHB is to be applied to the packet

■ Behavior aggregate (BA): the set of all packets that has the same DSCP
(and thus that will receive the same PHB)

■ Ordered aggregate (OA): the set of BAs that has an ordering constraint
and must go into the same queue

■ PHB scheduling class (PSC): the set of PHBs applied to an OA, which
uses the same queue

DSCPs in the packet header indicate how packets should be serviced at each
hop and are marked at the ingress based on analysis of the packet. Intermediate
routers service the packets based on the DSCPs. The DiffServ architecture specifi es
the DSCP format for each PHB. DiffServ is designed to be simpler and more scal-
able than RSVP/IntServ, as no signaling or per-fl ow state needs to be maintained
in the core network. DiffServ requires no change to applications and is effi cient
for core routers, as just a few bits indicate the forwarding treatment and the
complex classifi cation work is done at the network edge. Furthermore, the
network transport can be IP, ATM, Frame Relay, MPLS, or a mixture. Different
packet handling services and mappings are possible, for example, the service class
indicator (e.g., premium and best-effort) can indicate congestion control priority
where low-priority packets are discarded fi rst.

The DSCP was formerly the IPv4 type of service (TOS) fi eld and IPv6 traffi c
class fi eld. Six bits of the TOS byte are allocated to the DSCP, and two bits are
allocated to the explicit congestion notifi cation (ECN). DiffServ per-hop behaviors
are defi ned as follows:

■ Default: best effort
■ Expedited forwarding (EF): low delay, latency, jitter service
■ Assured forwarding (AF): four “relative” classes of service
■ Class selectors: backward-compatible with IP precedence

As illustrated in Figure 2.5, routers at the edge of the DiffServ domain classify
fl ows and mark packets with the DSCP. Edge route also measures traffi c, compares
to a traffi c profi le, and performs traffi c conditioning (shape/drop as needed).
Routers in the core of a DiffServ domain identify the PHB and implement PHB
functionality by queue management/scheduling techniques.

By recognizing that most of the data fl ows generated by different applications
can be ultimately classifi ed into a few general categories (i.e., traffi c classes), the
DiffServ architecture provides simple and scalable service differentiation. It does
this by discriminating and treating the data fl ows according to their traffi c class,
thus providing a logical separation of the traffi c in the different classes. DiffServ
achieves scalability and fl exibility by following a hierarchical model for network
resource management:

■ Interdomain resource management: service levels, and hence traffi c
contracts, are agreed at each boundary point between a customer and a
provider for the traffi c entering the provider network.

■ Intradomain resource management: the service provider is solely
responsible for the confi guration and provisioning of resources and
policies within its network.

Therefore DiffServ is based on local service agreements at customer/provider
boundaries, and end-to-end services are built by concatenating such local agree-
ments at each domain boundary along the route to the fi nal destination. Service
providers build services with a combination of traffi c classes and traffi c condition-
ing, to ensure that traffi c characteristics conform to a traffi c profi le and that traffi c
contracts are respected, and billing.

Provisioning and partitioning of both boundary and interior resources are the
responsibility of the service provider and, as such, outside the scope of DiffServ.

DS domain

DiffServ Boundary

• Microflow classifier
• Metering
• Marking
• Traffic conditioning

DiffServ domain

BA traffic

Microflows

DiffServ Interior

• PHB classifier
• PHB support

DiffServ Boundary

• PHB classifier
• Metering
• Marking
• Traffic conditioning• Queue mngt /schedule

FIGURE 2.5

DiffServ processing.

2.6 Differentiated Services 29

30 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

DiffServ does not impose either the number of traffi c classes or its characteristics
on a service provider, and although traffi c classes are nominally supported by
interior routers, DiffServ does not impose any requirement on interior resources
and functionalities. Traffi c conditioning (metering, marking, shaping, or dropping)
in the interior of a network is left to the discretion of the service providers.

The net result of the DiffServ approach is that per-fl ow state is avoided within
the network, as individual fl ows are aggregated in classes. Compared with IntServ,
traffi c classes in DiffServ are accessible without signaling, which means they are
readily available to applications without any setup delay. Consequently, traffi c
classes can provide qualitative or relative services to applications but not quantita-
tive requirements. The only functionality imposed by DiffServ on interior routers
is packet classifi cation. This classifi cation is simplifi ed from that in RSVP because
it is based on a single IP header fi eld containing the DSCP rather than multiple
fi elds from different headers. This has the potential of allowing functions per-
formed on every packet, such as traffi c policing or shaping, to be done at the
boundaries of domains, so forwarding is the main operation performed within
the network.

Simultaneously providing several services with differing qualities within the
same network is a diffi cult task. Despite its apparent simplicity, DiffServ does not
make this task any simpler. Instead, in DiffServ it was decided to keep the operat-
ing mode of the network simple by pushing as much complexity as possible onto
network provisioning and confi guration. Provisioning requires knowledge of
traffi c patterns and volumes traversing each node of the network, which also
requires a good knowledge of network topology and routing. Provisioning is per-
formed on a much slower timescale than the timescales at which traffi c dynamics
and network dynamics (e.g., route changes) occur, which means it is impossible
to guarantee that overloading of resources will be avoided. This is caused by two
factors:

1. Packets can be bound to any destination and thus may be routed toward
any border router in the domain; in the worst case, a substantial
proportion of the entering packets might all exit the domain through the
same border router.

2. Route changes can suddenly shift vast amounts of traffi c from one router
to another.

Therefore, even with capacity overprovisioned at both interior and border
routers, traffi c and network dynamics can cause congestion and violation of
service agreements. In addition, capacity overprovisioning results in a very poor
statistical multiplexing gain and is therefore ineffi cient and expensive. Bandwidth
is a class property shared by all the fl ows in the class, and the bandwidth received
by an individual fl ow depends on the number of competing fl ows in the class as
well as the fairness of their respective responses to traffi c conditions in the class.
Therefore, to receive some quantitative bandwidth guarantees, a fl ow must reserve
its share of bandwidth along the data path, which involves some form of end-to-

end signaling and admission control among logical entities called DiffServ band-
width brokers (TQO processors). This end-to-end signaling should also track
network dynamics (i.e., route changes) to enforce the guarantees, which can
prove very complex.

However, delay and error rates are class properties that apply to every fl ow of
a class. This is because in every router visited, all the packets sent in a given class
share the queue devoted to that class. Consequently, as long as each router
manages its queues to maintain a relative relationship between the delay and/or
error rate of different classes, relative service agreements can be guaranteed
without any signaling. However, if quantitative delay or error rate bounds are
required, end-to-end signaling and admission control are also required. End-to-end
signaling and admission control would increase the complexity of the DiffServ
architecture. The idea of dynamically negotiable service agreements has also been
suggested as a way of improving resource usage in the network. Such dynamic
service-level agreements would require complex signaling, as the changes might
affect the agreements a provider has with several neighboring networks.

Therefore in its simplest and most general form, DiffServ can effi ciently provide
pure relative service agreements on delay and error rates among classes. However,
unless complex signaling and admission control are introduced in the DiffServ
architecture or robustness is sacrifi ced to some extent, guarantees on bandwidth,
as well as quantitative bounds on delay and error rates, cannot be provided. It
should be noted that from a complexity point of view, a DiffServ scenario with
dynamic provisioning and admission control is very close to an IntServ scenario
with fl ow aggregation. The difference is that precise delay and error rate bounds
might not be computed with DiffServ, as the delays and error rates introduced by
each router in the domain may not be available to the DiffServ bandwidth broker/
TQO processor.

DiffServ alone, therefore, does not represent the ultimate solution for QoS
support for all types of applications, and combining DiffServ and IntServ capa-
bilities could combine their individual advantages and mitigate some of their
individual drawbacks. Figure 2.6 illustrates an approach to the integration of Diff-
Serv and IntServ. RSVP messages fl ow end to end, which are ignored by DiffServ
routers in the core of the network. Edge routers in this confi guration perform
both IntServ and DiffServ QoS mechanisms, while backbone routers only perform
DiffServ QoS functions. An IntServ fl ow is tunneled through the core DiffServ
domain in this confi guration.

As detailed in RFC 2998, signifi cant benefi ts can be achieved by combining
IntServ and DiffServ to support dynamic provisioning and topology-aware admis-
sion control, including aggregated RSVP reservations, per fl ow RSVP, or a DiffServ
bandwidth broker/TQO processor. The advantage of using aggregated RSVP res-
ervations is that it offers dynamic, topology-aware admission control over the
DiffServ region without the scalability burden of per-fl ow reservations and the
associated level of RSVP signaling in the DiffServ core. RFC 3175 describes an
architecture where multiple end-to-end RSVP reservations share the same ingress

2.6 Differentiated Services 31

32 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

router (aggregator) and the same egress router (deaggregator) at the edges of an
aggregation region and can be mapped onto a single aggregate reservation within
the aggregation region. This considerably reduces the amount of reservation state
that needs to be maintained by routers within the aggregation region. Further-
more, traffi c belonging to aggregate reservations is classifi ed in the data path
purely using DiffServ marking.

2.7 MPLS-BASED QOS MECHANISMS
The DSCP fi eld is not directly visible to an MPLS LSR, as the LSR forwards packets
based only on the MPLS header and the DSCP is contained in the IP header. As
such, information on DiffServ QoS treatment is made visible to the LSR using the
CoS/EXP fi eld and/or label in the MPLS header, as illustrated in Figure 2.1 and
explained in the following paragraphs.

DiffServ routers forward packets to the next hop and egress interface based
only on the destination IP address, which is independent of the packet’s DiffServ
PHB treatment. As discussed above, packet scheduling is based only on the DSCP.
In contrast, MPLS routers that also implement DiffServ make a forwarding and
scheduling decision based on the label and DiffServ information conveyed in the
MPLS header in one of two ways:

1. E-LSP, where the queuing treatment and drop priority are inferred from
the CoS/EXP fi eld

2. L-LSP, where the queuing treatment is inferred from the label and the
drop priority is inferred from the CoS/EXP fi eld

Therefore the MPLS CoS/EXP fi eld enables different service classes to be
offered for individual labels. E-LSPs can be set up with existing, non-DiffServ-aware

IntServ IntServ
DiffServ

Edge
router 1

RSVP signaling

DiffServ transit

RSVP
source

RSVP
receiver

Backbone
router 1

Backbone
router 2 Edge

router 2

FIGURE 2.6

Integration of IntServ and DiffServ.

signaling (LDP, RSVP). The CoS/EXP bits to PHB mapping is confi gured on every
router. However, L-LSPs require extensions to LDP and RSVP to bind the queuing
treatment to the MPLS label. For more fi ne-grained QoS treatment, a separate label
can be used for each class where, in this instance, the label would represent both
the forwarding and the service classes.

More analysis of the benefi ts of per-fl ow QoS support versus aggregated per-
VNET QoS support in terms of network performance, control load overhead, and
capacity design implications, can be found in Chapters 3, 4, and 6, respectively,
of Traffi c Engineering and QoS Optimization of Integrated Voice and Data
Networks by Gerald Ash. We conclude that the incremental benefi ts of per-fl ow
QoS support, in terms of small or no improvement in performance and/or capac-
ity design effi ciencies, are not worth the signifi cant additional control processing
load such an approach would entail.

2.8 FURTHER READING
This chapter makes reference to the following sources.

Acharya, A., et al., A Framework for IP Switching over Fast ATM Cell Transport (IPSO-
FACTO). Conference on Broadband Networking Technology, vol. 3233, Chapter 36,
1997.

Ash, G. Dynamic Routing in Telecommunications Networks. McGraw-Hill, 1998.
Cooper, R. B., Introduction to Queuing Theory. Macmillan, 1972.
Farrel, A., The Internet and Its Protocols: A Comparative Approach. Morgan Kaufmann,

2004.
Farrel, A., and I. Bryskin., GMPLS: Architecture and Applications. Morgan Kaufmann,

2005.
Kleinrock, L. I., Queuing Systems, Vol. I: Theory. John Wiley & Sons, 1975.
Kleinrock, L. I., Queuing Systems, Vol. II: Computer Applications. John Wiley & Sons,

1976.
Newmann, P., IP Switching: ATM Under IP. IEEE/ACM Transactions on Networking, 6(2),

1998.
Rekhter, Y., et al., Tag Switching Architecture Overview. Proceedings of the IEEE, 85(12),

1997.
Viswanathan, A., Aggregate Route-Based IP Switching (ARIS). IBM Technical Report TR29,

2353, 1998.

IETF RFC Resources
RFC 1633, Integrated Services in the Internet Architecture: An Overview, R. Braden, D.

Clark, and S. Shenker, IETF, 1994.
RFC 1990, The PPP Multilink Protocol (MP), K. Sklower et al., IETF, 1996.
RFC 2098, Toshiba’s Router Architecture Extensions for ATM: Overview, Y. Katsube et al.,

IETF, 1998.
RFC 2205, Resource ReSerVation Protocol (RSVP)—Version 1: Functional Specifi cation,

R. Braden et al., IETF, 1997.

2.8 Further Reading 33

34 CHAPTER 2 Traffi c Engineering and QoS Optimization Technology

RFC 2207, RSVP Extensions for IPSEC Data Flows, L. Berger and T. O’Malley, IETF, 1997.
RFC 2210, The Use of RSVP with IETF Integrated Services, J. Wroclawski, IETF, 1997.
RFC 2309, Recommendations on Queue Management and Congestion Avoidance in the

Internet, R. Braden et al., IETF, 1998.
RFC 2328, OSPF Version 2, J. Moy, IETF, 1998.
RFC 2474, Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers, K. Nichols et al., IETF, 1998.
RFC 2475, An Architecture for Differentiated Services, S. Blake et al., IETF, 1998.
RFC 2597, Assured Forwarding PHB Group, J. Heinanen et al., IETF, 1999.
RFC 2702, Requirements for Traffi c Engineering Over MPLS, D. Awduche et al., IETF,

1999.
RFC 2961, RSVP Refresh Overhead Reduction Extensions, L. Berger et al., IETF, 2001.
RFC 2998, A Framework for Integrated Services Operation over Diffserv Networks, Y.

Bernet et al., IETF, 2000.
RFC 3031, Multiprotocol Label Switching Architecture, E. Rosen et al., IETF, 2001.
RFC 3032, MPLS Label Stack Encoding, E. Rosen et al., IETF, 2001.
RFC 3175, Aggregation of RSVP for IPv4 and IPv6 Reservations, F. Baker et al., IETF,

2001.
RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels, D. Awduche et al., IETF, 2001.
RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), B. Davie et al., IETF,

2002.
RFC 3270, Multi-Protocol Label Switching (MPLS) Support of Differentiated Services, F. Le

Faucheur et al., IETF, 2002.
RFC 3945, Generalized Multi-Protocol Label Switching (GMPLS) Architecture, E. Mannie et

al., IETF, 2004.
RFC 4201, Link Bundling in MPLS Traffi c Engineering (TE), K. Kompella, Y. Rekhter, and

L. Berger, IETF, 2005.
RFC 4202, Routing Extensions in Support of Generalized Multi-Protocol Label Switching

(GMPLS), K. Kompella and Y. Rekhter, IETF, 2005.
RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs), E. Rosen and Y. Rekhter, IETF,

2006.
RFC 4847, Framework and Requirements for Layer 1 Virtual Private Networks, T. Takeda

et al., IETF, 2007.
RFC 5036, LDP Specifi cation, L. Andersson et al., IETF, 2007.
RFC 5212, Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/

MLN), K. Shiomoto et al., IETF, 2008.
Internet-Draft draft-ietf-ccamp-gmpls-mln-eval, Evaluation of Existing GMPLS Protocols

against MultiLayer and MultiRegion Networks (MLN/MRN), J-L. Le Roux et al., IETF, 2008
(work in progress).

CHAPTER

3Quality of Service

This chapter, taken from Section 6.5 of Chapter 6 of Computer Networks (4th
edition) by Larry Peterson and Bruce Davie, examines application requirements
for Quality of Service with special focus on real-time applications. It goes on to
describe the mechanisms developed for use in today’s Internet to help meet the
requirements and deliver QoS to the user.

For many years, packet-switched networks have offered the promise of sup-
porting multimedia applications—that is, the ones that combine audio, video, and
data. After all, once digitized, audio and video information becomes just another
form of data—a stream of bits to be transmitted. One obstacle to the fulfi llment
of this promise has been the need for higher-bandwidth links. Recently, however,
improvements in coding have reduced the bandwidth needs of audio and video
applications, while at the same time link speeds have increased.

There is more to transmitting audio and video over a network than just provid-
ing suffi cient bandwidth, however. Participants in a telephone conversation, for
example, expect to be able to converse in such a way that one person can respond
to something said by the other and be heard almost immediately. Thus, the time-
liness of delivery can be very important. We refer to applications that are sensitive
to the timeliness of data as real-time applications. Voice and video applications
tend to be the canonical examples, but there are others such as industrial control—
you would like a command sent to a robot arm to reach it before the arm crashes
into something. Even fi le transfer applications can have timeliness constraints,
such as a requirement that a database update complete overnight before the busi-
ness that needs the data resumes on the next day.

The distinguishing characteristic of real-time applications is that they need
some sort of assurance from the network that data is likely to arrive on time (for
some defi nition of “on time”). Whereas a non-real-time application can use an
end-to-end retransmission strategy to make sure that data arrives correctly, such
a strategy cannot provide timeliness: Retransmission only adds to total latency if
data arrives late. Timely arrival must be provided by the network itself (the
routers), not just at the network edges (the hosts).

36 CHAPTER 3 Quality of Service

We therefore conclude that the best-effort model, in which the network tries
to deliver your data but makes no promises and leaves the cleanup operation to
the edges, is not suffi cient for real-time applications. What we need is a new
service model in which applications that need higher assurances can ask the
network for them. The network may then respond by providing an assurance that
it will do better or perhaps by saying that it cannot promise anything better at the
moment. Note that such a service model is a superset of the current model: Appli-
cations that are happy with best-effort service should be able to use the new
service model; their requirements are just less stringent. This implies that the
network will treat some packets differently from others—something that is not
done in the best-effort model. A network that can provide these different levels
of service is often said to support quality of service (QoS).

3.1 APPLICATION REQUIREMENTS
Before looking at the various protocols and mechanisms that may be used to
provide quality of service to applications, we should try to understand what the
needs of those applications are. To begin, we can divide applications into two
types: real-time and non-real-time. The latter are sometimes called “traditional
data” applications, since they have traditionally been the major applications found
on data networks. They include most popular applications like Telnet, FTP, email,
Web browsing, and so on. All of these applications can work without guarantees
of timely delivery of data. Another term for this non-real-time class of applications
is elastic, since they are able to stretch gracefully in the face of increased delay.
Note that these applications can benefi t from shorter-length delays, but they do
not become unusable as delays increase. Also note that their delay requirements
vary from the interactive applications like Telnet to more asynchronous ones like
email, with interactive bulk transfers such as FTP in the middle.

3.1.1 A Real-Time Audio Example

As a concrete example of a real-time application, consider an audio application
similar to the one illustrated in Figure 3.1. Data is generated by collecting samples
from a microphone and digitizing them using an analog-to-digital (A → D) con-
verter. The digital samples are placed in packets, which are transmitted across the
network and received at the other end. At the receiving host, the data must be
played back at some appropriate rate. For example, if the voice samples were
collected at a rate of one per 125 μs, they should be played back at the same rate.
Thus, we can think of each sample as having a particular playback time: the point
in time at which it is needed in the receiving host. In the voice example, each
sample has a playback time that is 125 μs later than the preceding sample. If data
arrives after its appropriate playback time, either because it was delayed in
the network or because it was dropped and subsequently retransmitted, it is

3.1 Application Requirements 37

essentially useless. It is the complete worthlessness of late data that characterizes
real-time applications. In elastic applications, it might be nice if data turns up on
time, but we can still use it when it does not.

One way to make our voice application work would be to make sure that all
samples take exactly the same amount of time to traverse the network. Then, since
samples are injected at a rate of one per 125 μs, they will appear at the receiver
at the same rate, ready to be played back. However, it is generally diffi cult to
guarantee that all data traversing a packet-switched network will experience
exactly the same delay. Packets encounter queues in switches or routers and the
lengths of these queues vary with time, meaning that the delays tend to vary with
time, and as a consequence, are potentially different for each packet in the audio
stream.

The way to deal with this at the receiver end is to buffer up some amount of
data in reserve, thereby always providing a store of packets waiting to be played
back at the right time. If a packet is delayed a short time, it goes in the buffer
until its playback time arrives. If it gets delayed a long time, then it will not need
to be stored for very long in the receiver’s buffer before being played back. Thus,
we have effectively added a constant offset to the playback time of all packets as
a form of insurance. We call this offset the playback point. The only time we run
into trouble is if packets get delayed in the network for such a long time that they
arrive after their playback time, causing the playback buffer to be drained.

The operation of a playback buffer is illustrated in Figure 3.2. The left-hand
diagonal line shows packets being generated at a steady rate. The wavy line shows
when the packets arrive, some variable amount of time after they were sent,
depending on what they encountered in the network. The right-hand diagonal
line shows the packets being played back at a steady rate, after sitting in the play-
back buffer for some period of time. As long as the playback line is far enough to
the right in time, the variation in network delay is never noticed by the applica-
tion. However, if we move the playback line a little to the left, then some packets
will begin to arrive too late to be useful.

For our audio application, there are limits to how far we can delay playing
back data. It is hard to carry on a conversation if the time between when you
speak and when your listener hears you is more than 300 ms. Thus, what we want
from the network in this case is a guarantee that all our data will arrive within

FIGURE 3.1

Audio application.

38 CHAPTER 3 Quality of Service

300 ms. If data arrives early, we buffer it until its correct playback time. If it arrives
late, we have no use for it and must discard it.

To get a better appreciation of how variable network delay can be, Figure 3.3
shows the one-way delay measured over a certain path across the Internet over
the course of one particular day. While the exact numbers would vary depending
on the path and the date, the key factor here is the variability of the delay, which

FIGURE 3.2

Playback buffer.

FIGURE 3.3

Example distribution of delays for an Internet connection.

3.1 Application Requirements 39

is consistently found on almost any path at any time. As denoted by the cumula-
tive percentages given across the top of the graph, 97 percent of the packets in
this case had a latency of 100 ms or less. This means that if our example audio
application were to set the playback point at 100 ms, then on average, 3 out of
every 100 packets would arrive too late to be of any use. One important thing to
notice about this graph is that the tail of the curve—how far it extends to the
right—is very long. We would have to set the playback point at over 200 ms to
ensure that all packets arrived in time.

3.1.2 Taxonomy of Real-Time Applications

Now that we have a concrete idea of how real-time applications work, we can
look at some different classes of applications, which serve to motivate our service
model. The following taxonomy owes much to the work of Clark, Braden, Shenker,
and Zhang (1992), whose papers on this subject can be found in the Further
Reading section at the end of this chapter. The taxonomy of applications is sum-
marized in Figure 3.4.

The fi rst characteristic by which we can categorize applications is their toler-
ance of loss of data, where “loss” might occur because a packet arrived too late
to be played back as well as arising from the usual causes in the network.

FIGURE 3.4

Taxonomy of applications.

40 CHAPTER 3 Quality of Service

On the one hand, one lost audio sample can be interpolated from the surround-
ing samples with relatively little effect on the perceived audio quality. It is
only as more and more samples are lost that quality declines to the point that
the speech becomes incomprehensible. On the other hand, a robot control
program is likely to be an example of a real-time application that cannot tolerate
loss—losing the packet that contains the command instructing the robot arm to
stop is unacceptable. Thus, we can categorize real-time applications as tolerant
or intolerant depending on whether they can tolerate occasional loss. (As an
aside, note that many real-time applications are more tolerant of occasional loss
than non-real-time applications. For example, compare our audio application to
FTP, where the uncorrected loss of one bit might render a fi le completely
useless.)

A second way to characterize real-time applications is by their adaptability. For
example, an audio application might be able to adapt to the amount of delay that
packets experience as they traverse the network. If we notice that packets are
almost always arriving within 300 ms of being sent, then we can set our playback
point accordingly, buffering any packets that arrive in less than 300 ms. Suppose
that we subsequently observe that all packets are arriving within 100 ms of being
sent. If we moved up our playback point to 100 ms, then the users of the applica-
tion would probably perceive an improvement.

The process of shifting the playback point would actually require us to
play out samples at an increased rate for some period of time. With a voice appli-
cation, this can be done in a way that is barely perceptible simply by shortening
the silences between words. Thus, playback point adjustment is fairly easy in this
case, and it has been effectively implemented for several voice applications such
as the audio teleconferencing program known as vat. Note that playback point
adjustment can happen in either direction, but that doing so actually involves
distorting the played-back signal during the period of adjustment, and that the
effects of this distortion will very much depend on how the end user uses the
data.

Observe that if we set our playback point on the assumption that all packets
will arrive within 100 ms and then fi nd that some packets are arriving slightly late,
we will have to drop them, whereas we would not have had to drop them if we
had left the playback point at 300 ms. Thus, we should advance the playback point
only when it provides a perceptible advantage and only when we have some
evidence that the number of late packets will be acceptably small. We may do
this because of observed recent history or because of some assurance from the
network.

We call applications that can adjust their playback point delay-adaptive appli-
cations. Another class of adaptive applications are rate adaptive. For example,
many video coding algorithms can trade-off bit rate versus quality. Thus, if we fi nd
that the network can support a certain bandwidth, we can set our coding param-
eters accordingly. If more bandwidth becomes available later, we can change
parameters to increase the quality.

3.1.3 Approaches to QoS Support

Considering this rich space of application requirements, what we need is a richer
service model that meets the needs of any application. This leads us to a service
model with not just one class (best effort), but with several classes, each available
to meet the needs of some set of applications. Toward this end, we are now ready
to look at some of the approaches that have been developed to provide a range
of qualities of service. These can be divided into two broad categories:

■ Fine-grained approaches, which provide QoS to individual applications
or fl ows

■ Coarse-grained approaches, which provide QoS to large classes of data
or aggregated traffi c

In the fi rst category we fi nd Integrated Services, a quality-of-service architec-
ture developed by the Internet Engineering Task Force (IETF) and often associated
with the Resource Reservation Protocol (RSVP). ATM’s approach to QoS was also
in this category. In the second category lies Differentiated Services, which is prob-
ably the most widely deployed QoS mechanism. These in turn are discussed in
the next two subsections.

Finally, adding QoS support to the network isn’t necessarily the entire story
about supporting real-time applications. We conclude our discussion by revisiting
what the end host might do to better support real-time streams, independent of
how widely deployed QoS mechanisms like Integrated or Differentiated Services
become.

3.2 INTEGRATED SERVICES AND RSVP
The term Integrated Services (often called IntServ for short) refers to a body of
work that was produced by the IETF around 1995–1997. The IntServ working
group developed specifi cations of a number of service classes designed to meet
the needs of some of the application types described earlier. It also defi ned how
RSVP could be used to make reservations using these service classes. The follow-
ing paragraphs provide an overview of these specifi cations and the mechanisms
that are used to implement them.

3.2.1 Service Classes

One of the service classes is designed for intolerant applications. These applica-
tions require that a packet never arrive late. The network should guarantee
that the maximum delay any packet will experience has some specifi ed value;
the application can then set its playback point so that no packet will ever
arrive after its playback time. The assumption is that early arrival of packets can
always be handled by buffering. This service is referred to as the guaranteed
service.

3.2 Integrated Services and RSVP 41

42 CHAPTER 3 Quality of Service

In addition to the guaranteed service, the IETF considered several other ser-
vices, but eventually settled on one to meet the needs of tolerant, adaptive appli-
cations. The service is known as controlled load and was motivated by the
observation that existing applications of this type run quite well on networks that
are not heavily loaded. The audio application vat, for example, adjusts its playback
point as network delay varies, and produces reasonable audio quality as long as
loss rates remain on the order of 10 percent or less.

The aim of the controlled load service is to emulate a lightly loaded network
for those applications that request the service, even though the network as a
whole may in fact be heavily loaded. The trick to this is to use a queuing mecha-
nism such as weighted fair queuing (WFQ) to isolate the controlled load traffi c
from the other traffi c, and some form of admission control to limit the total amount
of controlled load traffi c on a link such that the load is kept reasonably low. We
discuss admission control in more detail later.

Clearly, these two service classes are a subset of all the classes that might be
provided. It remains to be seen as Integrated Services are deployed whether these
two are adequate to meet the needs of all the application types described earlier.

3.2.2 Overview of Mechanisms

Now that we have augmented our best-effort service model with some new service
classes, the next question is how we implement a network that provides these
services to applications. This section outlines the key mechanisms. Keep in mind
while reading this section that the mechanisms being described are still being
hammered out by the Internet design community. The main thing to take away
from the discussion is a general understanding of the pieces involved in support-
ing the service model outlined earlier.

First, whereas with a best-effort service we can just tell the network where we
want our packets to go and leave it at that, a real-time service involves telling the
network something more about the type of service we require. We may give it
qualitative information such as “use a controlled load service,” or quantitative
information such as “I need a maximum delay of 100 ms.” In addition to describ-
ing what we want, we need to tell the network something about what we are
going to inject into it, since a low-bandwidth application is going to require fewer
network resources than a high-bandwidth application. The set of information that
we provide to the network is referred to as a fl owspec. This name comes from
the idea that a set of packets associated with a single application and that share
common requirements is called a fl ow.

Second, when we ask the network to provide us with a particular service, the
network needs to decide if it can in fact provide that service. For example, if 10
users ask for a service in which each will consistently use 2 Mbps of link capacity,
and they all share a link with 10-Mbps capacity, the network will have to say no
to some of them. The process of deciding when to say no is called admission
control.

Third, we need a mechanism by which the users of the network and the com-
ponents of the network itself exchange information such as requests for service,
fl owspecs, and admission control decisions. This is sometimes called signaling,
but since that word has several meanings, we refer to this process as resource
reservation, and it is achieved using a resource reservation protocol.

Lastly, when fl ows and their requirements have been described, and admission
control decisions have been made, the network switches and routers need to meet
the requirements of the fl ows. A key part of meeting these requirements is manag-
ing the way packets are queued and scheduled for transmission in the switches
and routers. This last mechanism is packet scheduling.

3.2.3 Flowspecs

There are two separable parts to the fl owspec: the part that describes the fl ow’s
traffi c characteristics (called the TSpec) and the part that describes the service
requested from the network (the RSpec). The RSpec is very service-specifi c and
relatively easy to describe. For example, with a controlled load service, the RSpec
is trivial: The application just requests controlled load service with no additional
parameters. With a guaranteed service, you could specify a delay target or bound.
(In the IETF’s guaranteed service specifi cation, you specify not a delay but another
quantity from which delay can be calculated.)

The TSpec is a little more complicated. As our previous example showed, we
need to give the network enough information about the bandwidth used by the
fl ow to allow intelligent admission control decisions to be made. For most appli-
cations, however, the bandwidth is not a single number; it is something that varies
constantly. A video application, for example, will generally generate more bits per
second when the scene is changing rapidly than when it is still. Just knowing
the long-term average bandwidth is not enough, as the following example
illustrates.

Suppose that we have 10 fl ows that arrive at a switch on separate input ports
and that all leave on the same 10-Mbps link. Assume that over some suitably long
interval each fl ow can be expected to send no more than 1 Mbps. You might think
this presents no problem. However, if these are variable bit rate applications, such
as compressed video, then they will occasionally send more than their average
rates. If enough sources send at above their average rates, then the total rate at
which data arrives at the switch will be greater than 10 Mbps. This excess data
will be queued before it can be sent on the link. The longer this condition persists,
the longer the queue will get. Packets might have to be dropped, and even if it
doesn’t come to that, data sitting in the queue is being delayed. If packets are
delayed long enough, the service that was requested will not be provided.

Exactly how we manage our queues to control delay and avoid dropping
packets is something we discuss later. However, note here that we need to know
something about how the bandwidth of our sources varies with time. One way
to describe the bandwidth characteristics of sources is called a token-bucket fi lter.

3.2 Integrated Services and RSVP 43

44 CHAPTER 3 Quality of Service

Such a fi lter is described by two parameters: a token rate r, and a bucket depth
B. It works as follows. To be able to send a byte, I must have a token. To send a
packet of length n, I need n tokens. I start with no tokens and I accumulate them
at a rate of r per second. I can accumulate no more than B tokens. What this
means is that I can send a burst of as many as B bytes into the network as fast as
I want, but over a suffi ciently long interval, I can’t send more than r bytes per
second. It turns out that this information is very helpful to the admission control
algorithm when it tries to fi gure out whether it can accommodate a new request
for service.

Figure 3.5 illustrates how a token bucket can be used to characterize a fl ow’s
bandwidth requirements. For simplicity, assume that each fl ow can send data as
individual bytes rather than as packets. Flow A generates data at a steady rate of
1 MBps, so it can be described by a token-bucket fi lter with a rate r = 1 MBps and
a bucket depth of 1 byte. This means that it receives tokens at a rate of 1 MBps
but that it cannot store more than 1 token—it spends them immediately. Flow B
also sends at a rate that averages out to 1 MBps over the long term, but does so
by sending at 0.5 MBps for 2 seconds and then at 2 MBps for 1 second. Since the
token-bucket rate r is, in a sense, a long-term average rate, fl ow B can be described
by a token bucket with a rate of 1 MBps. Unlike fl ow A, however, fl ow B needs
a bucket depth B of at least 1 MB, so that it can store up tokens while it sends at
less than 1 MBps to be used when it sends at 2 MBps. For the fi rst 2 seconds in
this example, it receives tokens at a rate of 1 MBps but spends them at only
0.5 MBps, so it can save up 2 × 0.5 = 1 MB of tokens, which it then spends in the
third second (along with the new tokens that continue to accrue in that second)
to send data at 2 MBps. At the end of the third second, having spent the excess
tokens, it starts to save them up again by sending at 0.5 MBps again.

It is interesting to note that a single fl ow can be described by many different
token buckets. As a trivial example, fl ow A could be described by the same token

FIGURE 3.5

Two fl ows with equal average rates but different token-bucket descriptions.

bucket as fl ow B, with a rate of 1 MBps and a bucket depth of 1 MB. The fact that
it never actually needs to accumulate tokens does not make that an inaccurate
description, but it does mean that we have failed to convey some useful informa-
tion to the network—the fact that fl ow A is actually very consistent in its band-
width needs. In general, it is good to be as explicit about the bandwidth needs of
an application as possible, to avoid over-allocation of resources in the network.

3.2.4 Admission Control

The idea behind admission control is simple: When some new fl ow wants to
receive a particular level of service, admission control looks at the TSpec and
RSpec of the fl ow and tries to decide if the desired service can be provided to
that amount of traffi c, given the currently available resources, without causing any
previously admitted fl ow to receive worse service than it had requested. If it can
provide the service, the fl ow is admitted; if not, it is denied. The hard part is
fi guring out when to say yes and when to say no.

Admission control is very dependent on the type of requested service and on
the queuing discipline employed in the routers; we discuss the latter topic later
in this section. For a guaranteed service, you need to have a good algorithm to
make a defi nitive yes/no decision. The decision is fairly straightforward if weighted
fair queuing is used at each router. For a controlled load service, the decision may
be based on heuristics, such as “The last time I allowed a fl ow with this TSpec
into this class, the delays for the class exceeded the acceptable bound, so I’d better
say no,” or “My current delays are so far inside the bounds that I should be able
to admit another fl ow without diffi culty.”

Admission control should not be confused with policing. The former is a per-
fl ow decision to admit a new fl ow or not. The latter is a function applied on a
per-packet basis to make sure that a fl ow conforms to the TSpec that was used to
make the reservation. If a fl ow does not conform to its TSpec—for example,
because it is sending twice as many bytes per second as it said it would—then it
is likely to interfere with the service provided to other fl ows, and some corrective
action must be taken. There are several options, the obvious one being to drop
offending packets. However, another option would be to check if the packets
really are interfering with the service of other fl ows. If they are not interfering,
the packets could be sent on after being marked with a tag that says, in effect,
“This is a nonconforming packet. Drop it fi rst if you need to drop any packets.”

Admission control is closely related to the important issue of policy. For
example, a network administrator might wish to allow reservations made by his
or her company’s CEO to be admitted while rejecting reservations made by more
lowly employees. Of course, the CEO’s reservation request might still fail if
the requested resources aren’t available, so we see that issues of policy and
resource availability may both be addressed when admission control decisions are
made. The application of policy to networking is an area that has received much
attention.

3.2 Integrated Services and RSVP 45

46 CHAPTER 3 Quality of Service

3.2.5 Reservation Protocol

While connection-oriented networks have always needed some sort of setup pro-
tocol to establish the necessary virtual circuit state in the switches, connectionless
networks like the Internet have had no such protocols. As this section has indi-
cated, however, we need to provide a lot more information to our network when
we want a real-time service from it. While there have been a number of setup
protocols proposed for the Internet, the one on which most current attention is
focused is called the Resource Reservation Protocol. It is particularly interesting
because it differs so substantially from conventional signaling protocols for
connection-oriented networks.

One of the key assumptions underlying RSVP is that it should not detract from
the robustness that we fi nd in today’s connectionless networks. Because connec-
tionless networks rely on little or no state being stored in the network itself, it is
possible for routers to crash and reboot and for links to go up and down while
end-to-end connectivity is still maintained. RSVP tries to maintain this robustness
by using the idea of soft state in the routers. Soft state—in contrast to the hard
state found in connection-oriented networks—does not need to be explicitly
deleted when it is no longer needed. Instead, it times out after some fairly short
period (say, a minute) if it is not periodically refreshed. We will see later how this
helps robustness.

Another important characteristic of RSVP is that it aims to support multicast
fl ows just as effectively as unicast fl ows. This is not surprising, since many of the
fi rst applications that could benefi t from improved quality of service were also
multicast applications—vat and vic, for example. One of the insights of RSVP’s
designers is that most multicast applications have many more receivers than
senders, as typifi ed by the large audience and one speaker for a lecture. Also,
receivers may have different requirements. For example, one receiver might want
to receive data from only one sender, while others might wish to receive data
from all senders. Rather than having the senders keep track of a potentially large
number of receivers, it makes more sense to let the receivers keep track of their
own needs. This suggests the receiver-oriented approach adopted by RSVP. In
contrast, connection-oriented networks usually leave resource reservation to the
sender, just as it is normally the originator of a phone call who causes resources
to be allocated in the phone network.

The soft state and receiver-oriented nature of RSVP give it a number of nice
properties. One of these is that it is very straightforward to increase or decrease
the level of resource allocation provided to a receiver. Since each receiver peri-
odically sends refresh messages to keep the soft state in place, it is easy to send
a new reservation that asks for a new level of resources. In the event of a host
crash, resources allocated by that host to a fl ow will naturally time out and be
released. To see what happens in the event of a router or link failure, we need to
look a little more closely at the mechanics of making a reservation.

Initially, consider the case of one sender and one receiver trying to get a res-
ervation for traffi c fl owing between them. There are two things that need to
happen before a receiver can make the reservation. First, the receiver needs to
know what traffi c the sender is likely to send so that it can make an appropriate
reservation. That is, it needs to know the sender’s TSpec. Second, it needs to know
what path the packets will follow from sender to receiver, so that it can establish
a resource reservation at each router on the path. Both of these requirements can
be met by sending a message from the sender to the receiver that contains the
TSpec. Obviously, this gets the TSpec to the receiver.

The other thing that happens is that each router looks at this message (called
a Path message) as it goes past, and it fi gures out the reverse path that will be
used to send reservations from the receiver back to the sender in an effort to get
the reservation to each router on the path. Building the multicast tree in the fi rst
place is done by mechanisms such as multicast extensions to existing link-state
and distance-vector routing protocols, or through new routing protocols specifi -
cally formulated to support multicast distribution.

Having received a Path message, the receiver sends a reservation back “up”
the multicast tree in an Resv message. This message contains the sender’s TSpec
and an RSpec describing the requirements of this receiver. Each router on the
path looks at the reservation request and tries to allocate the necessary resources
to satisfy it. If the reservation can be made, the Resv request is passed on to the
next router. If not, an error message is returned to the receiver who made the
request. If all goes well, the correct reservation is installed at every router between
the sender and the receiver. As long as the receiver wants to retain the reserva-
tion, it sends the same RESV message about once every 30 seconds.

Now we can see what happens when a router or link fails. Routing protocols
will adapt to the failure and create a new path from sender to receiver. Path
messages are sent about every 30 seconds, and may be sent sooner if a router
detects a change in its forwarding table, so the fi rst one after the new route sta-
bilizes will reach the receiver over the new path. The receiver’s next Resv message
will follow the new path and (hopefully) establish a new reservation on the new
path. Meanwhile, the routers that are no longer on the path will stop getting Resv
messages, and these reservations will time out and be released. Thus, RSVP deals
quite well with changes in topology, as long as routing changes are not excessively
frequent.

The next thing we need to consider is how to cope with multicast, where
there may be multiple senders to a group and multiple receivers. This situation is
illustrated in Figure 3.6. First, let’s deal with multiple receivers for a single sender.
As an Resv message travels up the multicast tree, it is likely to hit a piece of the
tree where some other receiver’s reservation has already been established. It may
be the case that the resources reserved upstream of this point are adequate to
serve both receivers. For example, if receiver A has already made a reservation
that provides for a guaranteed delay of less than 100 ms, and the new request

3.2 Integrated Services and RSVP 47

48 CHAPTER 3 Quality of Service

from receiver B is for a delay of less than 200 ms, then no new reservation is
required. On the other hand, if the new request were for a delay of less than
50 ms, then the router would fi rst need to see if it could accept the request, and
if so, it would send the request on upstream. The next time receiver A asked for
a minimum of a 100-ms delay, the router would not need to pass this request on.
In general, reservations can be merged in this way to meet the needs of all receiv-
ers downstream of the merge point.

If there are also multiple senders in the tree, receivers need to collect the
TSpecs from all senders and make a reservation that is large enough to accom-
modate the traffi c from all senders. However, this may not mean that the TSpecs
need to be added up. For example, in an audio conference with 10 speakers, there
is not much point in allocating enough resources to carry 10 audio streams, since
the result of 10 people speaking at once would be incomprehensible. Thus, we
could imagine a reservation that is large enough to accommodate two speakers
and no more. Calculating the correct overall TSpec from all the sender TSpecs is
clearly application-specifi c. Also, we may only be interested in hearing from a
subset of all possible speakers; RSVP has different reservation “styles” to deal with
such options as “Reserve resources for all speakers,” “Reserve resources for any
n speakers,” and “Reserve resources for speakers A and B only.”

FIGURE 3.6

Making reservations on a multicast tree.

3.2.6 Packet Classifying and Scheduling

Once we have described our traffi c and our desired network service and have
installed a suitable reservation at all the routers on the path, the only thing that
remains is for the routers to actually deliver the requested service to the data
packets. There are two things that need to be done:

■ Associate each packet with the appropriate reservation so that it can be
handled correctly, a process known as classifying packets.

■ Manage the packets in the queues so that they receive the service that has
been requested, a process known as packet scheduling.

The fi rst part is done by examining up to fi ve fi elds in the packet: the source
address, destination address, protocol number, source port, and destination port. (In
IPv6, it is possible that the FlowLabel fi eld in the header could be used to enable the
lookup to be done based on a single, shorter key.) Based on this information, the
packet can be placed in the appropriate class. For example, it may be classifi ed into
the controlled load classes, or it may be part of a guaranteed fl ow that needs to be
handled separately from all other guaranteed fl ows. In short, there is a mapping from
the fl ow-specifi c information in the packet header to a single class identifi er that
determines how the packet is handled in the queue. For guaranteed fl ows, this might
be a one-to-one mapping, while for other services, it might be many to one. The
details of classifi cation are closely related to the details of queue management.

It should be clear that something as simple as a fi rst-in, fi rst-out (FIFO) queue in a
router will be inadequate to provide many different services and to provide different
levels of delay within each service. Several more sophisticated queue management
disciplines exist, and some combination of these is likely to be used in a router.

The details of packet scheduling ideally should not be specifi ed in the service
model. Instead, this is an area where implementers can try to do creative things
to realize the service model effi ciently. In the case of guaranteed service, it has
been established that a weighted fair queuing discipline, in which each fl ow gets
its own individual queue with a certain share of the link, will provide a guaranteed
end-to-end delay bound that can be readily calculated. For controlled load, simpler
schemes may be used. One possibility includes treating all the controlled load
traffi c as a single, aggregated fl ow (as far as the scheduling mechanism is con-
cerned), with the weight for that fl ow being set based on the total amount of
traffi c admitted in the controlled load class. The problem is made harder when
you consider that in a single router, many different services are likely to be pro-
vided concurrently, and that each of these services may require a different sched-
uling algorithm. Thus, some overall queue management algorithm is needed to
manage the resources between the different services.

3.2.7 Scalability Issues

While the Integrated Services architecture and RSVP represented a signifi cant
enhancement of the best-effort service model of IP, many Internet service

3.2 Integrated Services and RSVP 49

50 CHAPTER 3 Quality of Service

providers felt that it was not the right model for them to deploy. The reason for
this reticence relates to one of the fundamental design goals of IP: scalability. In
the best-effort service model, routers in the Internet store little or no state about
the individual fl ows passing through them. Thus, as the Internet grows, the only
thing routers have to do to keep up with that growth is to move more bits per
second and to deal with larger routing tables. But RSVP raises the possibility that
every fl ow passing through a router might have a corresponding reservation. To
understand the severity of this problem, suppose that every fl ow on an OC-48
(2.5-Gbps) link represents a 64-Kbps audio stream. The number of such fl ows is

2 5 10 64 10 39 0009 3. ,× × =

Each of those reservations needs some amount of state that needs to be stored
in memory and refreshed periodically. The router needs to classify, police, and
queue each of those fl ows. Admission control decisions need to be made every
time such a fl ow requests a reservation. And some mechanisms are needed to
“push back” on users so that they don’t make arbitrarily large reservations for
long periods of time. (For example, charging per reservation would be one way
to push back, consistent with the telephony model of billing for each phone call.
This is not the only way to push back, and per-call billing is believed to be one
of the major costs of operating the phone network.) These scalability concerns
have, at the time of writing, prevented the widespread deployment of IntServ.
Because of these concerns, other approaches that do not require so much per-fl ow
state have been developed. The next section discusses a number of such
approaches.

3.2.8 RSVP and IntServ Deployment

RSVP and the Integrated Services architecture have, at the time of writing, not
been very widely deployed, in large part because of scalability concerns described
at the end of this section. In fact, it is common to assert that they are “dead” as
technologies. However, it may be premature to write the obituaries for RSVP and
integrated services just yet.

Separated from IntServ, RSVP has been quite widely deployed as a protocol for
establishing MPLS paths for the purposes of traffi c engineering. For this reason
alone, most routers in the Internet have some sort of RSVP implementation.
However, that is probably the full extent of RSVP deployment in the Internet at
the time of writing. This usage of RSVP is largely independent of IntServ, but it
does at least demonstrate that the protocol itself is deployable.

There is some evidence that RSVP and IntServ may get a second chance more
than 10 years after they were fi rst proposed. For example, the IETF is standard-
izing extensions to RSVP to support aggregate reservations—extensions that
directly address the scalability concerns that have been raised about RSVP and
IntServ in the past. And there is increasing support for RSVP as a resource reserva-
tion protocol in commercial products.

Various factors can be identifi ed that may lead to greater adoption of RSVP and
IntServ in the near future. First, applications that actually require QoS, such as
voice over IP and real-time video conferencing, are much more widespread than
they were 10 years ago, creating a greater demand for sophisticated QoS mecha-
nisms. Second, admission control—which enables the network to say “no” to an
application when resources are scarce—is a good match to applications that
cannot work well unless suffi cient resources are available. Most users of IP tele-
phones, for example, would prefer to get a busy signal from the network than to
have a call proceed at unacceptably bad quality. And a network operator would
prefer to send a busy signal to one user than to provide bad quality to a large
number of users. A third factor is the large resource requirements of new applica-
tions such as high-defi nition video delivery: because they need so much band-
width to work well, it may be more cost-effective to build networks that can say
“no” occasionally than to provide enough bandwidth to meet all possible applica-
tion demands. However this is a complex trade-off and the debate over the value
of admission control, and RSVP and IntServ as tools to provide it, is likely to con-
tinue for some time.

3.3 DIFFERENTIATED SERVICES—EF AND AF
Whereas the Integrated Services architecture allocates resources to individual
fl ows, the Differentiated Services model (often called DiffServ for short) allocates
resources to a small number of classes of traffi c. In fact, some proposed approaches
to DiffServ simply divide traffi c into two classes. This is an eminently sensible
approach to take: If you consider the diffi culty that network operators experience
just trying to keep a best-effort Internet running smoothly, it makes sense to add
to the service model in small increments.

Suppose that we have decided to enhance the best-effort service model by
adding just one new class, which we’ll call “premium.” Clearly we will need some
way to fi gure out which packets are premium and which are regular old best-
effort. Rather than using a protocol like RSVP to tell all the routers that some fl ow
is sending premium packets, it would be much easier if the packets could just
identify themselves to the router when they arrive. This could obviously be done
by using a bit in the packet header—if that bit is a 1, the packet is a premium
packet; if it’s a 0, the packet is best-effort. With this in mind, there are two ques-
tions we need to address:

■ Who sets the premium bit, and under what circumstances?
■ What does a router do differently when it sees a packet with the bit set?

There are many possible answers to the fi rst question, but a common approach
is to set the bit at an administrative boundary. For example, the router at the
edge of an Internet service provider’s network might set the bit for packets
arriving on an interface that connects to a particular company’s network. The ISP

3.3 Differentiated Services—EF and AF 51

52 CHAPTER 3 Quality of Service

might do this because that company has paid for a higher level of service than
best-effort. It is also possible that not all packets would be marked as premium;
for example, the router might be confi gured to mark packets as premium up to
some maximum rate, and to leave all excess packets as best-effort.

Assuming that packets have been marked in some way, what do the routers
that encounter marked packets do with them? Here again there are many answers.
In fact, the IETF standardized a set of router behaviors to be applied to marked
packets. These are called per-hop behaviors (PHBs), a term that indicates that
they defi ne the behavior of individual routers rather than end-to-end services.
Because there is more than one new behavior, there is also a need for more than
1 bit in the packet header to tell the routers which behavior to apply. The IETF
decided to take the old type-of-service (TOS) byte from the IP header, which had
not been widely used, and redefi ne it. Six bits of this byte have been allocated for
DiffServ code points (DSCP), where each DSCP is a 6-bit value that identifi es a
particular PHB to be applied to a packet.

3.3.1 Expedited Forwarding PHB

One of the simplest PHBs to explain is known as expedited forwarding (EF).
Packets marked for EF treatment should be forwarded by the router with minimal
delay and loss. The only way that a router can guarantee this to all EF packets is
if the arrival rate of EF packets at the router is strictly limited to be less than the
rate at which the router can forward EF packets. For example, a router with a
100-Mbps interface needs to be sure that the arrival rate of EF packets destined
for that interface never exceeds 100 Mbps. It might also want to be sure that the
rate will be somewhat below 100 Mbps, so that it occasionally has time to send
other packets such as routing updates.

The rate limiting of EF packets is achieved by confi guring the routers at the
edge of an administrative domain to allow a certain maximum rate of EF packet
arrivals into the domain. A simple, albeit conservative, approach would be to
ensure that the sum of the rates of all EF packets entering the domain is less than
the bandwidth of the slowest link in the domain. This would ensure that, even in
the worst case where all EF packets converge on the slowest link, it is not over-
loaded and can provide the correct behavior.

There are several possible implementation strategies for the EF behavior. One
is to give EF packets strict priority over all other packets. Another is to perform
weighted fair queuing between EF packets and other packets, with the weight of
EF set suffi ciently high that all EF packets can be delivered quickly. This has an
advantage over strict priority: The non-EF packets can be assured of getting some
access to the link, even if the amount of EF traffi c is excessive. This might mean
that the EF packets fail to get exactly the specifi ed behavior, but it could also
prevent essential routing traffi c from being locked out of the network in the event
of an excessive load of EF traffi c.

3.3.2 The Quiet Success of DiffServ

As recently as 2003, many people were ready to declare that DiffServ was dead.
At that year’s ACM SIGCOMM conference, one of the most prestigious networking
research conferences, a workshop with the provocative title “RIPQoS” was held—
the offi cial name of the workshop was “Revisiting IP QoS” but the implication
that QoS might be ready to rest in peace was clear in the workshop announce-
ment. However, just as Mark Twain quipped that reports of his death were greatly
exaggerated, it seems that the demise of IP QoS, and DiffServ in particular, was
also overstated.

Much of the pessimism about DiffServ arose from the fact that it had not been
deployed to any signifi cant extent by Internet service providers. Not only that,
but the fact that real-time applications such as IP telephony and video streaming
appear to be working so well over the Internet without any QoS mechanisms in
place makes one wonder if any QoS will ever be needed. In part this is the result
of aggressive deployment of high-bandwidth links and routers by many ISPs, espe-
cially during the “boom” years of the late 1990s.

To see where DiffServ has succeeded, you need to look outside the ISP back-
bones. For example, corporations that have deployed IP telephony solutions—and
there are over ten million “enterprise class” IP phones in use at the time of
writing—routinely use “EF” behavior for the voice media packets to ensure that
they are not delayed when sharing links with other traffi c. The same holds for
many residential voice over IP solutions: Just to get priority on the upstream link
out of the residence (e.g., the “slow” direction of a DSL link), it is common for
the voice endpoint to set the DSCP to EF, and for a consumer’s router connected
to the broadband link to use DiffServ to give low latency and jitter to those
packets. There are even some large national telephone companies that have
migrated their traditional voice services onto IP networks, with DiffServ providing
the means to protect the QoS of the voice.

There are other applications beside voice that are benefi ting from DiffServ,
notably business data services. And no doubt the maturing of IP-based video in
the coming years will provide another driver. In general, two factors make DiffServ
deployment worthwhile: a high demand for QoS assurance from the application,
and a lack of assurance that the link bandwidth will be suffi cient to deliver that
QoS to all the traffi c traversing the link. It is important to realize that DiffServ,
like any other QoS mechanism, cannot create bandwidth—all it can do is ensure
that what bandwidth there is gets preferentially allocated to the applications that
have more demanding QoS needs.

3.3.3 Assured Forwarding PHB

The assured forwarding (AF) PHB has its roots in an approach known as “RED
with In and Out” (RIO) or “Weighted RED,” both of which are enhancements
to the basic RED algorithm. Figure 3.7 shows how RIO works; we see drop

3.3 Differentiated Services—EF and AF 53

54 CHAPTER 3 Quality of Service

probability on the y-axis increasing as average queue length increases along the
x-axis. For our two classes of traffi c, we have two separate drop probability curves.
RIO calls the two classes “in” and “out” for reasons that will become clear shortly.
Because the “out” curve has a lower MinThreshold than the “in” curve, it is clear
that, under low levels of congestion, only packets marked “out” will be discarded
by the RED algorithm. If the congestion becomes more serious, a higher percent-
age of “out” packets are dropped, and then if the average queue length exceeds
Minin, RED starts to drop “in” packets as well.

The reason for calling the two classes of packets “in” and “out” stems from the
way the packets are marked. We already noted that packet marking can be per-
formed by a router at the edge of an administrative domain. We can think of this
router as being at the boundary between a network service provider and some
customer of that network. The customer might be any other network, for example,
the network of a corporation or of another network service provider. The cus-
tomer and the network service provider agree on some sort of profi le for the
assured service (and perhaps the customer pays the network service provider for
this profi le). The profi le might be something like “Customer X is allowed to send
up to y Mbps of assured traffi c,” or it could be signifi cantly more complex. What-
ever the profi le is, the edge router can clearly mark the packets that arrive from
this customer as being either in or out of profi le. In the example just mentioned,
as long as the customer sends less than y Mbps, all his packets will be marked
“in,” but once he exceeds that rate, the excess packets will be marked “out.”

The combination of a profi le meter at the edge and RIO in all the routers of
the service provider’s network should provide the customer with a high assurance
(but not a guarantee) that packets within his profi le can be delivered. In particu-
lar, if the majority of packets, including those sent by customers who have not
paid extra to establish a profi le, are “out” packets, then it should usually be the
case that the RIO mechanism will act to keep congestion low enough that “in”

P(drop)

1.0

MaxP
AvgLen

Min out Min in Max out Max in

FIGURE 3.7

RED with “in” and “out” drop probabilities.

packets are rarely dropped. Clearly, there must be enough bandwidth in the
network so that the “in” packets alone are rarely able to congest a link to the
point where RIO starts dropping “in” packets.

Just like RED, the effectiveness of a mechanism like RIO depends to some
extent on correct parameter choices, and there are considerably more parameters
to set for RIO. Exactly how well the scheme will work in production networks is
not known at the time of writing.

One interesting property of RIO is that it does not change the order of “in”
and “out” packets. For example, if a TCP connection is sending packets through
a profi le meter, and some packets are being marked “in” while others are marked
“out,” those packets will receive different drop probabilities in the router queues,
but they will be delivered to the receiver in the same order in which they were
sent. This is important for most TCP implementations, which perform much better
when packets arrive in order, even if they are designed to cope with misordering.
Note also that mechanisms such as fast retransmit can be falsely triggered when
misordering happens.

The idea of RIO can be generalized to provide more than two drop probability
curves, and this is the idea behind the approach known as weighted RED (WRED).
In this case, the value of the DSCP fi eld is used to pick one of several drop prob-
ability curves, so that several different classes of service can be provided.

A third way to provide Differentiated Services is to use the DSCP value to
determine which queue to put a packet into in a weighted fair queuing scheduler.
As a very simple case, we might use one code point to indicate the “best-effort”
queue and a second code point to select the “premium” queue. We then need to
choose a weight for the premium queue that makes the premium packets get
better service than the best-effort packets. This depends on the offered load of
premium packets. For example, if we give the premium queue a weight of one
and the best-effort queue a weight of four, that ensures that the bandwidth avail-
able to premium packets is

B
W

W W
premium

premium

premium best effort

=
+()

= +() =
_

.1 1 4 0 2

That is, we have effectively reserved 20 percent of the link for premium
packets, so if the offered load of premium traffi c is only 10 percent of the link on
average, then the premium traffi c will behave as if it is running on a very under-
loaded network and the service will be very good. In particular, the delay expe-
rienced by the premium class can be kept low, since WFQ will try to transmit
premium packets as soon as they arrive in this scenario. On the other hand, if the
premium traffi c load were 30 percent, it would behave like a highly loaded
network, and delay could be very high for the “premium” packets—even worse
than the so-called best-effort packets.

Thus, knowledge of the offered load and careful setting of weights is important
for this type of service. However, note that the safe approach is to be very

3.3 Differentiated Services—EF and AF 55

56 CHAPTER 3 Quality of Service

conservative in setting the weight for the premium queue. If this weight is made
very high relative to the expected load, it provides a margin of error and yet does
not prevent the best-effort traffi c from using any bandwidth that has been reserved
for premium but is not used by premium packets.

Just as in WRED, we can generalize this WFQ-based approach to allow more
than two classes represented by different code points. Furthermore, we can
combine the idea of a queue selector with a drop preference. For example, with
12 code points we can have four queues with different weights, each of which
has three drop preferences. This is exactly what the IETF has done in the defi ni-
tion of assured service.

3.3.4 ATM Quality of Service

ATM is a rather less important technology today than it was 10 years ago, but one
of its real contributions was in the area of QoS. In some respects, the fact that
ATM was designed with fairly rich QoS capabilities was one of the things that
spurred interest in QoS for IP. It also helped the early adoption of ATM.

In many respects, the QoS capabilities that are provided in ATM networks are
similar to those provided in an IP network using Integrated Services. However,
the ATM standards bodies came up with a total of fi ve service classes compared
to the IETF’s three (we count best-effort as a service class along with controlled
load and guaranteed service). The fi ve ATM service classes are:

■ Constant bit rate (CBR)
■ Variable bit rate–real-time (VBR-rt)
■ Variable bit rate–nonreal-time (VBR-nrt)
■ Available bit rate (ABR)
■ Unspecifi ed bit rate (UBR)

Mostly the ATM and IP service classes are quite similar, but one of them, ABR,
has no real counterpart in IP. More on ABR in a moment. VBR-rt is very much like
the guaranteed service class in IP Integrated Services. The exact parameters that
are used to set up a VBR-rt virtual circuit (VC) are slightly different than those
used to make a guaranteed service reservation, but the basic idea is the same. The
traffi c generated by the source is characterized by a token bucket, and the
maximum total delay required through the network is specifi ed. CBR is also similar
to guaranteed service except that sources of CBR traffi c are expected to send at
a constant rate. Note that this is really a special case of VBR, where the source’s
peak rate and average rate of transmission are equal.

VBR-nrt bears some similarity to IP’s controlled load service. Again, the source
traffi c is specifi ed by a token bucket, but there is not the same hard delay guar-
antee of VBR-rt or IP’s guaranteed service. UBR is ATM’s best-effort service.

Finally, we come to ABR, which is more than just a service class; it also defi nes
a set of congestion-control mechanisms. It is rather complex, so we mention only
the high points.

The ABR mechanisms operate over a virtual circuit by exchanging special ATM
cells called resource management (RM) cells between the source and destination
of the VC. The goal of sending the RM cells is to get information about the state
of congestion in the network back to the source so that it can send traffi c at an
appropriate rate. In this respect, RM cells are an explicit congestion feedback
mechanism. This is similar to the DECbit, but contrasts with TCP’s use of implicit
feedback, which depends on packet losses to detect congestion. It is also similar
to the new “quick start” mechanism for TCP.

Initially, the source sends the cell to the destination and includes in it the rate
at which it would like to send data cells. Switches along the path look at the
requested rate and decide if suffi cient resources are available to handle that rate,
based on the amount of traffi c being carried on other circuits. If enough resources
are available, the RM cell is passed on unmodifi ed; otherwise, the requested rate
is decreased before the cell is passed along. At the destination, the RM cell is
turned around and sent back to the source, which thereby learns what rate it can
send at. RM cells are sent periodically and may contain either higher or lower
requested rates.

Given the relative decline of ATM in real networks today, the interesting point
of ATM QoS is how many mechanisms are common across different technologies.
Mechanisms that are found in both ATM and IP QoS include admission control,
scheduling algorithms, token-bucket policers, and explicit congestion feedback
mechanisms.

3.4 EQUATION-BASED CONGESTION CONTROL
We conclude our discussion of QoS by returning full circle to TCP congestion
control, but this time in the context of real-time applications. Recall that TCP
adjusts the sender’s congestion window (and hence, the rate at which it can
transmit) in response to ACK and timeout events. One of the strengths of this
approach is that it does not require cooperation from the network’s routers; it is
a purely host-based strategy. Such a strategy complements the QoS mechanisms
we’ve been considering, because (a) applications can use host-based solutions
today, before QoS mechanisms are widely deployed, and (b) even with DiffServ
fully deployed, it is still possible for a router queue to be oversubscribed, and
we would like real-time applications to react in a reasonable way should this
happen.

While we would like to take advantage of TCP’s congestion control algorithm,
TCP itself is not appropriate for real-time applications. One reason is that TCP is
a reliable protocol, and real-time applications often cannot afford the delays intro-
duced by retransmission. However, what if we were to decouple TCP from its
congestion control mechanism, that is, add TCP-like congestion control to an
unreliable protocol like UDP? Could real-time applications make use of such a
protocol?

3.4 Equation-Based Congestion Control 57

58 CHAPTER 3 Quality of Service

On the one hand, this is an appealing idea because it would cause real-time
streams to compete fairly with TCP streams. The alternative (which happens
today) is that video applications use UDP without any form of congestion control,
and as a consequence, steal bandwidth away from TCP fl ows that back off in the
presence of congestion. On the other hand, the sawtooth behavior of TCP’s con-
gestion control algorithm is not appropriate for real-time applications: It means
that the rate at which the application transmits is constantly going up and down.
In contrast, real-time applications work best when they are able to sustain a
smooth transmission rate over a relatively long period of time.

Is it possible to achieve the best of both worlds: compatibility with TCP con-
gestion control for the sake of fairness, while sustaining a smooth transmission
rate for the sake of the application? Recent work suggests that the answer is yes.
Specifi cally, several so-called “TCP-friendly” congestion control algorithms have
been proposed. These algorithms have two main goals. One is to slowly adapt the
congestion window. This is done by adapting over relatively longer time periods
(e.g., a round-trip time—RTT) rather than on a per-packet basis. This smoothes
out the transmission rate. The second is to be TCP-friendly in the sense of being
fair to competing TCP fl ows. This property is often enforced by ensuring that the
fl ow’s behavior adheres to an equation that models TCP’s behavior. Hence, this
approach is sometimes called equation-based congestion control.

Both simplifi ed and full TCP rate equations exist to help manage congestion
control. The interested reader is referred to the papers cited at the end of this
chapter for details about the full model. For our purposes, it is suffi cient to note
that the equation takes this general form:

Rate
RTT

=
×

1

r

which says that to be TCP-friendly, the transmission rate must be inversely pro-
portional to the round-trip time and the square root of the loss rate (r). In other
words, to build a congestion control mechanism out of this relationship, the
receiver must periodically report the loss rate it is experiencing back to the
sender (e.g., it might report that it failed to receive 10 percent of the last 100
packets), and the sender then adjusts its sending rate up or down, such that this
relationship continues to hold. Of course, it is still up to the application to adapt
to these changes in the available rate, but many real-time applications are quite
adaptable.

3.5 SUMMARY
As we have just seen, the issue of resource allocation is not only central to com-
puter networking, it is also a very hard problem. This chapter has examined two
aspects of resource allocation. The fi rst, congestion control, is concerned with
preventing overall degradation of service when the demand for resources by hosts

exceeds the supply available in the network. The second aspect is the provision
of different qualities of service to applications that need more assurances than
those provided by the best-effort model.

Most congestion-control mechanisms are targeted at the best-effort service
model of today’s Internet, where the primary responsibility for congestion control
falls on the end nodes of the network. Typically, the source uses feedback—either
implicitly learned from the network or explicitly sent by a router—to adjust the
load it places on the network; this is precisely what TCP’s congestion-control
mechanism does. Independent of exactly what the end nodes are doing, the
routers implement a queuing discipline that governs which packets get transmit-
ted and which packets get dropped. Sometimes this queuing algorithm is sophis-
ticated enough to segregate traffi c (e.g., WFQ), and in other cases, the router
attempts to monitor its queue length and then signals the source host when con-
gestion is about to occur (e.g., RED gateways and DECbit).

Emerging quality-of-service approaches aim to do substantially more than
just control congestion. Their goal is to enable applications with widely varying
requirements for delay, loss, and throughput to have those requirements met
through new mechanisms inside the network. The Integrated Services approach
allows individual application fl ows to specify their needs to the routers using an
explicit signaling mechanism (RSVP), while Differentiated Services assigns packets
into a small number of classes that receive differentiated treatment in the routers.
While the signaling used by ATM is very different from RSVP, there is considerable
similarity between ATM’s service classes and those of Integrated Services.

3.5.1 Open Issue: Inside versus Outside the Network

Perhaps the larger question we should be asking is how much can we expect
from the network and how much responsibility will ultimately fall to the end
hosts? The emerging reservation-based strategies certainly have the advantage of
providing for more varied qualities of service than today’s feedback-based schemes;
being able to support different qualities of service is a strong reason to put more
functionality into the network’s routers. Does this mean that the days of TCP-like
end-to-end congestion control are numbered? This seems very unlikely. TCP and
the applications that use it are well entrenched, and in many cases have no need
of much more help from the network.

Furthermore, it is most unlikely that all the routers in a worldwide, heteroge-
neous network like the Internet will implement precisely the same resource res-
ervation algorithm. Ultimately, it seems that the endpoints are going to have to
look out for themselves, at least to some extent. The end-to-end principle argues
that we should be very selective about putting additional functionality inside the
network. How this all plays out in the next few years, in more areas than resource
allocation, will be very interesting indeed.

In some sense, the Differentiated Services approach represents the middle
ground between absolutely minimal intelligence in the network and the rather

3.5 Summary 59

60 CHAPTER 3 Quality of Service

signifi cant amount of intelligence (and stored state information) that is required
in an Integrated Services network. Certainly most Internet service providers have
balked at allowing their customers to make RSVP reservations inside the providers’
networks. One important question is whether the Differentiated Services approach
will meet the requirements of more stringent applications. For example, if a
service provider is trying to offer a large-scale telephony service over an IP
network, will Differentiated Services techniques be adequate to deliver the quality
of service that traditional telephone users expect? It seems likely that yet more
QoS options, with varying amounts of intelligence in the network, will need to
be explored.

3.6 FURTHER READING
The recommended reading list for this chapter is long, refl ecting the breadth of
interesting work being done in congestion control and resource allocation. It
includes the original papers introducing the various mechanisms discussed in this
chapter. In addition to a more detailed description of these mechanisms, including
thorough analysis of their effectiveness and fairness, these papers are must reading
because of the insights they give into the interplay of the various issues related to
congestion control. In addition, the fi rst paper gives a nice overview of some of
the early work on this topic, while the last is considered one of the seminal papers
in the development of QoS capabilities in the Internet.

Clark, D., S. Shenker, and L. Zhang, “Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanism.” Proceedings of the SIGCOMM
’92 Symposium, pp. 14–26, August 1992.

Demers, A., S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair Queuing
Algorithm.” Proceedings of the SIGCOMM ’89 Symposium, pp. 1–12, September
1989.

Floyd, S., and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance.”
IEEE/ACM Transactions on Networking 1(4):397–413, 1993.

Gerla, M., and L. Kleinrock, “Flow Control: A Comparative Survey.” IEEE Transactions on
Communications COM-28(4):553–573, 1980.

Jacobson, V., “Congestion Avoidance and Control.” Proceedings of the SIGCOMM ’88
Symposium, pp. 314–329, August 1988.

Parekh, A., and R. Gallager, “A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks: The Multiple Node Case.” IEEE/ACM Transactions on
Networking 2(2):137–150, 1994.

Beyond these recommended papers, there is a wealth of other valuable mate-
rial on resource allocation. For starters, two early papers set the foundation for
using power as a measure of congestion-control effectiveness:

Jaffe, J. M., “Flow Control Power Is Nondecentralizable.” IEEE Transactions on Commu-
nications COM-29(9), 1981.

Kleinrock, L., “Power and Deterministic Rules of Thumb for Probabilistic Problems in
Computer Communications.” Proceedings of the International Conference on Com-
munications, 1979.

A thorough discussion of various issues related to performance evaluation,
including a description of Jain’s fairness index can also be found in Jain, R.,
The Art of Computer Systems Performance Analysis: Techniques for Experimen-
tal Design, Measurement, Simulation, and Modeling. John Wiley & Sons,
1991.

More details about TCP Vegas can be found in Brakmo, L. S., and L. L. Peterson,
“TCP Vegas: End-to-End Congestion Avoidance on a Global Internet.” IEEE Journal
of Selected Areas in Communications (JASC) 13(8), 1995. Similar congestion-
avoidance techniques can be found in Wang, Z., and J. Crowcroft, “Eliminating
Periodic Packet Losses in 4.3-Tahoe BSD TCP Congestion Control Algorithm.”
Communications Review 22(2), 1992. This paper gives an especially nice over-
view of congestion avoidance based on a common understanding of how the
network changes as it approaches congestion. Some issues with and proposed
modifi cations to the RED algorithm including “Flow RED” (FRED) are described
in Lin, D., and R. Morris, “Dynamics of Random Early Detection.” Proceedings of
the SIGCOMM ’97 Symposium, 1997.

The proposed ECN standard is spelled out in Ramakrishnan, K., S. Floyd, and
D. Black, “The Addition of Explicit Congestion Notifi cation (ECN) to IP.” RFC
3168, IETF, 2001. Efforts to generalize this idea in the form of active queue man-
agement are put forth in many sources including Katabi, D., M. Handley, and C.
Rohrs, “Congestion Control for High Bandwidth-Delay Product Networks.” Pro-
ceedings of the ACM SIGCOMM ’02, 2002. This paper introduces XCP, one of the
proposed new transport protocols that tackles the issue of improving on TCP’s
throughput in high bandwidth-delay product networks.

There is a considerable body of work on packet scheduling that has extended
the original fair queuing and processor sharing papers just cited. Excellent exam-
ples include the following.

Bennett, T., and H. Zhang, “Hierarchical Packet Fair Queuing Algorithms.” Proceedings of
the SIGCOMM ’96 Symposium, 1996.

Goyal, P., H. Vin, and H. Chen, “Start-Time Fair Queuing: A Scheduling Algorithm for Inte-
grated Services Packet Switching Networks.” Proceedings of the SIGCOMM ’96 Sympo-
sium, 1996.

Stoica, I., and H. Zhang, “A Hierarchical Fair Service Curve Algorithm for Link-Sharing and
Priority Services.” Proceedings of the SIGCOMM ’97 Symposium, 1997.

Many additional articles have been published on the Integrated Services archi-
tecture, including:

Clark, D., “Internet Cost Allocation and Pricing.” In Internet Economics edited by L. Knight
and J. Bailey, MIT Press, 1997: the fi rst paper to address the topic of Differentiated

3.6 Further Reading 61

62 CHAPTER 3 Quality of Service

Services. It introduces the RIO mechanism as well as the overall architecture of Differ-
entiated Services.

Clark, D., and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery Service.” IEEE/
ACM Transactions on Networking 6(4), 1998: follow-on paper that presents some
simulation results.

RFC 1633 —Integrated Services in the Internet Architecture: An Overview, R. Braden,
D. Clark, and S. Shanker, IETF, 1994: provides an overview of Integrated Services.

RFC 2475 —An Architecture for Differentiated Services, S. Blake et al., IETF, 1998: defi nes
the Differentiated Services architecture.

RFC 3246—An Expedited Forwarding PHB (Per-Hop Behavior), B. Davie, et al., IETF, 2002:
defi nes the EF per-hop behavior.

Zhang, L. et al., “RSVP: A New Resource Reservation Protocol.” IEEE Network, 1993: pro-
vides a description of RSVP.

CHAPTER

4IP Service Management

We do not live in an egalitarian society and it is, therefore, no surprise that with
fi nite limits on the availability of Internet resources such as processing power and
bandwidth, there is a desire to offer grades of service within the Internet. For
example, a bronze standard of service might be the cheapest for a user, simply
promising “best-effort” data delivery—the data may arrive, or it may not, and if it
does, it may take some time. Silver and gold service levels might make increasing
pledges as to the timeliness and quality of data delivery. The platinum service
might guarantee the user reliable and instant delivery of any amount of data.

To apply levels of service to the traffi c fl ows passing through a router, it is
necessary to classify or categorize the packets so that they can be given different
treatments and get preferential access to the resources within the router. This
chapter, taken from The Internet and Its Protocols: A Comparative Approach by
Adrian Farrel, examines some popular mechanisms for categorizing packets, for
describing fl ows, and for reserving resources.

Although packet categorization can be implemented differently in each router,
it is important for the provision of services within a network that there is a
common understanding of the service level applied to the packets within a fl ow.
This is achieved by Differentiated Services (DiffServ), which allows individual
packets to be labeled according to the service the originator has contracted. Inte-
grated Services (IntServ) provides a standardized way to describe packet fl ows in
terms of the amount of traffi c that will be generated and the resources needed to
support them. The Resource Reservation Protocol (RSVP) is a signaling protocol
designed to install reserved resources at routers to support packet fl ows.

In considering how to achieve grades of service within an IP host or router it
is helpful to examine a simplifi ed view of the internal organization of such a
device. Figure 4.1 shows a router with just two interfaces. Packets are received
from the interfaces and moved to the Inwards Holding Area where they are held
in buffers until they can be routed. This is an important function because the rate
of arrival of packets may be faster than the momentary rate of packet routing—in
other words, although the routing component may be able to handle packets
at the same aggregate rate as the sum of the line speeds, it is possible that two

64 CHAPTER 4 IP Service Management

packets will arrive at the same time. After each packet has been routed, it is moved
to an Outwards Holding Area and stored in buffers until it can be sent on the
outgoing interface.

These holding areas offer the opportunity for prioritizing traffi c. Instead of
implementing each as a simple fi rst-in, fi rst-out (FIFO) queue, they can be con-
structed as a series (or queue) of queues—the packets pass through a packet
classifi er which determines their priority and queues them accordingly.

The queues in the holding areas obviously use up system resources (memory)
to store the packets and it is possible that the queues will become full when there
are no more resources available. The same categorization of packets can be used
to determine what should happen next. The simple approach says that when a
packet can’t be queued it should simply be dropped (recall that this is acceptable
in IP), but with prioritized queues it is also possible to discard packets from low-
priority queues to make room for more important packets. A balance can also be
implemented that favors discarding packets from the Inwards Holding Area before
discarding from the Outwards Holding Area so that work that has been done to
route a received packet is less likely to be wasted.

The queues in the holding areas can also be enhanced by limiting the amount
of the total system resources that they can consume. This effectively places upper
thresholds on the queue sizes so that no one queue can use more than its share,
which is particularly useful if the queues are implemented per interface since it

Outwards Holding Area

Packet queue

Packet queue

Packet queue

Packet queue

Packet
classifier

Interface

Interface

Inwards Holding Area

Local
applications

Routing
process

Local
applications

Packet queue

Packet queue

Packet queue

Packet queue

Packet
classifier

FIGURE 4.1

Simplifi ed view of the internals of a router showing packet queues.

handles the case in which an outgoing interface becomes stuck or runs slowly.
This introduces the concept of an upper limit to the amount of resources that a
queue can consume, and it is also possible to dedicate resources to a queue—that
is, to pre-allocate resources for the exclusive use by a queue so that the total
system resources are shared out between the queues. With careful determination
of the levels of pre-allocation it is possible to guarantee particular service levels
to fl ows within the network.

4.1 CHOOSING HOW TO MANAGE SERVICES
The traditional operation model of IP networks was based on best-effort service
delivery. No guarantees were made about the quality of service provided to appli-
cations or network users, and each packet was treated as a separate object and
forwarded within the network with no precedence or priority over other packets.
Additionally, a fundamental design consideration of IP and the Internet was to
make simplicity more important than anything else.

But the Internet was not conceived for the sophisticated real-time exchange
of data for applications that are sensitive not only to the quality of the delivered
data, but also to the timeliness and smoothness of that delivery. New applications
have left background, bulk data transfer far behind and make more sophisticated
demands on the quality of service delivered by the network.

Quality of service is a concept familiar in the telecommunications industry.
Developed principally to carry voice traffi c, the modern telecommunications
network is sensitive to the aspects of noise, distortion, loss, delay, and jitter
that make the human voice unintelligible or unacceptably diffi cult to decipher.
Nevertheless, the industry is dominated by proprietary protocols notwithstanding
the existence of standardized solutions and the regulatory requirements to con-
verge on interoperable approaches. Attempts to manage services in IP networks,
therefore, are able to draw on plenty of experience and concepts, but no clear
operational solution.

Further, some key differences exist between the structure of IP networks and
telecommunications networks. Perhaps most obvious among these differences is
the way that telecommunications networks are connection-oriented or virtual-
circuit-based so that traffi c for a given fl ow reliably follows the same path through
the network. IP traffi c is, of course, routed on a packet-by-packet basis. Other
differences lie in the decentralized management structure of IP networks, and
emphasis in IP networks on the management of elements (i.e., nodes, links, etc.)
and not of data fl ows.

It is important in this light to examine what needs to be managed in order to
provide service management and to attempt to address only those issues that are
relevant to an IP framework. The fi rst point to note is that in an IP network the
distribution framework that is being managed (i.e., the network elements that
forward IP traffi c) is identical to the management framework. In other words, the

4.1 Choosing How to Manage Services 65

66 CHAPTER 4 IP Service Management

IP network is the tool that is used to manage the IP network. This raises several
questions about the effect of service management activities on the services being
managed. For example, a service management process that relied on regular and
detailed distribution of statistical information to a central management point
would signifi cantly increase the amount of network traffi c and would reduce the
ability to provide the highest levels of throughput for applications. Thus, one of
the criteria for service management in an IP network is to retain a high level of
distributed function with individual network elements responsible for monitoring
and maintaining service levels. This distributed model only becomes more impor-
tant when we consider that IP networks are typically large (in terms of the number
of network elements and the connectivity of the network).

Early attempts at service management have focused on traffi c prioritization (see
the type of service, or ToS, fi eld in the IP header) and on policing the traffi c fl ows
at the edge of the network or on entry to administrative domains. This is not really
service management so much as a precautionary administrative policy designed
to reduce the chances of failing to meet service level agreements. It doesn’t
address any of the questions of guaranteeing service levels or of taking specifi c
action within the network to ensure quality of service. Only by providing mecha-
nisms to quantify and qualify both requested service and actual traffi c is it possible
to manage the traffi c fl ows so that quality of service is provided.

In fact, an important requirement of IP service management is that any process
that is applied should extend across management domains. This means that it
should be possible for an application in one network to specify its quality of
service requirements and have them applied across the end-to-end path to the
destination even if that path crosses multiple networks. It is not enough to meet
the service requirements in one network: they must be communicated and met
along the whole path.

This consideration opens up many issues related to charging between service
providers and the ultimate billing to the end user, because the provision of a
specifi c quality of service is most defi nitely a chargeable feature. In a competitive
world, service providers will vie with each other to provide service management
features and traffi c quality at different price points, and will want to pass on the
costs. The bottom line is that it must be possible to track service requests as they
cross administrative boundaries. Techniques to measure the services actually pro-
vided are a follow-up requirement for both the end user and for service providers
that are interconnected.

It is only a short step from these requirements to the desire to be able to route
traffi c according to the availability and real, fi nancial cost of services. This provides
further input to constraint-based path computation algorithms.

Not all of these issues are handled well by the service management techniques
described in this chapter. As initial attempts to address the challenges, they focus
largely on the classifi cation of traffi c and services, and techniques to make service
requests. Some of these considerations do not begin to be properly handled until
traffi c engineering concepts are introduced.

4.2 Differentiated Services 67

4.2 DIFFERENTIATED SERVICES
Differentiated Services (DiffServ) is an approach to classifying packets within the
network so that they may be handled differently by prioritizing those that belong
to “more important” data fl ows and, when congestion arises, discarding fi rst those
packets that belong to the “least important” fl ows. The different ways data is
treated within a DiffServ network are called policies. For different policies to be
applied to traffi c it is necessary to have some way to differentiate the packets.
DiffServ reuses the ToS byte in the IP header to fl ag packets as belonging to dif-
ferent classes which may then be subjected to different policies. The assignment
of packets to different classes in DiffServ is sometimes referred to as coloring.

The policies applied to packets of different colors is not standardized. It is seen
as a network implementation or confi guration issue to ensure that the meaning
of a particular color is interpreted uniformly across the network. DiffServ simply
provides a standard way of fl agging the packets as having different colors.

4.2.1 Coloring Packets in DiffServ

The ToS interpretation of the ToS fi eld in the IP packet header has been made
obsolete and redefi ned by the Internet Engineering Task Force (IETF) for DiffServ.
In its new guise it is known as the Differentiated Services Code Point (DSCP), but
it occupies the same space within the IP header and is still often referred to as
the ToS fi eld. Old network nodes that used the ToS fi eld cannot interbreed suc-
cessfully with nodes that use the DSCP since the meaning of the bits may clash
or be confused. In particular, the bits in the ToS fi eld had very specifi c meanings
whereas those in the DSCP simply allow the defi nition of 64 different colors which
may be applied to packets. However, some consideration is given to preserving
the effect of the precedence bits of the ToS fi eld. The precedence bits are the
most signifi cant 3 bits in the ToS fi eld, and DiffServ-capable nodes are encouraged
to assign their interpretation of DSCPs to meet the general requirements of these
queuing precedences. Figure 4.2 reprises the IPv4 message header and shows the
6 bits designated to identify the DSCP.

As previously stated, the meanings of the DSCP values are not standardized, but
are open for confi guration within a network. Specifi cally, this does not mean that
a packet with DSCP set to 1 is by defi nition more or less important than a packet
with DSCP 63. The DSCP of zero is reserved to mean that no color is applied to the
packet and that traffi c should be forwarded as “best-effort,” but how this is handled
with respect to other packets that are colored remains an issue for confi guration
within the network. In fact, the interpretation of the DSCP at each node can be
varied according to the source and destination of the packets, or other fi elds of the
IP header such as the protocol. The rule that governs how packets are handled
within a DiffServ network is called the per-hop behavior (PHB).

The encoding of the DSCP fi eld in the IP header is defi ned in RFC 2474. This
RFC also describes the backwards compatibility with the precedence fi eld of the

68 CHAPTER 4 IP Service Management

ToS byte so that PHBs are defi ned to support the general properties controlled by
IP precedence. This process creates PHBs (one for each combination of the top
3 bits) of the form bbb000 to match the precedence behaviors and leaves the
other DSCP values open where each b may take the value zero or 1. However, it
further restricts the meaning of the DSCP values according to Table 4.1. The RFC
clearly states that care should be taken before applying any further restrictions to
the meaning of DSCP values unless very clear and necessary uses are identifi ed,
since otherwise the restricted set of values will quickly be depleted.

The Internet Assigned Numbers Authority (IANA) is responsible for managing
the allocation of DSCP values. In addition to the value for best effort, and the
seven values that match the ToS queuing precedence, a further 13 values are
defi ned. Twelve of the values are used to represent the assured forwarding (AF)
PHBs that are defi ned by RFC 2597. Four AF classes are defi ned, and within each
class there are three drop precedences defi ned. Each class groups packets for
common treatment and sharing of resources and the drop precedence (low,
medium, or high) indicates the likelihood of dropping a packet when congestion

0
0 1
Version

(IPv4 = 4)
Header
length DiffServ rsvd Payload length

Fragment identifier Flags Fragment offset

TTL Next protocol

Source address

Destination address

Checksum

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.2

IPv4 message header showing DSCP.

Table 4.1 DSCP Restricted Defi nitions

DSCP Bit Settings Meaning

000000 Best effort

bbb000 Conforms to the requirements of ToS queuing precedence

bbbbb0 Available for standardization

bbbb11 For experimental or local network usage

bbbb01 For experimental or local network usage, but may be taken for standardization

4.2 Differentiated Services 69

occurs. An AF PHB is indicated by a 2-digit number showing its class and its drop
precedence so that the AF PHB from class 2 with low drop precedence is repre-
sented as AF21. The AF PHBs are encoded in the DSCP as shown in Table 4.2.

Each router allocates a confi gurable set of resources (buffering, queuing space,
etc.) to handle the packets from each class. Resources belonging to one class may
not be used for packets from another class, except that it is permissible to borrow
unused resources from another class so long as they are immediately released
should that class need them. The drop precedence is applied only within a class,
so that packets from one class may not be dropped simply because another class
is congested.

The thirteenth standardized DSCP value (101110) is defi ned in RFC 3246
(which replaces RFC 2598) to represent an expedited forwarding (EF) PHB. The
intention is that EF packets should be handled at least at a confi gured rate regard-
less of the amount of non-EF traffi c in the system. That is, packets carrying the EF
DSCP should be prioritized over other traffi c at least until the confi gured service
rate has been delivered. There are, however, two issues with this requirement.
First, packets cannot be serviced faster than they arrive, meaning that a router
cannot deliver the service rate if it does not receive the data quickly enough.
Second, the time period over which the rate is measured and the act of measuring
the rate itself will affect the apparent rate. RFC 3246 presents formal equations
to defi ne the behavior of a router that supports EF traffi c—the bottom line is
simply that when an EF packet arrives it should be given priority over other traffi c
unless the required rate has already been delivered.

4.2.2 DiffServ Functional Model

The DiffServ functional model is based on the packet classifi cation shown in Figure
4.1. However, some details are added to help provide and distinguish between
different qualities of service. Packet classifi cation function can now be split into
two stages. In the fi rst stage (sometimes called traffi c conditioning) traffi c is
assigned to a particular DiffServ class by setting the DSCP on the packets—this
will most likely be done based on customer or application requirements and is
performed when the traffi c enters the network. The second stage is more akin to
that shown in Figure 4.1, and involves the ordering and classifying of received
packets based on the DSCP values they carry.

Table 4.2 DSCP Values for Assured Forwarding PHBs

AF Class 1 AF Class 2 AF Class 3 AF Class 4

Low Drop Precedence 001010 010010 011010 100010

Medium Drop Precedence 001100 010100 011100 100100

High Drop Precedence 001110 010110 011110 100110

70 CHAPTER 4 IP Service Management

The required quality of service is maintained within a network by managing
and avoiding congestion. Congestion is managed by assigning into queues the
packets classifi ed on receipt at a node. The queues can be scheduled for process-
ing according to a priority-based or throughput-based algorithm, and limits on the
queue sizes can also serve as a check on the amount of resources used by a traffi c
fl ow. Congestion can be avoided, in part, by preemptively discarding (dropping)
packets before congestion is reached. The heuristics for avoiding congestion may
be complex if they attempt to gather information from the network, or may be
simple if applied to a single node, but in any case the algorithm for picking which
packets should be dropped fi rst and which should be protected is based on the
DSCP values in the packets.

Reclassifi cation of traffi c may be benefi cial in the core of networks where
traffi c is aggregated or when one Service Provider uses another’s network.
The reclassifi cation process is similar to that originally applied at the edge of
the network, and new DSCP values are assigned for the aggregated traffi c fl ows.
Note, however, that it is usually important to restore the original DSCP value to
each packet as it exits the aggregated fl ow. Since it is impossible to restore
the original classifi cation of traffi c if the DSCP is simply changed (how would
we know the original value?), reclassifi cation is best achieved by using IP tunnel-
ing, where a new IP header with a new DSCP value is used to encapsulate
each end-to-end packet. When the packet emerges from the tunnel, the encapsu-
lating IP header is removed to reveal the original IP header, complete with
DSCP value.

At various points in the network it may be useful to monitor and police traffi c
fl ows. Levels of service are easiest to maintain when the characteristics of traffi c
fl ows are well understood, and it may be possible to use information fed back
from monitoring stations to tune the PHB at nodes in the network to improve the
quality of service delivered. The customers, too, are interested in monitoring the
performance of the network to be certain that they are getting what they pay
for—the wise service provider will also keep a careful watch on the actual service
that is delivered and will take remedial action before a customer gets upset. But
the fl ip side of this is that performance and tuning in the network may be based
on commitments to upper bounds on traffi c generation—no one traffi c source
should swamp the network. Traffi c policing can ensure that no customer or appli-
cation exceeds its agreements and may work with the traffi c conditioning com-
ponents to downgrade or discard excess traffi c.

4.2.3 Choosing to Use DiffServ

The motivation for using DiffServ is twofold. It provides a method of grading traffi c
so that applications that require more reliable, smooth, or expeditious delivery of
their data can achieve this. At the same time, it allows service providers to offer
different classes of service (at different prices), thereby differentiating their
customers.

As with all similar schemes, the prisoner’s dilemma applies and it is important
to avoid a situation in which all data sources simply classify their packets as the
most important with the lowest drop precedence. In this respect, the close tie
between policy and classifi cation of traffi c is important, and charging by service
providers based on the DSCP values assigned is a reasonable way to control the
choice of PHB requested for each packet.

DiffServ is most meaningful when all nodes in the domain support PHB func-
tions, although it is not unreasonable to have some nodes simply apply best-effort
forwarding of all traffi c while others fully utilize the DSCPs (but note that this may
result in different behaviors on different paths through the network). More impor-
tant is the need to keep PHB consistent through the network—that is, to maintain
a common interpretation of DSCPs on each node in the network.

There are some concerns with scalability issues when DiffServ is applied in
large service provider networks because of the sheer number of fl ows that traverse
the network. Attention to this issue has recently focused on Multiprotocol Label
Switching (MPLS) traffi c engineering, and two RFCs (RFC 2430 and RFC 3270)
provide a framework and implementation details to support DiffServ in MPLS
networks.

4.3 INTEGRATED SERVICES
Integrated Services (IntServ) provides a series of standardized ways to classify
traffi c fl ows and network resources focused on the capabilities and common
structure of IP packet routers. The purpose of this function is to allow applications
to choose between multiple well-characterized delivery levels so that they can
quantify and predict the level of service their traffi c will receive. This is particu-
larly useful to facilitate delivery of real-time services such as voice and video over
the Internet. For these services, it is not enough to simply prioritize or color traffi c
as in Differentiated Services. It is necessary to make quality of service guarantees,
and to support these pledges it is necessary for routers to reserve buffers and
queuing space to ensure timely forwarding of packets.

To allow routers to prepare themselves to support the traffi c at the required
level of service, data fl ow requirements must be characterized and exchanged.
The end points of a data fl ow need a way to describe the data they will send and
a way to represent the performance they need from the network. Transit nodes
can then reserve resources (buffers, queue space, etc.) to guarantee that the data
delivery will be timely and smooth.

IntServ provides a way to describe and encode parameters that describe data
fl ows and quality of service requirements. It does not provide any means of
exchanging these encodings between routers—the Resource Reservation Protocol
described in Section 4.4 is a special protocol developed to facilitate resource
reservation using IntServ parameters to describe data fl ows.

4.3 Integrated Services 71

72 CHAPTER 4 IP Service Management

4.3.1 Describing Traffi c Flows

IntServ uses a model described in RFC 1633. The internals of the router shown
in Figure 4.1 are enhanced to include an admission control component which is
responsible for determining whether a new data fl ow can be supported by a
router, and for allocating or assigning the resources necessary to support the fl ow.
Admission control uses an algorithm at each node on the data path to map
a description of the fl ow and QoS requirements to actual resources within
the node—it is clearly important that the interpretation of the parameters that
describe those requirements are interpreted in the same way on all nodes in
the network.

Admission control should not be confused with the closely related concepts
of traffi c policing (which is done at the edge of the network to ensure that the
data fl ow conforms to the description that was originally given) and policy control
(which polices whether a particular application on a given node is allowed to
request reservations of a certain type to support its data fl ows, and validates
whether the application is who it says it is). The admission control component
on each node is linked by the signaling protocol, which is used to exchange
the parameters that describe the data fl ow. But what information needs to be
exchanged?

A lot of research has gone into the best ways to classify fl ows and their require-
ments. Some balance must be reached between the following constraints:

■ The availability of network resources (bandwidth, buffers, etc.)
■ The imperfections in the network (delays, corruption, packet loss, etc.)
■ The amount, type, and rate of data generated by the sending application
■ The tolerance of the receiving application to glitches in the transmitted

data

The most popular solution, used by IntServ, is the token bucket. A token
bucket is quantifi ed by a data dispersal rate (r) and a data storage capacity—the
bucket size (b). A token bucket can be viewed as a bucket with a hole in the
bottom, as shown in Figure 4.3. The size of the hole governs the rate at which
data can leave the bucket, and the bucket size says how much data can be stored.
If the bucket becomes overfull because the rate of arrival of data is greater than
the rate of dispersal for a prolonged period of time, then data will be lost. A very
small bucket would not handle the case in which bursts of data arrive faster
than they can be dispersed even when the average arrival rate is lower than the
dispersal rate.

A fl ow’s level of service is characterized at each node in a network by a band-
width (or data rate) R and a buffer size B. R represents the share of the link’s
bandwidth to which the fl ow is entitled, and B represents the buffer space within
the node that the fl ow may use.

Other parameters that are useful to characterize the fl ow include the peak data
rate (p), the minimum policed unit (m), and the maximum packet size (M). The

peak rate is the maximum rate at which the source may inject traffi c into the
network—this is the upper bound for the rate of arrival of data shown in Figure
4.3. Over a time period (T), the maximum amount of data sent approximates
to pT and is always bounded by M + pT. Although it may at fi rst seem perverse,
the token-bucket rate for a fl ow and the peak data rate are governed by the rule
p > r; there is no point in having a dispersal rate greater than the maximum
arrival rate.

The maximum packet size must be smaller than or equal to the maximum
transmission unit (MTU) size of the links over which the fl ow is routed. The
minimum policed unit is used to indicate the degree of rounding that will be
applied when the rate of arrival of data is policed for conformance to other param-
eters. All packets of size less than m will be counted as being of size m, but packets
of size greater than or equal to m will have their full size counted. m must be less
than or equal to M.

4.3.2 Controlled Load

The controlled load service is defi ned using the defi nitions of a token bucket
and the other basic fl ow parameters described in the preceding section. The
controlled load service provides the client data fl ow with a quality of service

Current
bucket
usage

Rate of
dispersal
of date

Rate of
arrival
of date

Bucket size

Data source

FIGURE 4.3

Token bucket characterization of a data fl ow.

4.3 Integrated Services 73

74 CHAPTER 4 IP Service Management

closely approximating that which the same fl ow would receive from an otherwise
unloaded network. It uses admission control to ensure that this service is delivered
even when the network element is overloaded—in other words, it reserves the
resources required to maintain the service.

To provide the controlled load service, the fl ow must be characterized to the
network and the network must be requested to make whatever reservations it
needs to make to ensure that the service is delivered. Figure 4.4 shows how the
service parameters are encoded in RSVP. When the fl ow is characterized (on a
Path message) the service type fi eld is set to 1, and when the reservation is
requested (on a Resv message) the service type fi eld is set to 5 to indicate con-
trolled load. The data rates are presented in bytes per second using IEEE fl oating
point numbers. The byte counts are 32-bit integers.

4.3.3 Guaranteed Service

The guaranteed service sets a time limit for the delivery of all datagrams in the
fl ow and guarantees that datagrams will arrive within this time period and will
not be discarded owing to queue overfl ows on any transit node. This guarantee
is made provided that the fl ow’s traffi c stays within its specifi ed traffi c parameters.
This level of service is designed for use by applications that need fi rm guarantees
of service delivery and is particularly useful for applications that have hard real-
time requirements.

The guaranteed service controls the maximal queuing delay, but does not
attempt to reduce the jitter (i.e., the difference between the minimal and maximal
datagram delays). Since the delay bound takes the form of a guarantee, it must be

0
0 1 2 3 4 5 6 7 8 9 0 1 2 3

1

IntServ length = 7

Length of service data = 6

Parameter length = 5

Token-bucket rate (r)

Token-bucket size (b)

Peak data rate (p)

Minimum policed unit (m)

Maximum packet size (M)

Reserved
Version

(0)

Param type = 127
(token bucket)

Reserved 0 Service type

Flags = 0

2 3
4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.4

Encoding of the IntServ-controlled load parameters as used by RSVP.

large enough to cover cases of long queuing delays even if they are extremely
rare. It would be usual to fi nd that the actual delay for most datagrams in a fl ow
is much lower than the guaranteed delay.

The defi nition of the guaranteed service relies on the result that the fl uid delay
of a fl ow obeying a token bucket (with rate r and bucket size b) and being served
by a line with bandwidth R is bounded by b/R as long as R is no less than r.
Guaranteed service with a service rate R, where now R is a share of the available
bandwidth rather than the full bandwidth of a dedicated line, approximates to
this behavior and is useful for managing multiple services on a single link. To
guarantee the service level across the network, each node must ensure that the
delay imposed on a packet is no more than b/R + C/R + D where C and D are
small, per-node error terms defi ned in Section 4.3.4.

Figure 4.5 shows how the fl ow parameters are encoded for the use of the
guaranteed service when reservations are requested in RSVP. A token bucket is
encoded to describe the fl ow and two additional parameters are used to enable
the guaranteed service. The guaranteed service rate (R) increases the token-bucket
rate (r) to reduce queuing delays such that r ≤ R ≤ p. Effectively, it makes the hole
in the bottom of the bucket a bit larger so that the build-up of data in the bucket
is reduced. The slack (S) signifi es the difference between the desired delay for the

0
0 1 2 3 4 5 6 7 8 9 0 1 2 3

1

IntServ length = 10

Length of service data = 9

Parameter length = 5

Token-bucket rate (r)

Token-bucket size (b)

Peak data rate (p)

Minimum policed unit (m)

Maximum packet size (M)

Reserved
Version

(0)

Param type = 127
(token bucket)

Reserved 0
Service type = 2
(guaranteed serv)

Flags = 0

Parameter length = 2

Rate

Slack term

Param type = 130
(guaranteed serv)Flags = 0

2 3
4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.5

Encoding IntServ guaranteed service parameters as used by RSVP.

4.3 Integrated Services 75

76 CHAPTER 4 IP Service Management

fl ow (s) and the delay obtained by using the rate R, so S > 0 indicates the comfort
margin. This slack term can be utilized by a router to reduce its resource reserva-
tion for this fl ow if it feels confi dent that it can always meet the requirements—
that is, it can make a smaller reservation and eat into the slack.

4.3.4 Reporting Capabilities

To ensure that Integrated Services functions correctly, it is useful for end nodes
to be able to collect information about the capabilities and available resources on
the path between them. What bandwidth is available? What is the maximum MTU
size supported? What IntServ capabilities are supported?

In RSVP, this information is built up in an Adspec object (shown in Figure 4.6),
which is initiated by the data sender and updated by each RSVP-capable node
along the path. The Adspec object is originally built to contain the global param-
eters (type 1). Then, if the sender supports the guaranteed service, there is a set
of service parameters of type 2. Finally, if the sender supports the controlled load
service there is a set of service parameters of type 5. The IntServ length encom-
passes the full sequence of service parameters.

As the object progresses through the network, the reported parameters are
updated, giving the composed parameters for the path. This serves to reduce the
capabilities reported as the object progresses. For example, if one node has lower
bandwidth capabilities on a link it will reduce the advertised bandwidth in the
object it forwards. In this way, when the Adspec object reaches the far end of the
path, it reports the best available capabilities along the path.

If some node recognizes but cannot support either the guaranteed service or
the controlled load service and the service parameters are present in an Adspec,
it sets the Break Bit (shown as B in Figure 4.6) and does not update the parameters
for the service type.

The global parameters recorded are straightforward. They report the number
of IntServ-capable hops traversed, the greatest bandwidth available (as an IEEE
fl oating point number of bytes per second), the minimum end-to-end path latency
(measured in microseconds), and the greatest supported MTU (in bytes). To
support the guaranteed service, it is necessary to collect more information than
just the global parameters. Two error terms are defi ned:

■ The error term C is rate-dependent and represents the delay a datagram in the
fl ow might experience due to the rate parameters of the fl ow—for example,
time taken serializing a datagram broken up into ATM cells.

■ The error term D is rate-independent and represents the worst case non-rate-
based transit time variation. The D term is generally determined or set for an
individual node at boot or confi guration time. For example, in a device or trans-
port mechanism where processing or bandwidth is allocated to a specifi c time-
slot, some part of the per-fl ow delay may be determined by the maximum
amount of time a fl ow’s data might have to wait for a slot.

The terms C and D are accumulated across the path and expressed as totals
(Ctot and Dtot) in bytes and microseconds, respectively. Further, because traffi c
may be reshaped within the network, partial sums (Csum and Dsum) of the error
terms C and D along the path since the last point at which the traffi c was reshaped
are also reported. Knowing these four delay terms, a node may calculate how
much bufferage is needed to ensure that no bytes will be lost.

0
0 1 2 3 4 5 6 7 8 9 0 1 2 3

1

IntServ length = 19

Length of service data = 8

Parameter length = 1

Parameter length = 1

Parameter length = 1

Parameter length = 1

Parameter length = 1

Parameter length = 1

Parameter length = 1

Parameter length = 1

Length of service data = 8

Length of service data = 0

Reserved
Version

(0)

Param type = 4
(IS hop count)

Param type = 6
(path between est)

Global/default
parameters

Guaranteed
service

parameters

Controlled load
service

parameters

Param type = 8
(Min path latency)

Param type = 10
(path MTU)

Service type = 2
(guaranteed serv)

Param type = 133
(composed Ctot)

Param type = 134
(composed Dtot)

Param type = 135
(composed Csum)

Param type = 10
(composed Dsum)

Service type = 5
(controlled load)

Reserved B
Service type =1
(default/global)

Flags = 0

Flags = 0

Flags = 0

Flags = 0

Reserved B

Reserved B

Flags = 0

Flags = 0

Flags = 0

Flags = 0

IntServ hop count

Path bandwidth estimate

Minumum path latency

Composed path MTU

End-to-end composed value for Ctot

End-to-end composed value for Dtot

Since-last-reshaping point composed C [Csum]

Since-last-reshaping point composed D [Dsum]

2 3
4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.6

Encoding of the IntServ parameters as used to collect capabilities information by RSVP.

4.3 Integrated Services 77

78 CHAPTER 4 IP Service Management

Support of the controlled load service does not require any additional informa-
tion, but it is still useful to know whether any nodes on the path do not support
the service. For this reason, a “null” service parameter is inserted in the Adspec
object so that the Break Bit may be recorded.

4.3.5 Choosing to Use IntServ

IntServ is sometimes described as an “all or nothing” model. To guarantee a par-
ticular quality of service across the network, all nodes on the data path must
support IntServ and whichever signaling protocol is used to distribute the require-
ments. It may be determined, however, that this level of guarantee is not abso-
lutely necessary and that the improvement in service generated by using resource
reservations on some nodes within the network may be helpful. Protocols such
as RSVP recognize this and allow for data paths that traverse both RSVP-capable
and RSVP-incapable nodes.

The focus of IntServ is real-time data traffi c. It is not a requirement for data
exchanges that are not time-dependent, and such fl ows are better handled by
DiffServ where there is no overhead of another signaling protocol and no need
for complex resource reservations at each node. However, if real-time quality of
service is required, IntServ provides a formal and simple mechanism to describe
the fl ows and requirements.

Some people, especially those with an ATM background, consider the simplic-
ity of IntServ’s description of quality of service to be a signifi cant drawback.
Compared with the detailed qualifi cation of fl ows and behavior available in ATM,
IntServ appears to offer a crude way of characterizing traffi c. However, IntServ
(which is specifi cally designed for packet routers, not cell switches) has proved
useful in the Internet where it is used in conjunction with RSVP to support voice
over IP, and its very simplicity has brought it as many supporters as detractors.
For the ATM purists, RFC 2381 addresses how IntServ parameters may be mapped
to ATM QoS parameters.

The alternative to using IntServ is to not use it. There are some strong alterna-
tive viewpoints:

■ Limitations on bandwidth are likely to apply most signifi cantly at the edges of
the Internet. This implies that if an application is able to fi nd a local link of
suffi cient bandwidth to support its functions, there will always be suffi cient
bandwidth within the Internet to transfer its data. Although this may be an ideal
toward which service providers strive within their own networks, it is rarely
the case that end-to-end data transfer across the Internet is limited only by the
capacity of the fi rst and last links. With the development of bandwidth-greedy
applications, there is a continual confl ict between bandwidth demand and avail-
ability. Besides, quality of service for real-time applications is not simply an issue
of the availability of unlimited bandwidth, but is a function of the delays and
variations introduced within the network.

■ Simple priority schemes such as DiffServ provide suffi cient grading of service to
facilitate real-time applications. This may be true when only a proportion of the
traffi c within the network requires real-time quality of service, in which case simply
giving higher priority to real-time traffi c can ensure that it is handled promptly and
gets the resources it needs. However, as the percentage of high-priority traffi c
increases, the priority scheme becomes unable to handle the requirements ade-
quately and all high-priority data fl ows are equally degraded. There is no way to
announce that links are over their capacity or to prevent new fl ows.

■ It is the responsibility of the application and its IP transport protocol to handle
the vagaries of the network. Adaptive real-time protocols for distributing data
have been developed (e.g., the Real-Time Transport Protocol) and provide
mechanisms to smooth and buffer delayed or interrupted data. But although
these approaches may “heal” the data fl ows, they can still provide interruptions
that the human user is unwilling or unable to accept—readers who have tried
to have meaningful conversations over a satellite telephone will know how even
a predictable delay of one or two seconds can disrupt dialog.

4.3.6 Choosing a Service Type

Having decided to use IntServ, an application must choose which service to utilize.
The controlled load is the simplest service, defi ning and adhering to a simple token
bucket, and should be used wherever the greater control of the guaranteed service
is not required. The guaranteed service is less than trivial to use, but provides fi rm
guarantees of service delivery and is particularly useful for applications that have
hard real-time requirements and require guaranteed service.

Note that some applications reduce the controlled load token bucket to its
simplest form by setting the bucket rate and peak data rate to be equal at the
bandwidth required for the service, setting the minimum policed unit to be equal
to the maximum packet size, and setting the bucket size to an arbitrarily large
multiple of the maximum packet size. Generalized Multiprotocol Label Switching
(GMPLS) formalizes this by making bandwidth-only reservations using the con-
trolled load service fi elds but ignoring all fi elds except the peak data rate, which
identifi es the bandwidth required.

Over time, other IntServ services have been defi ned for specifi c uses. The null
service has been defi ned to allow the use of RSVP and RSVP-TE in MPLS by appli-
cations that are unable or unwilling to specify the resources they require from the
network. This is particularly useful for mixing DiffServ and IntServ within a single
network.

4.3.7 Choosing between IntServ and DiffServ

DiffServ is intrinsically more scalable than IntServ because it has a limited number
of classifi cations—each fl ow must be assigned to one of 64 DiffServ PHBs, whereas
in IntServ each individual fl ow has its own reservations and characteristics. On

4.3 Integrated Services 79

80 CHAPTER 4 IP Service Management

the other hand, DiffServ is less precise and requires coordinated confi guration of
all participating routers—IntServ may be combined with a signaling protocol such
as RSVP to allow the PHB for a fl ow to be dynamically selected and set through
the network. Furthermore, IntServ gives fi ner control of the real-time qualities of
traffi c delivery.

Some consideration should be given to implementing both IntServ and DiffServ
within the same network. This can be done “side-by-side,” with all IntServ traffi c
assigned to a single DSCP or by running IntServ over DiffServ. In the latter case, all
traffi c is classifi ed and assigned a DSCP, and then whole DSCP classes or individual
fl ows within a DSCP value can have their resources managed using IntServ.

4.4 RESERVING RESOURCES USING RSVP
RFC 2205 defi nes the Resource Reservation Protocol with the rather improbable
acronym RSVP. This protocol is a signaling protocol for use in networks that
support IntServ fl ow descriptions. The protocol is designed to allow data sources
to characterize to the network the traffi c they will generate, and to allow the data
sinks to request that the nodes along the data path make provisions to ensure that
the traffi c can be delivered smoothly and without packets being dropped because
of lack of queuing resources.

RSVP is intrinsically a simple signaling protocol but is complicated by its fl ex-
ible support of merged and multicast fl ows. Complexity is also introduced by the
fact that the protocol is intended to allocate resources along the path followed by
the data within the network (i.e., the forwarding path selected by the routers in
the network) and that this path can change over time as the connectivity of the
network changes.

RSVP bears close examination not simply for its value for making resource
reservations in an IntServ-enabled IP packet forwarding network. The protocol
also forms the basis of the signaling protocol used both for MPLS and GMPLS, and
so is very important in the next-generation networks that are now being built.

In addition to developing RSVP as a protocol, the IETF also worked on a
common application programming interface (API) to allow implementations to
make use of RSVP in a standardized way. This meant that application programmers
wanting to use RSVP from their applications could be independent of the imple-
mentation of RSVP and make use of a well-known API that provided a set of
standard services. The IETF, however, “does not do” interfaces and work on the
RSVP API (RAPI) was offl oaded in 1998 to The Open Group, an implementers’
consortium, from where it was used more as a guide than as a rigid standard.

4.4.1 Choosing to Reserve Resources

As described in Section 4.3, IntServ can be used to describe a traffi c fl ow, and to
indicate the behavior of network nodes if they are to guarantee the provision of

services to carry the fl ow across the network. This behavior can be met only if
the nodes reserve some of their resources for the fl ow.

The precise nature of resource reservation depends on the implementation of
the packet forwarding engine within the routers. Some may make dedicated res-
ervations of buffers to individual microfl ows. Others may use statistical assignment
to make sure that resources will not be over-stretched, provided that all data
sources conform to the parameters of the fl ows they have described. Whatever
the implementation, the fact that the network nodes have agreed to make reserva-
tions is a guarantee that the required QoS will be met and that traffi c will be
delivered in the way necessary for the proper functioning of the applications
within the constraints of the network.

Several well-known applications, such as Microsoft’s NetMeeting, include the
ability to use RSVP to improve the quality of voice and video services they deliver.
In general, voice over IP for IP telephony or for simple point-to-point exchanges
is a prime user of RSVP since the human ear can tolerate only a small amount of
distortion or short gaps in the transmitted signal.

4.4.2 RSVP Message Flows for Resource Reservation

The steps to resource reservation in RSVP are path establishment and resource
allocation. RSVP uses the Path message to establish a path from the source to the
destination, and a Resv message to reserve the resources along the path. The
source of the RSVP fl ow (the ingress) sends a Path message targeted at the desti-
nation of the fl ow (the egress), and this message is passed from node to node
through the network until it reaches the egress. The Path message is routed in
the same way that IP traffi c would be routed—the IP traffi c would be addressed
to the egress node, and by addressing the Path message in the same way, RSVP
ensures that the reservations will be made using the same path and hops that will
be used by the IP traffi c.

The Path message carries a specifi cation of the traffi c that will constitute the
fl ow (the traffi c specifi cation or TSpec). It should be noted, however, that the
traffi c may already be fl owing before the Path message is sent. That is, an RSVP-
capable network also supports best effort traffi c delivery and resource reservation
may be applied at any stage to improve the likelihood of traffi c delivery meeting
required quality standards.

Each node that processes the Path message establishes control state for the
message, verifi es that it is happy to attempt to deliver the requested service (e.g.,
checking the authenticity of the message sender), and builds a Path message to
send on toward the egress. The Path messages can collect information about the
availability of resources along the path they traverse. The ingress advertises (in
the Adspec) its capabilities, and each node along the way can modify the reported
capabilities to a subset of the original Adspec so that by the time the Path reaches
the egress the message contains a common subset of the capabilities of all routers
on the path.

4.4 Reserving Resources Using RSVP 81

82 CHAPTER 4 IP Service Management

The egress computes what resources will need to be reserved in the network.
These resources must satisfy the demands of the traffi c that will be sent, as
described by the TSpec, and must fi t within the available resources reported by
the Adspec. The egress responds to the Path message with an Resv message that
requests the reservation of the computed resources by including an RSpec. The
Resv is passed hop-by-hop back along the path traversed by the Path message and
at each hop resources are reserved as requested. When the Resv reaches
the ingress and has completed its resource allocations, the RSVP fl ow is fully
provisioned.

In general, RSVP implementations follow the model described in RFC 2205.
Control state is maintained separately for Path and Resv fl ows with only a loose
coupling between them. This is not necessarily intuitive but it allows for advanced
functions (described in Sections 4.4.6 and 4.4.7) where there may not be a one-
to-one correspondence between Path messages and resource reservations, or
where the Path may be rerouted while the reservation on the old path is still in
place.

Figure 4.7 shows the basic RSVP message fl ows. At step 1 the application at
the ingress quantifi es the traffi c fl ow that it is going to send to an application of

Host A

1

Host D
Router B

Path

Resv

ResvConf

PathTear

Path

Resv

ResvConf

PathTear

Path

Resv

ResvConf

PathTear

Router C

2

5 4

3

9

12

6

7 8

10 11

FIGURE 4.7

Basic RSVP message fl ows.

Host D and requests reservations from the network. Host A builds and sends a
PATH message addressed to Host D and this is routed to Router B. Router B (step
2) creates Path state and sends its own Path message toward Host D. When the
Path message reaches Host D (step 3), it also creates its Path state, but recognizes
that it is the destination of the fl ow and so delivers the resource request to the
target application identifi ed by a destination port ID contained in the Path
message.

The target application converts the Path message, with its description of the
traffi c and the capabilities of the routers along the path, into a request for resource
reservation. This request is passed to the RSVP component, which creates Resv
state, reserves the requested resources on the local node, and sends an Resv
message (step 4). The Resv message is not addressed to the ingress node, but is
addressed hop-by-hop back along the path the Path message traversed. This
ensures that the resources are reserved along the path that traffi c will follow
(i.e., along the path the Path message traversed) rather than along the shortest
return path. Thus, at Router C (step 5), once the Resv state has been created and
the resources reserved, a new Resv is sent out to Router B even if there is a direct
route from Router C to Host A. When the Resv reaches Host A (step 6), the
resources are reserved and an indication is delivered to the application to let it
know that the reservations are in place.

Figure 4.7 also shows the ResvConf message sent by the ingress to the egress
to confi rm that the resources have been reserved. The ResvConf is sent hop-by-
hop along the path of fl ow (steps 7 and 8) to the egress if, and only if, the egress
requested confi rmation when it sent the Resv (step 4). When the ResvConf
reaches the egress (step 9) it knows that the reservation was successful; this may
simplify processing at the egress, which can wait for a ResvConf or a ResvErr (see
Section 4.4.5) to confi rm or deny successful fl ow establishment.

When the ingress application no longer needs the reservations in place because
it is stopping its transmission of traffi c, it tears them down by sending a PathTear
message. The PathTear is a one-shot message that traverses the path hop-by-hop
(it is not addressed and routed to the egress) and lets each router know that it
can release its Path and Resv state as well as any reserved resources. This is shown
in Figure 4.7 at steps 10, 11, and 12.

Alternatively, the egress may determine that it can no longer support the res-
ervations that are in place and can ask for them to be torn down. It may send a
ResvTear message back toward the ingress along the path of the fl ow. Each router
that receives a ResvTear releases the resources it has reserved for the fl ow and
cleans up its Resv state before sending a ResvTear on toward the ingress. The Path
state is, however still left in place since that refers to the request from the ingress.
When the ResvTear reaches the ingress it may decide that the fl ow can no longer
be supported with resource reservations and will send a PathTear, as shown in
Figure 4.8.

Another alternative is for the ingress to modify the description of the traffi c
and send a new Path message to which the egress may respond with a new Resv.

4.4 Reserving Resources Using RSVP 83

84 CHAPTER 4 IP Service Management

Finally, the ingress may decide to do nothing, leaving its current request in place
and hoping that the egress will have a change of heart and will assign new
resources. In any event, after a ResvTear the traffi c may continue to fl ow and be
delivered in a best-effort manner.

4.4.3 Sessions and Flows

The concepts of sessions and fl ows are important in RSVP, but are often confused.
A session is defi ned by the triplet {destination address, destination port, payload
protocol}. This information provides the basic categorization of packets that are
going to the same destination application and can be handled within the network
in the same way. Sessions are identifi ed in RSVP by the Session Object carried
on Path and Resv messages, but note that the IP packet that carries a Path message
is also addressed to the destination IP address (i.e., the egress end of the
session).

A session, however, does not identify the data fl ow since this depends on the
source. A fl ow is characterized by the pair {source address, source port} in con-
junction with the session identifi er. This construct allows multiple fl ows within a
single session. This facility can be used for multiple fl ows from a single source or
for merging fl ows from multiple sources (see Section 4.4.7). Flows are identifi ed
on Path messages by the Sender Template Object and on Resv messages by Filter-
Spec Objects.

FIGURE 4.8

RSVP ResvTear message fl ow.

Both the destination and the source ports may be assigned the value zero. This
is most useful when the payload protocol does not use ports to distinguish fl ows.
Note that it is considered an error to have two sessions with the same destination
address and payload protocol, one with a zero destination port and one with a
nonzero destination port. If the destination port is zero, the source port for all
the fl ows on the session must also be zero, providing a consistency check for
payload protocols that do not support the use of ports. It is also considered an
error to have one fl ow on a session with source port zero and another with a
nonzero source port.

4.4.4 Requesting, Discovering, and Reserving Resources

Each Path message carries a Sender TSpec, which defi nes the traffi c characteristics
of the data fl ow the sender will generate. The TSpec may be used by a traffi c
control component at transit routers to prevent propagation of Path messages that
would lead to reservation requests that would be doomed to fail. A transit router
may decide to fail a Path by sending a PathErr (see Section 4.4.5); may use the
TSpec as input to the routing process, especially where equal cost paths exist;
or may note the problem but still forward the Path message, hoping that the
issue will have been resolved by the time the Resv is processed. The contents of
the Sender TSpec are described in Section 4.3. They characterize the fl ow as a
token bucket with peak data rate, maximum packet size, and minimum policed
unit.

As the Path message progresses across the network it may also collect informa-
tion about the available resources on the nodes and links traversed and the IntServ
capabilities of the transit nodes. The Adspec object is optional, but if present is
updated by each node so that by the time the Path message reaches the egress
node it contains a view of the delays and constraints that will be applied to data
as it traverses the path. This helps the egress node decide what resources the
network will need to reserve to support the fl ow described in the TSpec. Of
course, by the time the Resv message is processed within the network the reported
Adspec may be out of date, but subsequent Path messages for the same fl ow may
be used to update the Adspec, causing modifi cations to the reservation request
on further Resv messages.

The Resv message makes a request to the network to reserve resources for the
fl ow. The FlowSpec object describes the token bucket that must be implemented
by nodes within the network to support the fl ow described by the TSpec given
the capabilities reported by the TSpec.

The format of the contents of the TSpec, Adspec, and FlowSpec for RSVP are
described in Section 4.3.

4.4.5 Error Handling

RSVP has two messages for reporting errors. The PathErr message fl ows from
downstream to upstream (the reverse direction from the Path message), and

4.4 Reserving Resources Using RSVP 85

86 CHAPTER 4 IP Service Management

reports issues related to Path state. The ResvErr message reports issues with Resv
state or resource reservation and fl ows from upstream to downstream. So the
PathErr is sent back to the sender of a Path message, and the ResvErr is sent back
to the sender of a Resv message.

Error messages carry session and fl ow identifi ers refl ected from the Path or
Resv message and also include an Error Spec Object. The error is specifi ed using
an error code to categorize the problem and an error value to identify the exact
issue within the category.

The PathErr message fl ow is shown in Figure 4.9. There are relatively few
reasons why Router C might decide to reject the Path request (step 2), but the
router might apply policy to the request, might not be able to support the
requested fl ow, or might fi nd that the session clashes with an existing session
(one has destination port zero and the other nonzero). It is also possible that
Router C does not recognize one of the objects on the Path message and needs
to reject the message—this allows for forward compatibility with new message
objects introduced in the future. The PathErr message is returned hop-by-hop
toward the ingress. Router B (step 3) examines the error code and value and
determines whether it can resolve the issue by modifying the Path message it
sends. If it cannot, it forwards the PathErr on toward the ingress and does not
remove its own Path state.

Host A Host D
Router B

Path

Path

PathErr

Resv

Path

Path

PathErr

Resv

Path

Resv

Router C

1

4

7

3

2

5

6

FIGURE 4.9

Example message fl ow showing the RSVP PathErr message.

When the PathErr reaches the ingress node (step 4) it has three options. It may
give up on the whole idea and send a PathTear to remove the state from
the network, it may resend the Path message as it is in the hope that the issue in
the network will resolve itself (possibly through management intervention), or it
may modify the Path message to address the problem. When the new Path reaches
Router C (step 5) it will either reject it again with a PathErr or it will accept
the message and forward it, leading to the establishment of the RSVP
reservation.

PathErr may also be used after a Resource Reservation Protocol fl ow has
been established. The most common use is to report that a reservation has been
administratively preempted.

The ResvErr message is used to reject a Resv message or to indicate that there
is a problem with resources that have already been reserved. The fl ow of a ResvErr
does not affect Path state, but it does cause the removal of Resv state and frees
up any resources that have been reserved. Figure 4.10 shows an example message
fl ow including a ResvErr message.

When the Resv reaches Router B it determines that it cannot accept the
message (step 3). The reason may be policy or formatting of the message, as with
the Path/PathErr message, or the rejection may happen because the Resv asks for
resources that are not available—note that Router B’s resources may have been

Host A Host D
Router B

Path

Resv

Path

ResvErr

Resv

Resv

Path

ResvErr

Resv

Resv

Router C

1

4

7

3

2

5

6

FIGURE 4.10

Example message fl ow showing the RSVP ResvErr message.

4.4 Reserving Resources Using RSVP 87

88 CHAPTER 4 IP Service Management

allocated to other RSVP fl ows after the Adspec was added to the Path message.
Some errors can be handled by transit nodes (Router C at step 4), which might
issue a new Resv, but usually ResvErr messages are propagated all the way to the
egress, removing Resv state and freeing resources as they go.

When an egress (Host D at step 5) receives a ResvErr it has four options. It
may reissue the original Resv in the hope that the problem in the network will
be resolved, or it may give up and send a PathErr back to the ingress to let it know
that all is not well. However, two options exist for making constructive changes
to the resource request on the Resv message that may allow the RSVP fl ow to be
established. First, the egress may simply modify the resource request in the light
of the error received—this is shown in Figure 4.10 where the new Resv reaches
Router B (step 6) and is accepted and forwarded to the ingress. The second con-
structive change can arise if the Path message is retried by the ingress—as it tra-
verses the network it will pick up new Adspec values that refl ect the currently
available resources and this will allow the egress to make a better choice of
resource request for the Resv.

In practice, there may be some overlap in the procedures for handling a
ResvErr at the egress. The egress will usually send a PathErr and retry the old Resv
with any updates it can determine and modify its behavior if it receives a new
Path message.

4.4.6 Adapting to Changes in the Network

As suggested in the preceding section, RSVP handles problems during the estab-
lishment of an RSVP fl ow by resending its Path and Resv messages periodically.
This feature is even more important in the context of changes to the topology
and routes of a network.

The initial Path message is propagated through the network according to the
forwarding tables installed at the ingress and transit nodes. At each RSVP router,
the Path is packaged into an IP header, addressed to the egress/destination host,
and forwarded to the next router. The Resv is returned hop-by-hop along the path
of the Path without any routing between nodes. The reservations are, therefore,
made along the path that the Path message followed, which will be the path that
IP data also traverses.

But what would happen if there were a change in the network so that IP data
followed a new route? The reservations would remain on the old path, but the
data would fl ow through other routers where no reservations had been made.
This serious issue is resolved by having each node retransmit (refresh) its Path
message periodically—each message is subject to the routing process and will be
passed to the new next hop and so onward to the same egress. The Resv is now
sent back hop-by-hop along the new path, and reservations are made along the
new path to support the data fl ow that is using it.

Of course, the process described would leave unused resources allocated on
the old path, which is not good because those resources could not be used to

support other fl ows. This problem is countered by having the nodes on the old
path timeout when they do not receive a Path after a period (generally 51/4 times
the retransmission period to allow for occasional packet loss). When a node times
out, it knows that there is some problem with the upstream node—maybe the
link from the upstream node is broken, or perhaps the ingress has simply lost
interest in the reservation, or the Path could have been routed another way. When
a node stops receiving Path messages it stops forwarding Path and Resv messages
and removes the Path state associated with the fl ow.

Resv messages are similarly refreshed. This provides for survival of packet loss
and guarantees cleanup of the Resv state and the allocated resources in the event
of a network failure or a change in the Path.

Message refresh processing and rerouting is illustrated in Figure 4.11. Step 1
shows normal Path and Resv exchange from Host A to Host F through Routers C
and E (the shortest path). Step 2 indicates refresh processing as Path and Resv
messages are resent between the routers, but Host A now routes the Path message
to Router B and so through Router D to Router E. Router E (step 4) is a merge
point for the old and new fl ows and sends the new Path message on to the egress
(Host F) resulting in a new Resv from Host F (steps 5 and 6). Note that the
merge point (Router E) may decide to handle the merging of the fl ows itself by
sending an Resv back to Router D without sending a Path on to the destination,
Host F.

Router E can now make a reservation on the interface from Router D and send
an Resv to Router D. The Resv follows its new path back to Host A through Router
B (step 7) and all reservations are now in place on the new path. Note that data
is already fl owing along the new path and was as soon as the change in the routing
table took effect—this was before the Path refresh was sent on the new route.
This means that for a while the data was fl owing down a path for which it had
no specifi c reservation, highlighting the fact that RSVP is a best-effort reservation
process.

Step 8 indicates the refresh process on the new path and on the fragments of
the old path that are still in place. Each node sends a Path and an Resv to its
neighbor, with the exception that Host A sends a Path only to Router B.

After a while, Router C notices that it has not seen a Path message from Host
A (step 9). It may simply remove state and allow the state to timeout downstream
or, as in this case, it may send a PathTear to clean up. When the merge point,
Router E, receives the PathTear (step 10) it must not propagate it to the egress as
this would remove the reservation for the whole fl ow. Instead, it removes the
reservation on the interface (from Router C) on which the PathTear was received
and notices that it still has an incoming fl ow (from router D) so does not forward
the message.

At step 11, Host A notices that it hasn’t received a Resv from Router C and
cleans up any remaining resources.

Because the state messages (Path and Resv) must be periodically resent to keep
the RSVP state active, RSVP is known as a soft state protocol. The protocol over-

4.4 Reserving Resources Using RSVP 89

90 CHAPTER 4 IP Service Management

Host A Host F
Router B Router D

Router E

Router C

Path

Path

Resv

Resv

Resv

Resv

Path

Resv

Path

Resv

Path

Path

Resv

Resv

Path

Path

Resv

Resv

Path

Resv

Path

Path

Path Tear

Resv

Resv

Path

Path

Path

Path

Resv

Resv

Resv

Resv

1

7

8

11

3

2

9

6

4

10

5

FIGURE 4.11

Message refresh processing and rerouting in an RSVP network.

heads of a soft state have been the cause of many heated debates within the IETF.
The concern is that the number of fl ows in a network may reach a point at which
all of the bandwidth on a link, or all of the processing power of a router, will be
used up sending Path and Resv refresh messages, leaving no capacity for data
forwarding. Several solutions to reduce the impact of refresh processing have been
developed and are covered in a separate RFC (RFC 2961). They are described in
Section 4.4.12.

Even when RSVP messages are being refreshed, there is some risk that during
network overload RSVP packets will be dropped too often, resulting in the soft
state timing out. For this reason, routers are recommended to give priority to IP
packets that indicate that they are carrying RSVP messages.

4.4.7 Merging Flows

The preceding sections have alluded to merging fl ows in two contexts. First, when
distinguishing between sessions and fl ows, the use of RSVP to reserve resources
for multipoint-to-point fl ows was mentioned. Second, the discussion of adapting
to changes in the network introduced the concept of a merge point where the
old and new paths combined.

RSVP is structured to handle merging of fl ows within a session so that resources
are not double allocated. Figure 4.12 illustrates fl ow merging in a very simple
network to support a multipoint-to-point session from Hosts A and B to Host D.
There are two fl ows: A to D and B to D, with a single session carrying one payload
protocol for both fl ows and terminating at the same port on Host D.

In the example, Host A starts with the usual Path/Resv exchange (step 1). A
ResvConf is sent to confi rm that the reservation has been installed. Some time
later (step 2) Host B wants to join in and sends its own Path message. When
this second Path reaches Router C (step 3) it sees that although the fl ows are dif-
ferent (distinct source addresses) the session is the same (identical destination
address, destination port, and payload protocol), so it is acceptable to merge the
fl ows. However, merging the reservations for the fl ows is the responsibility of the
egress host and not the merge point, so Router C forwards a Path message for the
new fl ow.

When the new Path message reaches the egress (Host D at step 4) it may
choose to merge the reservations on the shared links—in this case, for the link
between Router C and Host D. It looks at the Sender TSpec from the two Path
messages and computes the reservations that must be made to accommodate both
fl ows. The reservation requests are made on a single Resv that applies to the whole
session, and may be expressed as a single reservation for both fl ows or as a res-
ervation for each fl ow.

When the Resv message reaches Router C (step 5) it splits the reservation for
the two separate upstream branches. In this simple case the existing branch from
Host A does not need to be modifi ed and Router C simply sends a Resv to Host
B indicating the reservation that applies to the link from Host B to Router C. This

4.4 Reserving Resources Using RSVP 91

92 CHAPTER 4 IP Service Management

process may be as simple as removing the reference to the fl ow from Host A and
forwarding the Resv, but more likely it involves some recomputation.

The computation of shared resources may be nontrivial since the requirements
may not lead to a simple summation of the resources for the two fl ows. In par-
ticular, some applications such as voice over IP conference calling do not call for
each fl ow to be active at the same time, in which case the reservation for merged
fl ows is no different from that for a single fl ow.

Host A

Host B

Host D
Router C

Path

Resv

Resv Conf

Resv Tear

Path Tear

Path

Resv

Resv Conf

Path

Resv

Path

Resv

Resv Conf

Resv Conf

PathTear

PathTear

Resv

Resv Conf

1

2

4

6

8

9

5

3

7

FIGURE 4.12

Simple example of fl ow merging in an RSVP network.

Figure 4.12 also shows the removal of fl ows from a merged situation. At step
6, Host A withdraws from the multipoint-to-point fl ow and sends PathTear. Router
C (step 7) forwards the PathTear, but it must be careful to remove only the state
associated with the fl ow that is removed—in this case, it does not remove any
Resv state nor release any resources because they are still associated with the
active Path state from Host B. When the egress (Host D at step 8) gets the PathTear
it can recompute the reservation requirements; it may do this from its records of
Path state or it may wait until it sees a Path refresh for the active fl ow. In any
case, the result is a new Resv with potentially reduced resource requirements. In
the simple case, this Resv is not forwarded by Router C since it simply reduces
the resource requirements to those needed (and already in place) on the link from
Host B to Router C. Finally (step 9), when Host B sends PathTear, all of the remain-
ing state and resources are released.

RSVP defi nes three styles for resource reservation. These are used by the egress
to indicate how resources may be shared between fl ows (i.e., data on the same
session from different senders). Two qualities are defi ned: the ability to share
resources and the precision of specifi cation of fl ow (i.e., the sender). The correla-
tion of these qualities defi nes three styles, as shown in Figure 4.13. A Style Object
is included in a Resv to let the upstream nodes know how to interpret the list of
FlowSpec Objects and FilterSpec Objects it carries (indicating resource requests
and associated fl ows—annoyingly, the FlowSpec describes the aggregate data
fl ow resources and not the individual fl ows which are found in FilterSpecs).
This becomes more obvious in conjunction with the message formats shown in
Section 4.4.9.

4.4.8 Multicast Resource Sharing

The resource sharing considered in the previous section handles the case of
multipoint-to-point fl ows in which the fl ows share downstream legs and optimize
resource allocations on the legs with the knowledge that the data sources are in
some way synchronized and will not fl ood downstream legs. RSVP also supports

Resource sharing

Sharing allowed

Shared explicit style
(SE)

Wildcard filter style
(WF)

No sharing

Fixed filter style
(FF)Sender

specification

Explicit

Wildcard Not defined

FIGURE 4.13

RSVP styles are defi ned by the type of resource sharing and how the fl ows are identifi ed.

4.4 Reserving Resources Using RSVP 93

94 CHAPTER 4 IP Service Management

multicast fl ows (i.e., point-to-multipoint) in which a fl ow has a single upstream
leg that branches as it proceeds downstream as shown in Figure 4.14.

Resource sharing in the multicast case is more intuitive since there is only one
traffi c source and the resources required to support the traffi c are independent
of the branches that may occur downstream. However, as the Path message is
forwarded from node to node it is copied and sent out on many different legs.
Each time it is forked, we can expect to see a distinct Resv message fl ow in the
opposite direction. Each Resv fl ows back upstream to the ingress and carries a
request to reserve resources. Clearly, we do not want to reserve resources for
each Resv, and some form of merging of Resv messages must be achieved. On the
other hand, some of the egress nodes may require different reservations, so the
merging of reservations at upstream nodes may not be trivial.

RSVP uses the same mechanisms for resource sharing in multicast sessions.
That is, Resv messages use styles to indicate how they apply to one or more fl ows
or sessions. Beyond this, it is the responsibility of split points to merge the require-
ments received on Resv messages from downstream and to send a single, unifi ed
Resv upstream. It is possible that the fi rst Resv received and propagated will ask
for suffi cient resources, in which case the split point does not need to send any
subsequent Resv messages upstream. On the other hand, if a Resv received from
downstream after the fi rst Resv has been propagated upstream demands increased
resources, the split point must send a new, modifi ed Resv upstream.

Note that a split point must not wait to receive a Resv from all downstream
end points before sending one upstream because it cannot know how many to
expect and which end points will respond.

A split point that is responsible for merging Resvs must also manage the dis-
tribution of ResvConf messages to downstream nodes that have asked for them
since these messages will not be generated by the ingress after the fi rst reservation
has been installed.

FIGURE 4.14

An RSVP multicast session.

4.4.9 RSVP Messages and Formats

Formal defi nitions of the messages in RSVP can be found in RFC 2205. The nota-
tion used is called Backus-Naur Form (BNF). It is a list of mandatory and optional
objects. Each object is denoted by angle brackets “< object >” and optional objects
or sequences are contained in square brackets “[< optional object >].” Sequences
of objects are sometimes displayed as a single composite object which is defi ned
later. Choices between objects are denoted by a vertical bar “< object one > |
< object 2 >.”

Note that the ordering of objects within a message is strongly recommended,
but is not mandatory (except that the members of composite objects must be kept
together) and an implementation should be prepared to receive objects in any
order while generating them in the order listed here.

Figure 4.15 shows the formal defi nition of the Path message. The sequence of
objects, Sender Template, Sender TSpec, and Adspec is referred to as the sender
descriptor. This becomes relevant in the context of Resv messages which may
carry information relevant to more than one sender descriptor.

Figure 4.16 shows the formal defi nition of an Resv message. The fl ow descrip-
tor list (expanded in Figures 4.17 through 4.19) is a composite sequence of objects
that allows a single Resv message to describe reservations for multiple sender
descriptors requested on Path messages. The type of fl ow descriptor list that is
used depends on the Style Object, which indicates the style of resource sharing.
As described in Section 4.4.7, there are three styles: wildcard-fi lter (WF), which
applies to all fl ows on the session; fi xed-fi lter (FF), which applies a single reserva-
tion to a specifi c list of fl ows; and shared-explicit (SE), which applies different
reservations to different lists of fl ows on the same session.

The FF fl ow descriptor is, itself, a composite object containing the FilterSpec
and Label objects and optionally a Record Route object. Notice that this defi nition
of FF fl ow descriptor aligns with the defi nition of the sender descriptor.

< Path Message > ::= < Common Header >
[< INTEGRITY >]
< SESSION >
< RSVP_HOP >
< TIME_VALUES >

[<POLICY_DATA >]
< sender descriptor >

< sender descriptor > ::= < SENDER_TEMPLATE >
< SENDER_TSPEC >

[< ADSPEC >]

FIGURE 4.15

Formal defi nition of the RSVP Path message.

4.4 Reserving Resources Using RSVP 95

96 CHAPTER 4 IP Service Management

[< RESV_CONFIRM >]
[< SCOPE >]

< Resv Message > ::= < Common Header >
[< INTEGRITY >]

< SESSION >
< RSVP_HOP >
< TIME_VALUES >

[< POLICY_DATA >]
< STYLE >
< flow descriptor list >

FIGURE 4.16

Formal defi nition of the RSVP Resv message.

< flow descriptor list > ::=
< WF flow descriptor > ::=

< WF flow descriptor >
< FLOWSPEC >

FIGURE 4.17

Formal defi nition of the RSVP WF fl ow descriptor list used on RSVP Resv messages.

< flow descriptor list > ::= < FF flow descriptor >
[< flow descriptor list >]

< FF flow descriptor > ::= < FLOWSPEC >
< filter spec list >

< filter spec list > ::= < FILTER_SPEC >
[< filter spec list >]

FIGURE 4.18

Formal defi nition of the RSVP FF fl ow descriptor list used on RSVP Resv messages.

< flow descriptor list > ::= < SE flow descriptor >

< SE flow descriptor > ::= < FLOWSPEC >
< filter spec list >

< filter spec list > ::= < FILTER_SPEC >
[< filter spec list >]

FIGURE 4.19

Formal defi nition of the RSVP SE fl ow descriptor list used on RSVP Resv messages.

The last element of the FF fl ow descriptor is recursive, allowing a list of sub-
lists where each sublist starts with a FlowSpec. It also allows the sublist to be just
an FF fl ow descriptor—in this case the FlowSpec is assumed to be identical to the
most recent one seen in the message.

This rather complex notation facilitates a rather complex real-world situation
in which merged fl ows or parallel fl ows share resources. Note that the notation
used in the preceding fi gures differs slightly from that presented in RFC 2205 in
an attempt at greater clarity.

Compound objects are also used for the shared explicit case, as shown in
Figure 4.19, but note that here only one FlowSpec object may be present. The
subsequent SE fi lter specifi cations match sender descriptors and all use the one
FlowSpec. Again, a variation on the notation of RFC 2205 is used here for
clarity.

Figure 4.20 shows the message format for a PathTear message. The PathTear
is modeled on the Path message. The sender descriptor is, however, optional since
it is not always necessary to identify the sender when tearing down a fl ow; the
RSVP Hop Object identifi es the upstream node, and this is usually enough to clarify
the Path state that is being removed. In cases of shared resources in which only
one fl ow from a session is being removed, the sender descriptor must be present
to disambiguate the fl ows.

The ResvTear message shown in Figure 4.21 is modeled on the Resv. Unlike
the Path/PathTear relationship, the fl ow descriptor is mandatory and identifi es
exactly which resource reservations are being torn.

The PathErr and ResvErr messages shown in Figures 4.22 and 4.23 are based,
respectively, on the Path and Resv messages to which they respond. That is, even
though a PathErr message fl ows from downstream to upstream, it is still modeled
to look like a Path message. As with PathTear and ResvTear, the sender descriptor
is optional on a PathErr but the fl ow descriptor is mandatory on a ResvErr. Both
messages carry the Error Spec Object to indicate the reported problem.

There has been some contention about the presence, or rather absence, of an
RSVP Hop Object on a PathErr message. Its presence would certainly have been
possible since the message is generated in response to a Path message, and includ-
ing it would have made implementation easier, but it is not strictly necessary since

< PathTear Message > ::= < Common Header >
[< INTEGRITY >]

< SESSION >
< RSVP_HOP >

[< sender descriptor >]

FIGURE 4.20

Formal defi nition of the RSVP PathTear message.

4.4 Reserving Resources Using RSVP 97

98 CHAPTER 4 IP Service Management

the PathErr should be received through the interface out of which the Path was
originally sent. This debate becomes interesting when a Path is sent out of one
interface and then (after a change to the routing table) out of another interface—
when a PathErr is received it is important to work out whether it applies to the
old or the new path.

< ResvTear Message > ::=

[< SCOPE >]

< Common Header >
[< INTEGRITY >]

< SESSION >
< RSVP_HOP >

< STYLE >
< flow descriptor list >

FIGURE 4.21

Formal defi nition of the RSVP ResvTear message.

< PathErr Message > ::= < Common Header >
[< INTEGRITY >]

< SESSION >
< ERROR_SPEC >

[< POLICY_DATA >]
[< sender descriptor >]

FIGURE 4.22

Formal defi nition of the RSVP PathErr message.

[< SCOPE >]
[< POLICY_DATA >]

< ResvErr Message > ::= < Common Header >
[< INTEGRITY >]

< SESSION >
< RSVP_HOP >
< ERROR_SPEC >

< STYLE >
< flow descriptor >

FIGURE 4.23

Formal defi nition of the RSVP ResvErr message.

The ResvConf message shown in Figure 4.24 confi rms a specifi c reservation
and so is modeled on the Resv message. The message contains an Error Spec
Object, not to report errors, but to report the source of the ResvConf, which
might not be the ingress node in the case of merged fl ows.

As can be seen from Figures 4.15 through 4.24, all RSVP messages begin with
a common header—this is shown in Figure 4.25. The header identifi es the version
of RSVP (currently one) and has a fl ags fi eld for future use. The message type fi eld
identifi es the RSVP message using values from Table 4.3. The checksum and length
fi elds are applied to the whole message, including all fi elds of the header, with
the length specifi ed in bytes. The checksum is computed as a standard one’s
complement of the one’s complement sum of the message, with the checksum
fi eld replaced by zero for the purpose of computing the checksum. If the check-
sum fi eld is transmitted containing a zero value, no checksum was transmitted.

The Send TTL fi eld in the message header is used to restrict the number of
RSVP hops on a path. Since RSVP messages are intercepted at each RSVP-capable
router, the normal IP TTL mechanism can be used only to restrict the number of
IP hops between RSVP capable routers. To restrict the absolute length of the RSVP
path and to provide some protection against looping, there is a TTL fi eld in the
RSVP header. The RSVP and IP TTL fi elds can also be used to detect the presence

< ResvConf Message > ::= < Common Header >
[< INTEGRITY >]

< SESSION >
< ERROR_SPEC >
< RESV_CONFIRM >
< STYLE >
< flow descriptor list >

0
0 1

Ver = 1 Flags = 0 Message type Checksum

Send TTL Reserved Length

Message body

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.24

Formal defi nition of the RSVP ResvConf message.

FIGURE 4.25

Each RSVP message has a common message header.

4.4 Reserving Resources Using RSVP 99

100 CHAPTER 4 IP Service Management

of non-RSVP hops since the two fi elds will remain in step only if each hop proc-
esses both fi elds.

4.4.10 RSVP Objects and Formats

As already described, RSVP messages are constructed from a common header fol-
lowed by a series of message objects. All message objects have a common format,
shown in Figure 4.26. The objects can be described as length–type–value (LTV)
constructs since they begin with a length fi eld that gives the size in bytes of the
entire object, followed by indicators of the type of object. The type indicator
divides the objects into classes (primary types) indicated by the class number (C-
Num) and subtypes indicated by the class type (C-Type). For example, the Session
Object has a C-Num of 1, but since it contains an IP address that may be an IPv4
or an IPv6 address, two C-Types are defi ned.

Although the C-Num value can be treated as a unique integer identifying the
class of object, the top 2 bits are overloaded to tell a message recipient how to
handle the message if it does not recognize or support an object carried on the
message. If the most signifi cant bit is clear, the object must be handled or the

Table 4.3 RSVP Message Types

Message Type Value Message

1 Path

2 Resv

3 PathErr

4 ResvErr

5 PathTear

6 ResvTear

7 ResvConf

0
0 1

Length Class typeClass number

Object contents

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.26

All RSVP message objects have a common format.

entire message must be rejected. If the top bit is set, unrecognized objects may
be ignored and must be propagated or removed from derivative messages accord-
ing to the setting of the next most signifi cant bit. These bit settings are shown in
Table 4.4. Since this is the fi rst version of RSVP, all objects are mandatory and
have the top bit of their C-Num clear. Future extensions, such as those for RSVP-
TE, may set the top bit to differentiate function when interoperating with older
implementations of the base RSVP specifi cation. Note that it is not valid to
consider a Session Object with a C-Num that has the top bit set (i.e., with C-Num
129 = 0×81). That would be an entirely different C-Num and so would indicate a
different object.

All RSVP objects are a multiple of 4 bytes in length. Where necessary, this is
achieved using explicit padding. This means that during message parsing each
object starts on a 4-byte boundary.

The Session Object shown in Figure 4.27 is used to defi ne the session to which
the fl ow belongs. A session is defi ned by the destination address (IPv4 or IPv6),
the destination port, and the payload protocol, so all these are carried in this
object. The C-Type is used to identify whether an IPv4 or IPv6 address is used.
The port number may be set to zero to indicate a session that encompasses fl ows
to all ports on the destination node. The protocol identifi er is the IP protocol
identifi er value that indicates the protocol carried by the IP data fl ow.

The other fi eld, the fl ags fi eld, has one defi ned bit for use on Path messages
only; if the value 0×01 is set, then the originator of the Path is unable to provide
edge-based policing that the actual traffi c fl ow falls within the parameters set in
the sender TSpec. The fl ag is propagated through the network until some node is
able to take responsibility for policing the traffi c.

The Class Number 3 is used to identify the RSVP Hop Object shown in Figure
4.28. (Note, C-Num 2 is mysteriously undefi ned!) The object identifi es the inter-
face through which this message was sent using an IPv4 or IPv6 address. That
is, on a Path message, the address identifi es the downstream interface of the
upstream node, while on a Resv the address indicates the upstream interface of
the downstream node. The RSVP Hop Object is sometimes referred to as the
previous hop (PHOP) when it is carried on a message that fl ows from upstream
to downstream (as a Path) and as the next hop (NHOP) when it is on a message
that fl ows from downstream to upstream (as a Resv).

Table 4.4 Top Bits of RSVP Object Class Numbers Direct Processing If Object
Is Unrecognized or Unsupported by the Message’s Receiver

C-Num Bit Setting Processing of Unrecognized or Unsupported Object

0bbbbbbb Reject entire message

10bbbbbb Ignore object and do not propagate

11bbbbbb Ignore object, but propagate unchanged

4.4 Reserving Resources Using RSVP 101

102 CHAPTER 4 IP Service Management

0
0 1

Length = 12
C-Type = 1

(IPv4)
C-Num = 1
(Session)

Length = 24
C-Type = 2

(IPv6)
C-Num = 1
(Session)

Protocol ID Flags Destination port

Protocol ID Flags Destination port

IPv4 address

IPv6 address

IPv6 address (continued)

IPv6 address (continued)

IPv6 address (continued)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.27

RSVP Session Object has an IPv4 and an IPv6 type.

0
0 1

Length = 12
C-Type = 1

(IPv4)
C-Num = 3

(RSVP Hop)

Length = 24
C-Type = 2

(IPv6)
C-Num = 3
(RSVP hop)

Logical interface handle

IPv4 address

Logical interface handle

IPv6 address

IPv6 address (continued)

IPv6 address (continued)

IPv6 address (continued)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.28

The RSVP Hop Object has an IPv4 and an IPv6 type.

The RSVP Hop Object also contains a logical interface handle (LIH). This value
is supplied by the upstream node on the Path message and is refl ected back
unchanged on the Resv. It can be used by the upstream node as a quick index to
the interface without the need to look up any IP addresses (perhaps containing
an interface index, or even a pointer to a control block). The fact that the IP
address in the RSVP Hop Object changes but the LIH is returned unchanged, has
led to innumerable implementation bugs.

The Time Values Object shown in Figure 4.29 has C-Num 5. It carries just one
piece of information: the interval between refresh messages sent to refresh state,
measured in milliseconds. This object is included in all Path messages and indi-
cates how frequently the Path message will be refreshed. Similarly, the object is
present on Resv messages and indicates how often the Resv will be refreshed.

In fact, refreshes are not sent precisely according to the refresh interval. It is
a curious fact that messages sent periodically by independent nodes in a network
can tend to become synchronized or clustered. If there are very many RSVP fl ows,
this clustering of refresh messages may lead to contention for processing or
network resources with a consequent disruption to control or even data traffi c.
RSVP disrupts this synchronization effect by randomly jittering the refresh inter-
vals—RFC 2205 recommends that the actual refresh interval between refresh
messages be picked randomly for each retransmission from the range half to one-
and-a-half times the signaled refresh period. Note that the signaled refresh period
is not updated for each refresh.

The refresh period is signaled to allow the recipient of the message to know
when to expect to receive a refresh. This is important in determining when
the soft-state should timeout if no refresh is received. Clearly, the largest
interval between two consecutive refreshes will be one-and-a-half times the sig-
naled refresh period. If there is some possibility of losing packets but still continu-
ing to support the fl ow, this number must be multiplied by the number
of refreshes that will actually be sent. This gives a formula for a state timeout (T)
as follows:

T K R= × ×1 5.

where R is the signaled refresh period and K is the number of retransmissions
(i.e., we are prepared to lose K − 1 refresh attempts). To this, add a little time for

0
0 1

Length = 8 C-Type = 1
C-Num = 5

(time values)

Refresh period

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.29

RSVP Time Values Object.

4.4 Reserving Resources Using RSVP 103

104 CHAPTER 4 IP Service Management

processing at the send and receive ends and for network propagation (say half of
the maximum refresh interval) and the formula becomes:

K R+() × ×0 5 1 5. .

For general use, the value K = 3 is suggested in RFC 2205, although this might
need to be varied for very unreliable networks. Turning the handle on this gives
the state timeout period of 51/4 R mentioned in Section 4.4.6.

Class Number 6 is used for the Error Spec Object carried on PathErr, ResvErr,
and ResvConf messages and shown in Figure 4.30. Two C-Types are defi ned to
indicate IPv4 or IPv6 addressing. The object reports the address of the node on
which the error was fi rst detected (or in the case of a ResvConf, the node that
originated the message), an error code to describe or classify the error, and an
error value to precisely specify the error—values for the error code and error
value are listed in Table 4.5.

The Error Spec Object also carries a fl ags fi eld. Currently just one fl ag value
is defi ned for use on the wire and this is valid only on ResvErr messages. 0×01
indicates that a reservation is still in place at the failure point.

Malformed messages are not generally reported to end systems in a PathErr or
ResvErr and are simply logged locally, or reported through network management
mechanisms. The only message formatting errors that are reported to end systems
are those that may refl ect version mismatches such as unknown object C-Nums

0
0 1

Length = 12
C-Type = 1

(IPv4)
C-Num = 6
(error spec)

Length = 24
C-Type = 2

(IPv6)
C-Num = 6
(error spec)

IPv4 address

IPv6 address

IPv6 address (continued)

IPv6 address (continued)

IPv6 address (continued)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

Error codeFlags Error value

Error codeFlags Error value

FIGURE 4.30

The RSVP Error Spec Object has an IPv4 and an IPv6 type.

Table 4.5 RSVP Error Codes and Values

Code Value Meaning

0 0 Confi rmation (used on ResvConf messages only)

1 Admission control failure reported on ResvErr messages when the requested
resources are unavailable. The fi rst 4 bits of the error value are ssur where:

■ ss = 00: the remaining 12 bits contain an error value listed below

■ ss = 10: the remaining 12 bits contain an organization-specifi c value unknown
to RSVP

■ ss = 11: the remaining 12 bits contain a value specifi c to a service, unknown to
RSVP

■ u = 0 means that RSVP must remove local Resv state and forward the message

■ u = 1 means that the message is information and that RSVP may forward the
message without removing local Resv state

■ The r bit is reserved and should be zero.

1 Delay bound cannot be met.

2 Requested bandwidth unavailable.

3 MTU in FlowSpec larger than interface MTU.

2 Policy control failures (defi ned in RFC 2750) appear on PathErr or ResvErr
messages to show that the corresponding Path or Resv was rejected for
administrative reasons such as authentication or permissions to request the
reservation.

3 0 A Resv message was received but the receiver could not correlate it to any Path
state for the corresponding session. This is used only on a ResvErr.

4 0 A Resv message was received and, although the receiver has Path state for the
corresponding session, it cannot correlate some fl ow descriptor on the Resv to a
sender template on a Path that it has previously sent. This is used only on a
ResvErr.

5 The reservation style confl icts with style(s) of existing reservation state on the
session. The error value holds the low-order 16 bits of the option vector of the
existing style (i.e., from the style object of a previous Resv). This is used only on
a ResvErr.

0 The reservation style on a Resv is unknown. This is used only on a ResvErr.

0 Messages for the same destination address and protocol have appeared, one with
a zero destination port and one with a nonzero destination port. This error would
normally be used on a PathErr to refl ect a problem with Path messages.

8 0 Path messages for the same session have the sender port set to zero and
nonzero.

4.4 Reserving Resources Using RSVP 105

Continued

106 CHAPTER 4 IP Service Management

or C-Types. This choice is made because the report of a formatting error cannot
be dynamically corrected by the node that caused the error, but a node that sends
an unsupported object may be able to fall back to a mode of operation that does
not require the object.

The RSVP Scope Object shown in Figure 4.31 is carried on Resv, ResvErr, and
ResvTear messages. It contains a list of addresses of senders (i.e., fl ow sources)
to which the message applies. This is useful to prevent message loops in multicast
networks using the Wildcard Filter reservation style, but is otherwise not used.
All addresses carried in a single Scope Object are of the same type. The type is

Table 4.5 RSVP Error Codes and Values Continued

Code Value Meaning

12 A previous reservation has been administratively preempted. The top 4 bits of the
error value are as defi ned for error code 1. No RSVP-specifi c error values are
defi ned.

13 An unknown object was received in a Path or Resv message and the high-order
bits of the C-Num indicate that such an event should cause the entire message to
be rejected. The error value shows the C-Num and C-Type of the unknown object.
This error code may appear in a PathErr or ResvErr message.

14 An object with a known C-Num but an unknown C-Type was received in a Path or
Resv message. The error value shows the C-Num and C-Type of the unknown
object. This error code may appear in a PathErr or ResvErr message.

20 Reserved for use on the API between applications and RSVP.

21 The format or contents of the traffi c parameters (TSpec, Adspec, or FlowSpec)
could not be processed. The top 4 bits of the error value are broken up as ssrr
where ss is as defi ned as for error code one and rr is reserved and set to zero. The
remaining bits have the values set out below when ss = 00.

1 Cannot merge two incompatible service requests.

2 Can provide neither the requested service nor an acceptable replacement.

3 The FlowSpec contains a malformed or unreasonable request.

4 The TSpec contains a malformed or unreasonable request.

5 The Adspec contains a malformed or unreasonable request.

22 A system error occurred while processing the traffi c parameters (TSpec, Adspec,
and FlowSpec). The error value is system specifi c and unknown to RSVP.

23 A system error occurred in the RSVP implementation. The error value is system
specifi c and unknown to RSVP.

indicated by the C-Type fi eld (set to 1 for IPv4 and 2 for IPv6). Since only one
Scope Object may be present on a Resv, scoped Resv messages can apply to
sources with one address type only.

The Style Object encodes the reservation style discussed in Section 4.4.7. As
shown in Figure 4.32, the object contains a fl ags fi eld (currently no fl ags are
defi ned) and an option vector. The option vector encodes the two style compo-
nents (type of resource sharing, and fl ows identifi cation) shown in Figure 4.13.
Only the least signifi cant 5 bits of the vector are used, as shown in Table 4.6.

The Style Object is mandatory on Resv, ResvTear, and ResvErr messages but
not included on Path, PathTear, PathErr, or ResvConf messages (causing Frank
Sinatra, Bing Crosby, and Dean Martin to sing, “You either have or you haven’t
got style”).

Figure 4.33 shows the FilterSpec Object carried on Resv, ResvTear, ResvErr, and
ResvConf messages to identify senders (fl ow sources). FilterSpecs with C-Num 10
are identical to Sender Template Objects with C-Num 11 that are present on Path,
PathTear, and PathErr messages, where they serve the same purpose. The objects
carry one of three C-Types according to the address formats in use, and in addition
to the address of the source node, they contain a source port or an IPv6 fl ow label
to indicate the port of fl ow label used by the application that is sending data. If the

0
0 1

Length

First address

Other addresses

Last address

C-Type
C-Num = 7

(Scope)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.31

RSVP Scope Object is a list of addresses of the same type.

0
0 1

Length = 8 C-Type = 1
C-Num = 8

(style)

Option vectorFlags = 0

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.32

The RSVP Style Object.

4.4 Reserving Resources Using RSVP 107

108 CHAPTER 4 IP Service Management

Table 4.6 Bit Settings in Options Vector of RSVP
Style Object

Bottom Five Bits Meaning

00bbb Reserved

01bbb Distinct reservations

10bbb Shared reservations

11bbb Reserved

bb000 Reserved

bb001 Wildcard

bb010 Explicit

bb011-bb111 Reserved

10001 Wildcard Filter (WF)

01010 Fixed Filter (FF)

10010 Shared Explicit (SE)

source port is zero, the Path message and corresponding reservation request apply
to all fl ows on the session (i.e., to the same destination and destination port, carry-
ing the same payload protocol) from the indicated address.

The Resv Confi rm Object shown in Figure 4.34 is included on Resv messages
to request that a ResvConf is returned to confi rm the reservations. The address
specifi ed may be IPv4 or IPv6 according to the C-Type, and indicates the destina-
tion to which the ResvConf should be sent. This targeting of a ResvConf is appar-
ently in contradiction to the statement made in Section 4.4.2 that ResvConf
messages are forwarded hop by hop along the RSVP path, but it simply allows a
node that is not the egress to request a ResvConf from the ingress and know when
the message is received that it should not forward it further downstream. The
Resv Confi rm Object is returned unchanged in the ResvConf message to provide
correlation.

The FlowSpec (C-Num 9), Sender TSpec (C-Num 12), and Adspec (C-Num 13)
objects use C-Type 2 to indicate that they carry IntServ information describing the
traffi c fl ow. The format of the contents of these objects is described in Section
4.3 and defi ned in RFC 2210.

The Integrity Object (C-Num 4) is used to protect against message spoofi ng
that could lead to theft of resources or denial of service to legitimate users. The
use and contents of the Integrity Object are described in RFC 2747 to include a
48-bit key, a sequence number, and a message digest (such as one produced using

0
0 1

Length = 12
C-Type = 1

(IPv4)
C-Num = 10
(filter spec)

Length = 24
C-Type = 2

(IPv6)
C-Num = 10
(filter spec)

IPv4 address

IPv6 address

IPv6 address (continued)

IPv6 address (continued)

IPv6 address (continued)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

Reserved Source port

Reserved Source port

Length = 24
C-Type = 3

(IPv6 flow label)
C-Num = 10
(filter spec)

IPv6 address

IPv6 address (continued)

IPv6 address (continued)

IPv6 address (continued)

Reserved IPv6 flow label

FIGURE 4.33

The RSVP FilterSpec Object has three types.

the MD5 algorithm). Note that IPsec was considered as an alternative to embed-
ding integrity information within RSVP messages, but was rejected because IPsec
relies on a clear indication of source and destination points, which is obscured
by the addressing model used in RSVP. In addition, RSVP neighbors may be sepa-
rated by multiple routers which are not RSVP capable and this may confuse the
application of IPsec. On the other hand, if the network is simple, IPsec may be
used following the rules of RFC 2207 so that the source and destination port fi elds
are replaced by IPsec Security Parameter Indexes. RFC 2747 also defi nes Integrity
Challenge and Integrity Response messages to help a node verify that its peer is
legitimate.

4.4 Reserving Resources Using RSVP 109

110 CHAPTER 4 IP Service Management

A fi nal RSVP object, the Policy Object (C-Num 14), is described in RFC 2205
as “for further study.” A slew of RFCs provide input to the problem of managing
admission control policy—that is, the question of administering which nodes are
allowed to request what reservations under what circumstances. This feature fi rst
requires that applications and users are properly identifi ed using the integrity
procedures just discussed, and then needs the exchange of policy information
between the applications and policy control elements that police reservation
requests within the network. RSVP passes the contents of Policy Objects from
node to node transparently and simply delivers them to policy control compo-
nents on the routers.

RFC 2750 proposes a format for the Policy Object to contain a list of RSVP-like
objects relating to the reservation request and a series of policy elements to iden-
tify the permissions possessed by the application requesting the service and
including the identity of the application.

4.4.11 Choosing a Transport Protocol

RSVP is designed to operate over raw IP. The protocol includes suffi cient mecha-
nisms to tolerate lost packets and to detect corruption—it needs none of the
services provided by an IP transport protocol. RSVP messages are encapsulated in
IP packets using the protocol fi eld value 46 (0×2E). Because Path messages are
subject to normal routing and may be forwarded through parts of the network
that are not RSVP capable, the IP packets that carry them use the source IP address
of the node that is the source of the RSVP fl ow, and the destination IP address of
the node that is the destination of the RSVP fl ow. This creates an issue because

0
0 1

Length = 8
C-Type = 1

(IPv4)
C-Num = 15

(resv confirm)

Length = 20
C-Type = 2

(IPv6)
C-Num = 15

(resv confirm)

IPv4 receiver address

IPv6 receiver address

IPv6 receiver address (continued)

IPv6 receiver address (continued)

IPv6 receiver address (continued)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.34

The RSVP Resv Confi rm Object has two types.

intervening RSVP-capable routers need to act on RSVP messages and would not
normally see them since the messages would be forwarded according to the des-
tination IP address. To circumvent this problem, the Router Alert IP option is used.
This process is also applied to PathTear messages, but all other messages are
addressed hop-by-hop (i.e., they carry the IP addresses of adjacent RSVP-capable
routers).

Since some host systems (especially older ones) do not provide access to raw
IP, RSVP is also specifi ed to operate over the User Datagram Protocol (UDP). UDP
is a lightweight transport protocol that is commonly available on host systems. A
source host that does not have access to raw IP may send its RSVP messages
encapsulated in UDP addresses to the next-hop RSVP-capable router using port
1698. The fi rst router that is RSVP-capable and has access to raw IP (likely to be
the fi rst router) is required to convert the RSVP exchange to raw IP for forwarding
into the network.

At the egress from the network, a router may need to convert back to UDP
encapsulation before it delivers RSVP messages to a host. RFC 2205 suggests that
a router will learn when this is necessary by the receipt of UDP encapsulated
messages from that host, but this has an obvious fl aw since someone has to receive
the fi rst Path message. The net result is that routers must be confi gured with the
capabilities of their adjacent hosts. Most hosts these days provide access to raw
IP so that RSVP implementations do not need to use UDP.

4.4.12 RSVP Refresh Reduction

As mentioned earlier, one of the consequences of RSVP being a soft-state protocol
is that messages must be periodically exchanged to keep the state active and the
reservations in place. One concern with this is that considerable bandwidth and
processing capabilities may be used up in simply keeping state active, reducing
the capability to establish new state promptly and even, perhaps, affecting the
ability to forward data. Refresh reduction is based not on removing the require-
ment to refresh RSVP state, nor on changing the interval between refreshes.
Instead, the focus is on reducing the amount of processing required by both the
sender and the receiver of a state refresh message and minimizing the number of
bytes that must be sent between the nodes.

RFC 2961 describes a small set of extensions to RSVP to facilitate refresh reduc-
tion. These extensions arise from heated debates within the IETF, both about the
need for any changes and about the best way to address the issue. In the end,
three procedures were standardized: the fi rst and second are independent
(although they may be used together), but the third builds on the second.

All three extensions are treated as a single functional block and are used
between a pair of RSVP routers only if both support them. This support is signaled
in a new fl ag setting in the fl ags fi eld in the Session Object. 0×01 is used to indicate
support of all the refresh reduction extensions. Indicating support of the
extensions does not mean that an RSVP router needs to use all or any of them in

4.4 Reserving Resources Using RSVP 111

112 CHAPTER 4 IP Service Management

messages that it sends, but it must be able to process all of them if it receives
them.

The fi rst extension allows multiple RSVP messages to be packaged together as
a bundle within a single IP message. A new RSVP message type, 12, indicates a
Bundle message. A Bundle message is built of an RSVP message header followed
by one or more RSVP messages. The number of bundled RSVP messages is not
indicated, but the length of the Bundle message itself indicates whether there is
more data, and hence another message, when processing of one bundled message
has completed. The main advantages of message bundling are a small reduction
in the number of bytes transmitted between RSVP routers, and a reduction in
processing, especially through the IP stack—a clutch of refresh messages may be
collected together into a single bundle and sent at the same time. The format of
a Bundle message is shown in Figure 4.35.

When an RSVP node receives a Path or a Resv message it needs to distinguish
three cases. The message may be for a new fl ow, it may be a change to an
existing fl ow (e.g., modifying the bandwidth required for a fl ow), or it may be a
refresh. New fl ows are easily distinguished because there is no matching stored
Path or Resv state. Modifi cation requests can be distinguished from state refresh
messages because they contain changes in one or more of the parameters when
compared with the previous message received. This means that each time a
refresh message is received, an RSVP router must compare it fully with the previ-
ous message; since the order of objects in a message may vary without affecting
the meaning, the receiver cannot simply compare the whole message as a block
of memory, but must compare the objects one by one. This introduces a consider-
able overhead in processing, which is addressed in the refresh reduction exten-
sions by placing a message identifi er on each message. The Message Identifi er
Object, shown in Figure 4.36, includes a monotonic increasing message identifi er
number and an epoch that is used to disambiguate different instances of an adja-
cent node so that there is no confusion about the reuse of message ID values if a

IP packet

IP header

RSVP
header

RSVP
header

RSVP message

Bundle message

RSVP objects
RSVP
header

RSVP message

RSVP objects

FIGURE 4.35

The Bundle message encapsulates one or more RSVP messages in a single IP message
using an additional RSVP message header.

node is restarted. The epoch can be a random number or a function of real
time.

If the message identifi er on a message is identical to that previously received,
no further checking is required: the message is a refresh. If the message identifi er
is lower than that previously received, the message is an old message that has
been delayed in the network and can be ignored. If the message number is greater
than that previously received, the message must be examined more closely and
may be a refresh or a modifi cation. The Message Identifi er Object may be carried
on every RSVP message. It serves both the purpose of ensuring acknowledged
delivery of messages and of fl agging Path and Resv messages as refreshes, as shown
in Figures 4.37 and 4.38.

Message identifi ers uniquely identify individual messages and make it possible
to formally acknowledge the receipt of a message. The Message Identifi er Object
contains a fl ag (0×01) that requests the receiver to acknowledge receipt. This
acknowledgment is carried in a Message Ack Object, as shown in Figure 4.39. The
object contains the message identifi er of the acknowledged message and may be
carried one at a time or as a series in any message that fl ows in the opposite direc-
tion, as indicated for Path and Resv messages in Figures 4.37 and 4.38.

0
0 1

Length = 12 C-Type = 1
C-Num = 23
(message ID)

EpochFlags

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

Message ID

FIGURE 4.36

RSVP Message Identifi er Object.

< Path Message > ::= < Common Header >
[< INTEGRITY >]

[[< MESSAGE_ID_ACK > < MESSAGE_ID_NACK >] . . .]
[< MESSAGE_ID >]

< SESSION >
< RSVP_HOP >
< TIME_VALUES >

[< POLICY_DATA >]
< sender descriptor >

FIGURE 4.37

Formal defi nition of the RSVP Path message for refresh reduction showing the optional
inclusion of Message ID and Message ID Acknowledgment Objects.

4.4 Reserving Resources Using RSVP 113

114 CHAPTER 4 IP Service Management

If there is no message being sent in the opposite direction, the receiver must
still acknowledge the received message identifi er as soon as possible. It can do
this by sending an Acknowledgment message that simply carries the acknowl-
edged message identifi ers, as shown in Figure 4.40.

The sender of a message carrying a message identifi er that has requested
acknowledgment retransmits the message periodically until it is acknowledged or

< Resv Message > ::= < Common Header >

[< POLICY_DATA >]
< STYLE >
< flow descriptor list >

[< INTEGRITY >]
[[< MESSAGE_ID_ACK > < MESSAGE_ID_NACK >] . . .]
[< MESSAGE_ID >]

< SESSION >
< RSVP_HOP >
< TIME_VALUES >

[< RESV_CONFIRM >]
[< SCOPE >]

FIGURE 4.38

Formal defi nition of the RSVP Resv message for refresh reduction showing the optional
inclusion of Message ID and Message ID Acknowledgment Objects.

0
0 1

Length = 12
C-Type = 1

(Ack)
C-Num = 24

(Message Ack)

EpochFlags = 0

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

Message ID

FIGURE 4.39

The RSVP Message Ack Object.

< Ack Message > ::= < Common Header >
[< INTEGRITY >]

[[< MESSAGE_ID_ACK > < MESSAGE_ID_NACK >] . . .]
< MESSAGE_ID_ACK > < MESSAGE_ID_NACK >

FIGURE 4.40

Formal defi nition of the RSVP Ack message.

until it decides that there is a problem with the link or with the receiving node.
Retransmission is relatively frequent (roughly every half a second), so it is impor-
tant not to swamp the system with retransmissions. RFC 2961 suggests that the
sender should apply an exponential back-off, doubling the time between retrans-
missions at each attempt. It also suggests that a message should be transmitted a
maximum of three times even if it is not acknowledged (i.e., one transmission and
two retransmissions).

The third extension for refresh reduction recognizes that once a message
identifi er has been assigned to a state message, it is not necessary to retransmit
the whole message—only the message identifi er needs to be sent to keep the state
alive. The Summary Refresh (Srefresh) message shown in Figure 4.41 is used to
send a list of message identifi ers in this fashion. The Srefresh message itself does
not carry a message identifi er in its own right, but each of the identifi ers that it
does carry can be accepted or rejected, although usually no specifi c acknowledge-
ment is requested, so only rejections are sent. A rejection uses the Message Nack
object, which has C-Type of 2 but is otherwise identical to a Message Ack object.
The Message Nack allows some message identifi ers out of the set on the Srefresh
to be rejected without rejecting all of them. The rejection is necessary if the
receiver does not match the message identifi er against a stored value—it cannot
use the Srefresh to establish new state since the message does not carry the full
Path or Resv information.

Message Nack Objects can be carried within the other messages such as the
Path and Resv messages shown in Figures 4.37 and 4.38. Alternatively, the
Acknowledgment message shown in Figure 4.40 may be used. If the Srefresh is
received and accepted, a single Message Ack carrying the message ID of the
Srefresh message acknowledges all of the message IDs carried in the Srefresh list.
If one or more message IDs in the Srefresh list is rejected, the message itself must
still be acknowledged and Message Nacks must be used to reject each unaccept-
able message ID. There is no need to acknowledge individual message IDs from
within the Srefresh list.

< Srefresh Message > ::= < Common Header >
[< INTEGRITY >]

[[< MESSAGE_ID_ACK > | < MESSAGE_ID_NACK >]. . .]
[< MESSAGE_ID >]

< srefresh list > | < source srefresh list >
<srefresh list > ::= < MESSAGE_ID_LIST > | < MESSAGE_ID MCAST_LIST >

[< srefresh list >]
< source srefresh list > ::= < MESSAGE_ID SRC_LIST >

[< source srefresh list >]

FIGURE 4.41

Formal defi nition of the RSVP Srefresh message.

4.4 Reserving Resources Using RSVP 115

116 CHAPTER 4 IP Service Management

The basic Srefresh contains a Message ID List Object, as shown in Figure 4.42.
The object lists a series of message IDs for state that is being refreshed, but
recognizes that the epoch value does not need to be repeated for each
message ID.

The Srefresh message is complicated considerably by multicast issues. It is
possible that a downstream node will receive a refresh of Path state from multiple
upstream interfaces and care must be taken to send the acknowledgments to the
right place and only as frequently as is actually required. The Source Message List
Object and Message ID Multicast List Object shown in Figure 4.43 allow a
single Srefresh message to refresh state with reference to source and destination
addresses—the addresses shown may be IPv4 or IPv6 depending on the object’s
C-Type (2 or 3 for Source Message List, 4 or 5 for Message ID Multicast List). Note
that this format is considerably suboptimal since the addresses must be repro-
duced for each message ID.

All three refresh reduction procedures can be combined with Acknowledge-
ment and Srefresh messages being bundled along with other messages.

4.4.13 Choosing to Use Refresh Reduction

The choice to use RSVP refresh reduction is not straightforward. Before it can be
used at all, the protocol extensions must be supported by the RSVP nodes at each
end of a link and fl agged in the common message header (fl ag value 0×01) of all
messages, and this may restrict the choice since not all implementations include
support for refresh reduction.

Consideration should then be given to the value of each of the three refresh
mechanisms. Although, strictly speaking, the setting of the refresh reduction-
capable fl ag in the common message header means that a node fully supports all
the mechanisms, it does not actually need to actively use them. The only require-
ments are that it should be able to receive and correctly process refresh reduction

0
0 1

Length
C-Num = 25

(Message ID list)
C-Type = 1

Flags = 0 Epoch

First message ID

Last message ID

Other message IDs

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.42

RSVP Message ID List Object used in the Srefresh message.

0
0 1

Length

EpochFlags = 0

First message ID

First source address

Other message ID address pairs

Last message ID

Last source address

C-Type = 2
(IPv4 Source list)

C-Num = 25
(Message ID list)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

0
0 1

Length

EpochFlags = 0

First message ID

First source address

First destination address

Other message ID, source address,
destination address groupings

Last message ID

Last source address

Last destination address

C-Type = 2
(IPv4 Source list)

C-Num = 25
(Message ID list)

2 3 4 5 6 7 8 9 0 1 2 3
1 2 3

4 5 6 7 8 9 0 1 0 12 3 4 5 6 7 8 9

FIGURE 4.43

RSVP Source Message ID List Object and Message ID Multicast List Object.

4.4 Reserving Resources Using RSVP 117

118 CHAPTER 4 IP Service Management

messages and objects that it receives. This means that in implementations that are
suitably confi gurable the precise refresh reduction operations can be selected
individually. Further, in networks that will be made up of only a single vendor’s
routers, a choice can be made to partially implement refresh reduction.

The basic requirement for two of the options is that message IDs are supported,
that is that Path and Resv messages and their refreshes carry message IDs.
A sender may choose whether to use a new message ID on each refresh
message, a receiver may choose whether to take advantage of the message ID to
expedite refresh processing, and a sender may opt to use the Summary Refresh
message or to simply retransmit full refresh messages. These choices depend on
backward compatibility (existing implementations will check for refreshes by
examining each fi eld of a received object), implementation complexity (some
implementations fi nd it hard to know whether they are sending a refresh message
or one that modifi es the previous request, and the Srefresh processing is a con-
siderable amount of new code), and the number of fl ows between a pair of RSVP
neighbors (it may not be necessary to use Srefresh if there are only a few tens of
fl ows).

The value of Bundle messages remains debatable. On an ordinary Ethernet link
carrying IPv4 packets, the saving from bundling two RSVP messages together is
just 26 bytes (Ethernet header 14 bytes plus IP header 20 bytes, less 8 bytes for
the RSVP Bundle message header). When RSVP messages are of the order of 100
bytes each, this saving is only around 10 percent. On the other hand, when small
messages such as Acknowledgements and ResvConfs are being sent the savings
may be better.

But message bundling requires that the sender has two messages ready to be
sent at the same time. The implementation of this may be hard to achieve since
it is not advisable to hold on to one message in the hope that another will need
to be sent soon. Similarly, it may damage the randomization of state refresh periods
to deliberately bunch refreshes into a single Bundle message. Bundling may,
however, be of advantage in systems that are able to recognize that there is a
queue of messages waiting to be sent and can then collect those messages into a
single bundle, and on routers where there is a considerable overhead associated
with sending or receiving an IP packet.

4.4.14 Aggregation of RSVP Flows

Aggregation of traffi c fl ows improves scalability within the network since indi-
vidual nodes need to maintain a smaller number of queues and distinct resources
to manage the same amount of traffi c. RSVP and IntServ in general maintain res-
ervations for separate micro-fl ows through the network, and this gives rise to
concerns about scalability not just during refresh processing but also on the data
path.

Some research has been done into combining DiffServ and IntServ reservations
to aggregate traffi c and to allow multiple fl ows of a similar type to be managed

together with a single reservation. For example, all fl ows with the same DiffServ
DSCP could be grouped together and handled using the same IntServ reservation
(managed though RSVP) with the resources allocated being the sum of the com-
ponent parts. These ideas are developed further in RFC 3175.

4.5 FURTHER READING
Durham, David, and Raj Yavatkar, Inside the Internet’s Reservation Protocol: Foundations

for Quality of Service. John Wiley & Sons, 1999. This book was written by two Intel
engineers with in-depth experience of developing the RSVP standards and one of the
fi rst RSVP implementations.

Morrow, Monique, and Kateel Vijayananda, Developing IP-Based Services. Morgan Kauf-
mann, 2003. This source provides a brief overview of IP quality of service from the
perspective of service providers and equipment vendors.

Wang, Zheng, Internet QoS: Architectures and Mechanisms for Quality of Service. Morgan
Kaufmann, 2001. This provides excellent coverage of all the important, implementable
models for providing service differentiation in the Internet.

Differentiated Services was fi rst proposed as an architecture and then devel-
oped by the defi nition of specifi c uses. Some key RFCs for Differentiated Services
are:

RFC 2430—A Provider Architecture for Differentiated Services and Traffi c Engineering
RFC 2597—Assured Forwarding PHB Group
RFC 3246—An Expedited Forwarding PHB
RFC 3270—Multiprotocol Label Switching (MPLS) Support of Differentiated Services

Integrated Services was developed as a framework by the IETF and has since
been worked on by many working groups as they have seen the need to incorpo-
rate the features into their work. Some key RFCs for Integrated Services are:

RFC 1633—Integrated Services in the Internet Architecture: An Overview
RFC 2210—The Use of RSVP with IETF Integrated Services
RFC 2211—Specifi cation of the Controlled-Load Network Element Service
RFC 2212—Specifi cation of Guaranteed Quality of Service
RFC 2215—General Characterization Parameters for Integrated Service Network

Elements
RFC 2381—Interoperation of Controlled-Load and Guaranteed Service with ATM
RFC 2688—Integrated Services Mappings for Low Speed Networks
RFC 2815—Integrated Service Mappings on IEEE 802 Networks
RFC 2997—Specifi cation of the Null Service Type
RFC 2998—A Framework for Integrated Services Operation over DiffServ Networks

RSVP was developed within the IETF by the RSVP working group. The RSVP
working group has been closed down because all development work has been

4.5 Further Reading 119

120 CHAPTER 4 IP Service Management

completed. However, the new uses of RSVP for MPLS and GMPLS can be seen in
the MPLS and CCAMP working groups. Some key RFCs for RSVP are:

RFC 2205—Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specifi cation
RFC 2207—RSVP Extensions for IPsec Data Flows
RFC 2210—The Use of RSVP with IETF Integrated Services
RFC 2747—RSVP Cryptographic Authentication
RFC 2750—RSVP Extensions for Policy Control
RFC 2961—RSVP Refresh Overhead Reduction Extensions
RFC 3175—Aggregation of RSVP for IPv4 and IPv6 Reservations

The RSVP API is published by The Open Group as The Resource Reservation
Setup Protocol API (RAPI), document number c809. It can be seen at the group’s
website in HTML or PDF format at www.opengroup.org/products/publications/
catalog/c809.htm.

The Service Management Research Group of the Internet Research Task Force
(IRTF) has published its fi ndings on the use of quality of service in IP networks
in RFC 3387—Considerations from the Service Management Research Group
(SMRG) on Quality of Service (QoS) in the IP Network.

CHAPTER

5Quality of Service
Routing

Quality of service (QoS) is an important issue in any communication network;
typically, this can be viewed from the perception of service quality. Eventually
any service perception needs to be mapped to network routing, especially since
QoS guarantee is required for a particular service class.

In this chapter, taken from Chapter 17 of Network Routing by Deep Medhi
and Karthik Ramasamy, we discuss what QoS routing means and how different
routing algorithms may be extended to fi t the QoS routing framework. We also
present a representative set of numerical studies with which we can understand
the implications of different routing schemes and roles played by different network
controls.

5.1 BACKGROUND
We start with some brief background on QoS and QoS routing.

5.1.1 Quality of Service

To discuss quality of service routing, we fi rst need to understand what quality
of service means. Consider a generic request arrival to a network; if this request
has certain resource requirements that it explicitly announces to the network at
the time of arrival, then QoS refers to the network’s ability to meet the resource
guarantees for this request.

To understand QoS, we will fi rst consider a network link; no routing is con-
sidered at this point. Assume that a request arrives at this network link for a 1-Mbps
constant data rate. If the network link has bandwidth available that is more than
1 Mbps, then it can certainly accommodate this request. Thus, the arriving request
received the specifi ed QoS. Implicit in this is that the QoS will be continually met
as long as this request is active; in other words, for the duration of the request,
the QoS is met.

Suppose that the network link at the instant of the request arrival has less
available bandwidth than the requested bandwidth. In this case, the request

122 CHAPTER 5 Quality of Service Routing

cannot be served. When there are many arriving requests requiring resource guar-
antees and the network link cannot accommodate them, another aspect related
to QoS emerges. This aspect of QoS considers that arriving requests usually receive
the service guarantee requested with an acceptable probability of not being turned
away; in other words, blocking should not be high. That is, the blocking probabil-
ity of arriving requests is another important consideration in regard to QoS. When
we consider from this viewpoint, it is easy to see that traffi c engineering and
capacity expansion also play crucial parts in regard to QoS since if the network
is not engineered with a reasonable capacity level, the likelihood of a request
facing blocking would be high. Thus, blocking probability is an important factor
in the perception of QoS and is traditionally known as grade of service (GoS).

In general, the term QoS is used much more broadly than its use in this chapter
in the context of QoS routing. For example, “a network meets QoS” can be inter-
preted as meeting delay requirements through a network, not necessarily for a
specifi c request.

5.1.2 QoS Routing

Consider now a network instead of just a link. Then for an arriving request that
requires guaranteed resources, the network would need to decide what resources
it has in its different links and paths so that the request can be accommodated.
Thus, QoS routing refers to a network’s ability to accommodate a QoS request by
determining a path through the network that meets the QoS guarantee. Further-
more, an implicit understanding is that the network’s performance is also opti-
mized. In this sense, QoS routing cannot be completely decoupled from traffi c
engineering.

5.1.3 QoS Routing Classifi cation

What are the types of resource guarantees an arriving request might be interested
in? Typically, they are bandwidth guarantee, delay bound, delay jitter bound, and
acceptable packet loss. We have already described a bandwidth guarantee. Delay
bound refers to end-to-end delay being bounded. Jitter requires a bit of explana-
tion. In a packet-based network, packets that are generated at equal spacing from
one end may not arrive at the destination with the same spacing; this is because
of factors such as delay due to scheduling and packet processing at intermediate
routers, interaction of many fl ows, and so on. In real-time interactive applications
such as voice or video, the interpacket arrival times for a call are equally spaced
when generated, but may arrive at the destination at uneven time spacing; thus,
inter-packet delay is known as jitter. Packet loss refers to the probability of a
packet being lost along the path from origin to destination.

Consideration of these four factors would, however, depend on whether the
network is a circuit-based network or a packet-based network. To discuss this
aspect and the critical elements related to QoS routing, we also need to consider
time granularity in regard to an arriving request. By considering three time-related

5.1 Background 123

factors—arrival frequency, lead time for setup, and the duration of a session/con-
nection—we broadly classify requests into three types as listed in Table 5.1. There
are very specifi c outcomes of these classifi cations.

In Type A, the network technology is either packet-switched or circuit-switched
where circuit-switched networks require bandwidth guarantee while packet-
switched networks may have one or all of the requirements: bandwidth guarantee,
delay bound, jitter bound, and acceptable packet loss. However, Type B is gener-
ally circuit-oriented where a permanent or semi-permanent bandwidth guarantee
is the primary requirement; there is very little about on-demand switching. Routing
for the Type B classifi cation is traditionally referred to as circuit routing; in recent
literature, circuit routing is commonly known as transport network routing.
Between Type A and Type B, there is another form of routing where some overlap
of time granularity is possible. We classify this type that has overlapping regions
as Type C; for example, routing for this type of service can be accomplished in
Multiprotocol Label Switching (MPLS) networks.

Of these classifi cations, QoS routing arises for a Type A classifi cation. It is thus
helpful to consider a taxonomy for QoS routing to understand the relationship
between networking paradigms and QoS factors (see Figure 5.1). In the fi gure,
we have included an identifi er in parentheses for ease of illustration. First note
that classifi cation Q.1.a refers to routing in the current circuit-switched telephone
network. An important point to note is that both hierarchical and all variations
of dynamic call routing fall under Q.1.a in terms of meeting QoS. It may be noted
that old hierarchical call routing meets the bandwidth guarantee of a new request
if admitted; however, hierarchical call routing is not as fl exible as dynamic call
routing schemes and requires more bandwidth to provide the same level of
service. This then helps in seeing that traffi c engineering effi ciency is an implicit
requirement of QoS routing, a primary reason why dynamic call routing was
pursued in the telephone network.

A broader point is that QoS routing can be accomplished by different routing
schemes—the drivers for QoS routing are developing routing schemes that address
issues such as performance benefi t, cost, routing stability, management, and so
on. Thus, in general, dynamic or adaptive routing is preferred over fi xed rout-
ing. Classifi cation Q.1.a is a very important area in network routing. Besides

Table 5.1 Service Request Type Classifi cation

Type Average Arrival Frequency Lead Time for Setup Duration of Session

Type A Sub-second/seconds time frame A few seconds Minutes

Type B Day/week time frame Weeks Months to years

Type C Multiple times a day Minutes Minutes to hours

124 CHAPTER 5 Quality of Service Routing

circuit-switched voice, many problems in optical routing also fall under classifi ca-
tion Q.1.a.

Classifi cation Q.1.b is an extension of Q.1.a. Multirate, multiservice circuit-
switched QoS routing refers to the case in which there is more than one service
class and an arriving request for each service class has a different bandwidth
requirement as opposed to Q.1.a, where all arriving requests have the same band-
width requirement—for example, the current wired telephone network where
per-request bandwidth is 64 Kbps. In case of Q.1.b, service classes are rigid and
the bandwidth requirement of a request in each class is an integral multiple of the
base bandwidth rate. If the base bandwidth rate in the circuit-switched voice
network is 64 Kbps, then a switched video service can be defi ned as, say, 384 Kbps,
which is then six times the base bandwidth rate. It may be noted that among the
dynamic call routing schemes, real-time network routing (RTNR) has been deployed
to handle multiple classes of services.

For the packet-switched branch of QoS routing, there are two aspects to con-
sider: single attribute or multiple attributes. By single attribute, we mean only a
single criterion, such as the bandwidth requirement, is used as a metric for a
request that is considered for QoS routing. By multiple attributes, we mean that
more than one factor, such as bandwidth and delay, is being considered for QoS
routing.

Note that we do not distinguish here by rates as we have done with Q.1.a and
Q.1.b, although theoretically it is possible to discuss single rate and multiple rate.
The reason this is grouped together is that packet-switched networks are usually
not designed with a single bandwidth rate in mind—any arbitrary bandwidth rate
is generally usable due to the packet switching nature. It is, however, indeed

FIGURE 5.1

QoS routing taxonomy.

5.1 Background 125

possible to deploy a private packet network, for example, a private voice over IP
(VoIP) packet network, where all voice calls have the same data rate. Thus, Q.2.a
has some aspects of Q.1.b, with the additional fl exibility of arbitrary data rate of
a request. For classifi cation Q.2.b, multiple criteria are required to handle the
decision-making process for an arriving request. This will be discussed in detail
later in this chapter.

For both Q.2.a and Q.2.b, there are two possibilities in terms of path consid-
eration: either a single path is considered, or paths are cached for alternate paths
consideration. Note that for Q.1.a and Q.1.b, it has been common to consider
path caching; in fact, a single path is rarely considered and is not shown in this
classifi cation.

5.1.4 Defi ning a Request and Its Requirement

You may note that so far we have not defi ned a request. Typically, in a circuit-
switching context, a request is labeled as a call; in a packet-switching context,
especially in IP networking, a QoS request is labeled as a fl ow, while terms such
as SIP call or VoIP call are also often used. (There is yet another terminology in
the networking literature: call fl ows. This term refers to the fl ow or sequence
diagram of messages in regard to establishing or tearing down a call over an SS7
network or in an SIP environment or when translation is required at a gateway
going from SS7 to SIP, or vice versa.) Note that the usage of the term fl ow here
is not to be confused with network fl ow or link fl ow.

When a call request arrives, there is a call setup phase that can typically
perform functions such as route determination, signaling along the path to the
destination, and QoS checking before the call is set up; in essence, a call request
must always face a call setup time delay before it can be connected—this is also
known as post-dial delay; certainly, this should be minimized. For the services
that require a QoS guarantee, the call setup phase needs to ensure that the QoS
guarantee can be provided for the entire duration of the call; otherwise, the
call request is denied by the network.

5.1.5 General Observations

It is quite possible that a network may not have the functionality to guarantee
that it can meet QoS for an arriving request, but yet has the resources to meet the
request. An IP network without integrated services functionality falls into this
category. For example, a VoIP call can receive QoS in an IP network without the
network explicitly having the ability to provide a guarantee at the time of request
arrival. This can be possible, for example, if the network is engineered properly,
or overprovisioned. In general, overprovisioning is not desirable since, after
all, a network does cost real money in terms of capacity cost, switching cost,
and so on.

Finally, much like best-effort traffi c services, QoS routing can also have two
components: intra-domain and inter-domain. Most of this chapter is focused on

126 CHAPTER 5 Quality of Service Routing

intra-domain QoS routing. We will briefl y discuss inter-domain QoS routing at
the end.

5.2 QOS ATTRIBUTES
In the previous section, we mentioned the following factors in terms of attributes:
residual bandwidth, delay, jitter, and packet loss. Note that any of these attributes
are applicable under classifi cation Q.2, while bandwidth is the only one applicable
for classifi cation Q.1. We will now discuss how to classify these attributes in terms
of metrics.

Suppose that an arriving request has requirements for bandwidth, delay, jitter,
and packet loss identifi ed by b, t, z, and L, respectively. The important question
is: How are measures for these factors accumulated along a path in terms of sat-
isfying the guaranteed requirement of an arriving call? To understand this, we will
consider a path that is made up of three links numbered 1, 2, and 3, and current
residual bandwidth, delay, jitter, and packet loss measures for link i as bi, ti, zi,
and Li(i = 1, 2, 3), respectively. We can then list the path measures as shown in
Table 5.2.

You can see that the packet loss measure is a nonadditive multiplicative one;
however, it can be looked at from another angle. If Li (i = 1, 2, 3) is very close to
zero, which is typically the case for packet loss, again due to traffi c engineering
requirements, the expression for path measure can be approximated as follows:

1 1 1 11 2 3 1 2 3− −() −() −() ≈ + +L L L L L L

Thus, the packet loss measure becomes an additive measure. We can then classify
the different attributes into two groups in terms of metric properties:

■ Additive: Delay, jitter, packet loss
■ Nonadditive (concave): Bandwidth

Broadly, this means that from a routing computation point of view, delay, jitter,
and packet loss metrics can be classifi ed under shortest path routing while the

Table 5.2 Path Measures

Type Path Measure Requirement

Bandwidth min{b1, b2, b3} ≥b

Delay τ1 + τ2 + τ3 ≤τ

Jitter ζ1 + ζ2 + ζ3 ≤ζ

Packet loss 1 − (1 − L1)(1 − L2)(1 − L3) ≤L

bandwidth requirement metric falls under widest path routing. It may be noted
that a buffer requirement at routers along a path for an arriving request requiring
a QoS guarantee is another possible metric that falls under the nonadditive
concave property; however, unlike the rest of the metrics discussed so far, a buffer
requirement is checked as the call setup signaling message is propagated
along the path chosen, rather than being communicated through a link state
advertisement.

To summarize, for classifi cation Q.2, both additive and nonadditive concave
metrics are possible, while for classifi cation Q.1 only nonadditive concave is
appropriate. In the next section, we will discuss adaptations of shortest path
routing and widest path routing for a request requiring a QoS guarantee.

5.3 ADAPTING SHORTEST PATH AND WIDEST PATH
ROUTING: A BASIC FRAMEWORK

Out of different attributes classifi ed into two categories, we will use one metric
each from additive and nonadditive (concave) metric properties for our discussion
here. Specifi cally, we will use delay for the additive property and bandwidth
requirement for the nonadditive property. We assume the reader is familiar with
shortest path routing and widest path routing. You may note that the discussion
in this section is applicable only to classifi cation Q.2.

The applicability of a particular routing algorithm for a packet-switched network
depends on whether the network is running a distance vector protocol or a link
state protocol. While the basic idea of shortest path or widest path routing would
work under both these protocol concepts, we will assume that a link state proto-
col framework is used since most well-known intra-domain routing protocol
frameworks are link state based.

5.3.1 Single Attribute

We fi rst consider that requests have a single additive metric requirement in terms
of delay attribute. A simple way to adapt the shortest-path routing algorithm
paradigm here is by using delay as the link cost metric. Suppose a request arrives
with the delay requirement no greater than t̄ .

For an arriving request requiring a guaranteed delay requirement of t̄ , do the
following: Compute the shortest delay using the shortest path fi rst algorithm; if
the result is less than t̄ , then admit the request; otherwise, deny the request.

Note that the request arrives for a particular destination. Thus, unlike the stan-
dard shortest path fi rst (SPF) algorithm, here the shortest path computation must
be computed only for the specifi c destination of a request. Consider the shortest
path fi rst algorithm discussed in Chapter 2 of Network Routing by Deep Medhi and
Karthik Ramasamy. Once a new node k is identifi ed with the minimum cost path, it

5.3 Adapting Shortest Path and Widest Path Routing 127

128 CHAPTER 5 Quality of Service Routing

can be checked whether this k is the destination of the request; if so, the algorithm
can stop. At this point, this delay cost is then compared against the arriving request’s
delay requirement; if met, the request is accepted, otherwise it is denied.

What if the single metric is in terms of the bandwidth requirement of a request?
This scenario is similar to the delay-based one. Suppose that an arriving request
has a bandwidth requirement of b̄. Then, we can use the following rule:

For an arriving request with a guaranteed bandwidth requirement of b̄, do the
following: Compute the widest path using for the specifi c destination; if this
value is higher than b̄, then admit the request; otherwise, deny the request.

In many instances, it is desirable to obtain the widest path with the least number
of hops for the path. Although this is sometimes referred to as the shortest-widest
path, it is not a good name since shortest does not indicate the context in which
this is meant. Thus, we will refer to it as the least-hop-widest path. How do we fi nd
the widest path with the least number of hops? Consider again the widest path fi rst
algorithm. In this algorithm, k in Sl with the maximum residual bandwidth is deter-
mined. Instead of storing just one k, the list of nodes where the maximum residual
bandwidth is attained is determined. If this list happens to have more than one
element, then k is chosen so that it is the least number of hops from source node
i. In essence, this means that if there are multiple paths with maximum residual
bandwidth, choose the one with the least number of hops; if there are still such
multiple paths, one is randomly selected. In the same manner, a least-hop-minimum
delay path can be determined when a delay metric is used.

5.3.2 Multiple Attributes

In this case, consider an arriving request specifying that both the delay and the
bandwidth requirement must be satisfi ed. This can be addressed from the point of
view of which factor is to be considered the dominant one: delay or bandwidth.
This, however, depends on which is found: a bandwidth feasible path while the
delay is minimized, or a delay feasible path while maximizing available bandwidth.

Again, we can adapt the widest path and shortest path routing framework. To
determine the minimum delay path that satisfi es the bandwidth requirement of a
request, we can initialize any link that does not meet the bandwidth requirement
temporarily as a link with infi nite delay; this method of considering a nonadditive
metric requirement with an additive shortest path computation is generally known
as constrained shortest path routing. Instead, if we were to determine a maximum
residual bandwidth—the widest path while meeting the delay requirement—we
can initialize any link that does not meet the delay requirement by temporarily
setting the residual link bandwidth to zero; this form can be classifi ed as con-
strained widest path routing. Note that for a constrained shortest path, the
constraint is on bandwidth, while for a constrained widest path, the constraint is
on delay. For source node i and destination node v, we present both routing
algorithms in Algorithm 5.1 and Algorithm 5.2 for completeness. The notations
are summarized in Table 5.3.

Algorithm 5.1 QoS minimum delay path with bandwidth feasibility

S = {i} // permanent list; start with source node i
S¢ = N \ {i} // tentative list (of the rest of the nodes)
for (j in S¢) do
 // check if i-j directly connected and link has required bandwidth b̄
 if (tij <∞ and bij ≥ b̄) then
 Tij = tij // note the delay cost
 else
 tij = ∞; Tij = ∞ // mark temporarily as unavailable
 endif
endfor
while (S¢ is not empty) do // while tentative list is not empty
 Ttemp = ∞ // fi nd minimum-delay neighbor k
 for (m in S¢) do
 if (Tim < Ttemp) then
 Ttemp = Tim; k = m
 endif
 endfor
 if (Tik > t̄) then // if minimum delay is higher than delay

tolerance
 ’No feasible path exists; request denied’
 exit
 endif
 if (k == v) then exit // destination v found, done
 S = S ∪ {k} // add to permanent list
 S¢ = S¢\{k} // delete from tentative list
 for (j in Nk ∩ S¢) do
 if (Tij > Tik + τkj and b̄kj > b) then // if delay is less via k
 Tij = Tik + tkj

Table 5.3 Notation for QoS Routing

Notation Remark

i Source node

v Destination node

N List of all nodes

Nk List of neighboring nodes of k

S List of nodes considered so far

S¢ List of nodes yet to be considered

tij Link delay on link i-j (set to ∞ if the link does exist, or not to be considered)

Tij Delay from node i to node j

bij Residual bandwidth on link i-j (set to 0 if link does exist, or not to be considered)

Bij Bandwidth available from node i to node j

5.3 Adapting Shortest Path and Widest Path Routing 129

130 CHAPTER 5 Quality of Service Routing

 endif
 endfor
endwhile
if (Tiv ≤ t̄) then // fi nal check, if the path meets delay
requirement
 ‘Request accepted’
else
 ‘No feasible path exists; Request denied’
endif

Algorithm 5.2 QoS widest path with delay feasibility

S = {i} // permanent list; start with source node i
S¢ = N \ {i} // tentative list (of the rest of the nodes)
for (j in S¢) do
 // if i-j directly connected and link has required bandwidth b
 if (bij > b̄ and tij < ∞) then
 Bij = bij; Tij = tij
 else
 bij = 0; Bij = 0; tij = ∞; Tij = ∞ // mark temporarily as

unavailable
 endif
endfor
while (S¢ is not empty) do // while tentative list is not empty
 Btemp = 0 // fi nd neighbor k with maximum bandwidth
 for (m in S¢) do
 if (Bim > Btemp) then
 Btemp = Bim; k = m
 endif
 endfor
 if (Bik < b̄) then // bandwidth is higher than the request

tolerance
 No feasible bandwidth path exists; request denied
 exit
 endif
 if (k == v) then exit // destination v is found; done
 S = S ∪ {k} // add to permanent list
 S¢ = S¢\{k} // drop from tentative list
 for (j in Nk ∩ S¢) do // path has higher bandwidth
 if (Bij < min{Bik, bkj}) then
 Bij = min{Bik, bkj}
 Tij = Tik + tkj
 endif
 endfor
endwhile
if (Biv ≥ b) then // fi nal check; if path meets bandwidth

requirement
 ‘Request accepted’
else
 ‘No feasible path exists; Request denied’
endif
end procedure

5.3.3 Additional Consideration

We next consider a general question: can we provide QoS routing in a packet
environment where buffer guarantee at routers is also required? For this, assume
that the packet network is an integrated services environment. For a request
requiring bandwidth guarantee on demand, we also need to consider whether the
router’s scheduling algorithm can guarantee requests in terms of buffering, in
addition to bandwidth guarantee on links. This brings up the issue of scheduling
with routing. It has been shown that this combined problem can be addressed
with a polynomial time algorithm that factors in capacity and constrained shortest
path.

5.4 UPDATE FREQUENCY, INFORMATION INACCURACY,
AND IMPACT ON ROUTING

In the previous section, we provided the computational framework for QoS
routing for classifi cation Q.2 by considering single or multiple attributes. What is
missing is how often attribute information is obtained and/or when the computa-
tion is performed. To discuss these important aspects, we will again assume a link
state framework is used.

Ideally, it appears that if a node knows the state of each link in terms of the
applicable attributes (either single or multiple) instantaneously, it can then invoke
routing computation. There are, however, practical limitations on this utopian
view:

■ An instantaneous update is almost impossible in a real network; very frequent
updates can lead to excessive information exchange, which can overload a
network. In fact, it has now become a common practice in many routing pro-
tocols to include a hold-down time to assert that no updating of information is
allowed that is more frequent than the hold-down time. Also note that if a par-
ticular link state is advertised too frequently due to a legitimate change in the
link state status, some form of dampening is still applied by a receiving node to
avoid having an undesirable performance consequence, and before fl ooding to
its neighboring node.

■ There are two possibilities in regard to routing computation: (1) perform the
computation periodically, or (2) perform it on demand for every arriving request.
The second option is usually avoided since an important requirement in QoS
routing services is that the call setup time, also known as post-dial delay, for an
arriving request is as small as possible. There is an important lesson to be learned
here from RTNR. In an almost fully mesh network environment with a separate
signaling (SS7) network for link state message exchanges, RTNR was initially
intended to be deployed with per call computation in mind; in actuality, the
computation is based on the information queried for the previous call in order

5.4 Update Frequency, Information Inaccuracy 131

132 CHAPTER 5 Quality of Service Routing

to avoid increasing post-dial delay to an undesirable level. For a general
packet network, performing routing computation on demand for each
arriving request can be taxing on the CPU load of the node—thus, this is also
not desirable.

■ It is not diffi cult to realize that if the link state information obtained at a node is
delayed due to periodic/asynchronous update or dampening, the link state infor-
mation will be somewhat stale or inaccurate. Due to such inaccurate information,
it is questionable whether it is worth doing a per-call routing computation.

To summarize, for QoS routing, it is more appropriate to perform a routing com-
putation periodically than on a per-call basis and to build a routing table. Taking this
entire scenario into account, the arrival of link state information and the timing of
the routing computation are depicted in Figure 5.2. It may be noted that due to the
periodic computation framework, instead of executing a constrained shortest path
or constrained widest path on a per-pair basis, it can be performed on a source to
all destination basis, albeit with the option that for a specifi c pair computation can
be triggered if needed. In any case, it is important to note that if there is a network
link failure, usually link state fl ooding and routing computation are triggered imme-
diately so that changes can be accommodated by each node.

There is, however, an important consequence of periodic/update and periodic
routing table computation. Suppose that the routing is hop-by-hop and each node
has only one entry for each destination identifi ed by the next hop. When an actual
request arrives, there may not be enough resources along the path (dictated by
the routing table) to establish the call. Thus, this request is denied entry, which
then affects the overall call-blocking probability. Note that just being locked into
one path during two consecutive routing computations does not necessarily mean
that all arrivals will be blocked during this window; it is important to note that

FIGURE 5.2

Time of link state advertisement and routing computing for QoS routing.

during this time window, some exiting calls might be over-releasing resources that
can be used by newly arrived calls. In any case, to maintain the GoS aspect of
QoS, there are two possibilities: (1) updates must be done frequently enough so
that the newly obtained path does not block too many calls, or (2) the network
is engineered with enough capacity/resources so that the overall blocking effect
is maintained at an acceptable level. The fi rst option belongs to traffi c engineering
while the second option belongs to capacity expansion. Note that it is also impor-
tant to maintain the GoS aspect of QoS to avoid excessive user-level retry in case
calls are blocked.

Since an important goal of QoS routing is to provide good traffi c engineering,
we may ask the following question: can we consider more than one path from a
source to a destination? This will partly depend on whether the network is capable
of providing hop-by-hop routing and/or source routing. In the case of hop-by-hop
routing, the only option for multiple paths is if there are two paths of equal cost,
also known as equal-cost multipath (ECMP). It is diffi cult to fi nd multiple equal-
cost paths in a constrained-based routing environment. In a source routing envi-
ronment, multiple paths can be cached ahead of time, which then leads to the
possibility of alternate routing options.

5.5 LESSONS FROM DYNAMIC CALL ROUTING
IN THE TELEPHONE NETWORK

There has been extensive experience with alternate routing for dynamic call
routing for the telephone network. First, we summarize the typical network envi-
ronment for dynamic call routing in telephone networks:

■ The network is fully mesh, or nearly fully mesh.

■ Calls attempt a direct link path fi rst (if available); then an alternate path is
attempted; alternate paths are made of at most two links.

■ The path cost is nonadditive, concave.

■ The alternate paths to be considered and the number of such paths to be cached
depend on specifi c routing schemes.

■ Call setup can be based on progress call control or originating call control.

■ In the presence of originating call control, a call crankback can be performed
to try another path, if such a path is listed in the routing table.

■ Routing schemes use a link state framework.

■ Link state update, setup messages, and crankback messages are carried through
out-of-band signaling, for example, using an SS7 network.

■ The main performance measure is minimization of call-blocking probability,
which can dictate the choice of a routing scheme. However, factors such as
messages generated due to call setup, crankback, and link state updates can also
be deciding factors.

5.5 Lessons from Dynamic Call Routing 133

134 CHAPTER 5 Quality of Service Routing

There are key lessons learned from such a dynamic call routing environment:

■ In general, a dynamic call routing scheme increases throughput, but has a meta-
stability problem beyond a certain load-to-capacity ratio in the network.

■ A trunk reservation feature is used to protect a direct link from being excessively
used by alternate routed calls to avoid metastable behavior. In essence, trunk
reservation works as a link-level admission control. An important consequence
that sounds counterintuitive is that a network may not accept a call even if it
has capacity under certain conditions.

■ For effective traffi c engineering, especially under overload conditions, several
control measures such as dynamic overload control, call gapping, and hard to
reach may need to be invoked.

To reiterate, dynamic call routing in a telephone network is operating for
single-rate homogeneous service—all are voice calls requiring the same amount
of bandwidth for the duration of the call. The fi rst question then is what changes
in regard to a heterogeneous service environment where arriving calls require
differing bandwidth. This is discussed in the next section.

5.6 HETEROGENEOUS SERVICE, SINGLE-LINK CASE
To understand an important difference going from a single-rate service case to
a multiple-rate service case, we illustrate a performance scenario that has impor-
tant implications for QoS routing. Note that this analysis requires some understand-
ing of offered load in Erlangs (Erls) and call blocking, using just a single link
without the presence of routing. The results discussed this section are summarized
in Table 5.4.

Table 5.4 Call Blocking for Different Services under Various Scenarios

Link
Capacity
(Mbps)

alow

(Erls)
ahigh

(Erls)
mlow

(Mbps)
mhigh

(Mbps)
Reservation
(Yes/No) Blow Bhigh Wcomposite

50 38.0 — 1 — 1.03% — 1.03%

50 19.0 1.9 1 10 No 0.21% 25.11% 12.66%

85 19.0 1.9 1 10 No 0.05% 0.98% 0.52%

85 22.8 1.9 1 10 No 0.08% 1.56% 0.75%

85 22.8 1.9 1 10 Yes 1.41% 0.94% 1.20%

85 22.8 1.9 1 10 Yes, Prob = 0.27 1.11% 1.10% 1.11%

Consider a service that requires 1 Mbps of bandwidth during the duration of
the call. Assume that the link capacity is 50 Mbps; thus, this link can accommodate
at most 50 such calls simultaneously, that is, the effective capacity of the link is
50. Assume that the call arrival pattern is Poisson with an average call arrival rate
at 0.38 per second, and that the average duration of a call is 100 seconds. Using
Equation 11.2.2 from Network Routing by Deep Medhi and Karthik Ramasamy,
we can determine that the offered load is 0.38 × 100 = 38 Erls.

Furthermore, using the Erlang-B loss formula Equation 11.2.3, we can fi nd that
38 Erls offered to a link with 50 units of capacity results in a call-blocking prob-
ability of 1 percent. Since most networking environments would like to maintain
a QoS performance requirement for call blocking below 1 percent probability, we
can see that users will receive acceptable QoS in this case. Note that to meet QoS,
there are two issues that need to be addressed: (1) each call must receive a band-
width guarantee of 1 Mbps, if admitted, and (2) the call acceptance probability is
below 1 percent so that users perceive that they are almost always going to get a
connection whenever they try.

Next, consider the situation where we allow a new 10-Mbps traffi c stream
on the same 50-Mbps link to be shared with the basic 1-Mbps traffi c stream. We
start by splitting the 38 Erls of offered load equally (i.e., 19 Erls to the 1-Mbps
traffi c class and 19 Erls to the 10-Mbps traffi c class). However, note that each 10-
Mbps call requires 10 times the bandwidth of a 1-Mbps call. Thus, a more appro-
priate equitable load for a 10-Mbps traffi c stream would be 1.9 Erls (= 19/10) when
we consider traffi c load level by accounting for per-call bandwidth impact. The
calculation of blocking with different traffi c streams and different bandwidth
requirements is much more complicated than the Erlang-B loss formula; this is
because the Erlang-B formula is for traffi c streams where all requests have the
same bandwidth requirement. The method to calculate blocking in the presence
of two streams with differing bandwidth is known as the Kaufman–Roberts
formula. Using this formula, we can fi nd that the blocking probability for a 1-Mbps
traffi c class will be 0.21 percent, while for a 10-Mbps traffi c class it is 25.11
percent.

We can see that for the same amount of load exerted, the higher-bandwidth
traffi c class suffers much higher call blocking than the lower-bandwidth service
in a shared environment; not only that, the lower-bandwidth service in fact has
much lower blocking than the acceptable 1 percent blocking. If we still want to
keep the blocking below 1 percent, then there is no other option than to increase
the capacity of the link to a higher capacity (unless the network is completely
partitioned for each different service). After some testing with different numbers,
we fi nd that if the link capacity is 85 Mbps, then with 19 Erls load of 1-Mbps traffi c
class and 1.9 Erls load of 10-Mbps traffi c class, the call blocking would be 0.05
percent and 0.98 percent, respectively. The important point to note here is that
with the introduction of the higher-bandwidth traffi c class, to maintain a 1 percent
call-blocking probability for each class, the link capacity is required to be 70
percent (= (85 − 50)/50) more than the base capacity.

5.6 Heterogeneous Service, Single-Link Case 135

136 CHAPTER 5 Quality of Service Routing

Now, consider a sudden overload scenario for the 1-Mbps traffi c class in the
shared environment while keeping the overall capacity at the new value: 85 Mbps.
Increasing the 1-Mbps traffi c class by a 20 percent load while keeping the higher
bandwidth (10 Mbps) traffi c class at the same offered load of 1.9 Erls, we fi nd that
the blocking changes to 0.08 percent and 1.56 percent, respectively. What is
interesting to note is that although the traffi c for the lower-bandwidth call has
increased, its overall blocking is still below 1 percent, while that of the higher-
bandwidth call has increased beyond the acceptable threshold level; yet there has
been no increase in traffi c load for this class. These are sometimes known as mice
and elephants phenomena. Here mice are the lower-bandwidth service calls,
while elephants are the higher-bandwidth service calls. However, unlike IP-based
TCP fl ows, the situation is quite different in a QoS-based environment—it is the
mice that get through while elephants get unfair treatment.

This suggests that some form of admission control is needed so that higher-
bandwidth services are not treated unfairly. One possibility is to extend the idea
of trunk reservation to service class reservation so that some amount of the link
bandwidth is logically reserved for the higher-bandwidth service class. Taking this
into account, assume that out of 85 Mbps of capacity, 10 Mbps of capacity is
reserved for the elephant (10 Mbps) service class; this means that any time
the available bandwidth drops below 10 Mbps, no mice (1 Mbps) traffi c calls are
allowed to enter. With this change in policy, with 20 percent overload for mice
traffi c from 19 Erls, while elephant traffi c class remains at 1.9 Erls, we fi nd that
the call blocking for mice traffi c would be 1.41 percent and 0.94 percent, respec-
tively—that is, the elephant traffi c class is not affected much; this is then good
news since through such a service class–based reservation concept, certain traffi c
classes may be protected from not getting their share of the resources.

Now, if an equitable blocking is still desirable for both service classes, even
though only the low bandwidth stream is overloaded, then some mechanisms are
needed to increase the blocking for the elephant service class. A way to accom-
plish this is to consider a probabilistic admission control; this rule can be expressed
as follows:

An amount of bandwidth threshold may be reserved for higher-bandwidth calls,
which is activated when the available bandwidth of the link falls below this
threshold. As a broad mechanism, even when this threshold is invoked, lower-
bandwidth calls may be admitted based on meeting the acceptable probabilistic
admission value.

To compute blocking for each traffi c class with differing bandwidth and a
probabilistic admission control and reservation. In Table 5.4, we list the probabi-
listic admission control case along with reservation and no reservation for the
higher-bandwidth traffi c class; you can see that equity in call blocking can be
achieved when, with reservation, 27 percent of the time low-bandwidth calls are
still permitted to be admitted.

We now consider the other extreme when only high-bandwidth 10-Mbps calls,
still with 38 Erls of traffi c, are offered. To keep call-blocking probability at 1
percent, with 38 Erls of offered load, a link would still need 50 units of high-
bandwidth call-carrying capacity; this then translates to a raw bandwidth of 50 ×
10 Mbps = 500 Mbps. Thus, we can see that depending on whether a network
link faces low-bandwidth calls, or a mixture of low- and high-bandwidth calls,
or just (or mostly) high-bandwidth calls, for the same offered load exerted, the
link requires vastly different raw link bandwidth to maintain a QoS performance
guarantee.

Finally, while we discuss call blocking for each individual traffi c class, it is also
good to have a network-wide performance objective in terms of bandwidth
measure. Suppose that alow is the offered load for the low-bandwidth traffi c class
that requires mlow bandwidth per call; similarly, ahigh is the offered load for high-
bandwidth traffi c, and mhigh is the bandwidth requirement per call of high-band-
width calls, then a bandwidth blocking measure is given by:

W
m a B m a B

m a m a
composite

low low high high high high

low low high hig

=
+
+ hh

These composite performance measure values for the cases that were considered
earlier are also listed in Table 5.4. While this composite measure is a good overall
indicator, it can miss unfair treatment to high-bandwidth calls.

Generalizing from two service classes to the environment where each arriving
call i has an arbitrary bandwidth requirement mi, the composite bandwidth block-
ing measure, known as bandwidth denial ratio (BDR), is given by

W

m

m

i

i
composite

i BlockedCalls

i AttemptedCalls

= ∈

∈

∑
∑

However, we have learned an important point from our illustration of low- and
high-bandwidth traffi c classes: that higher-bandwidth classes may suffer higher
blocking. We can still consider a simple generalization to determine whether a
similar occurrence is noticed when each call has a differing bandwidth. Based on
profi les of calls received, they may be classifi ed into two or more groups/buckets
in terms of their per-call bandwidth requirements, and then have the above
measure applied to each such group. For example, suppose that a network
receives calls varying from a 64-Kbps requirement to a 10-Mbps requirement; calls
may be put into, say, three buckets: 0 to 3 Mbps, 3 Mbps to 7 Mbps, and higher
than 7 Mbps. If higher-bandwidth groups have a signifi cantly higher-bandwidth
blocking rate than the average bandwidth blocking rate for all calls, then this is
an indicator that some form of admission control policy is needed so that the
higher-bandwidth call groups do not necessarily have a signifi cantly higher-band-
width blocking rate.

5.6 Heterogeneous Service, Single-Link Case 137

138 CHAPTER 5 Quality of Service Routing

5.7 A GENERAL FRAMEWORK FOR SOURCE-BASED QOS
ROUTING WITH PATH CACHING

We now consider a general alternate call-routing framework where calls are het-
erogeneous. To consider a general framework, we fi rst summarize several goals
of QoS routing:

■ Reduce the impact on the call setup time by keeping it as low as possible.

■ Minimize user-level retry attempts (i.e., it is preferable to do retry internally to
the network as long as the call setup time is not drastically affected). It is impor-
tant to note that user level retry attempts cannot be completely avoided, at least
in a heavily loaded network—a network where the ratio of traffi c to network
bandwidth is at a level beyond the normally acceptable tolerance for service
guarantee.

■ Allow the capability for the source node to select a path from a number of
possible routes very quickly for each arriving request. Also, allow crankback
capability as an optional feature.

■ Allow a call admission control feature that can be invoked.

To keep call setup time minimal and the need to minimize user-level retry along
with the recognition that on-demand route determination can be taxing suggests that
having multiple path choices can be benefi cial in a QoS routing environment; this is
often referred to as alternate path routing. Since path caching is necessary to be able
to do alternate path routing, we refer to it as the path caching option. Where these
are multiple path choices, but where inaccurate/stale information means that block-
ing on a selected path cannot be completely ruled out, crankback is a nice optional
feature that can be used to quickly try another path and so avoid user-level retry.

Finally, a framework should allow the ability to incorporate a number of
routing schemes so that network providers can choose the appropriate one
depending on their performance and systems confi guration goal.

5.7.1 Routing Computation Framework

The basic idea behind this framework addresses the following: how is the selec-
tion of paths done, when are they selected, and how are they used by newly
arrived requests? For calls requiring bandwidth guarantees, another important
component that can complicate the matter is the defi nition of the cost of a path
based on possibly both additive and nonadditive properties. Later, we will con-
sider our framework using an extended link state protocol concept. Before we
discuss this aspect, we describe a three-phase framework: (1) Preliminary Path
Caching (PPC) phase, (2) Updated Path Ordering (UPO) phase, and (3) Actual
Route Attempt (ARA). Each of these phases operates at different time scales.

The fi rst phase, PPC, does a preliminary determination of a set of possible paths
from a source to destination node, and their storage (caching). A simple case for

this phase is to determine this set at the time of major topological changes. PPC,
in the simplest form, can be thought of as topology dependent (i.e., if there is a
change in the major topological connectivity), then the PPC phase may be invoked.
This can be accomplished by a topology update message sent across the network
in a periodic manner. This process can be somewhat intelligent: If a link avail-
ability is expected to be less than a certain threshold for a prolonged duration or
if the link is scheduled for some maintenance work, then PPC can also be used
for pruning the link and a new topology update, thus letting nodes determine a
new set of cached paths.

Essentially, PPC uses a coarse-grained view of the network and determines a
set of candidate paths to be cached. A simple mechanism to determine the set of
paths for each source node to each destination node may be based on hop count
or some administrative weight as the cost metric using the k-shortest paths algo-
rithm. Thus, for this phase, we assume the link cost metric for determining a set
of candidate paths to be additive.

The second phase, UPO, narrows the number of QoS acceptable paths; this
module uses the most recent status of all links as available to each source node.
Since the PPC phase has already cached a set of possible paths, this operation is
more of a compare or fi lter to provide a set of QoS acceptable paths. Furthermore,
for a specifi c service type or class, this phase may also order the routes from most
acceptable to least acceptable (e.g., based on path residual bandwidth), and will,
in general, have a subset of the routes “active” from the list obtained from the
PPC phase. In this phase, the cost metric can be either additive (e.g., delay require-
ment) or nonadditive (i.e., bandwidth requirement), or a combination, where one
is more dominant than the other. Another important factor to note about the UPO
phase is that the value of the link state update interval may vary, with each node
being able to select the interval value; for simplicity, we will refer to this as the
routing link state update interval (RUI). This phase should be more traffi c depen-
dent (rather than on-demand per call) with a minimum and maximum time
window on the frequency of invocation.

The third phase is ARA. From the UPO phase, we already have a reasonably
good set of paths. The ARA phase selects a specifi c route on which to attempt a
newly arrived fl ow. The exact rule for selecting the route is dependent on a spe-
cifi c route selection procedure. The main goal in this phase is to select the actual
route as quickly as possible based on the pruned available paths from the UPO
phase.

There are several advantages of the three-phase framework:

■ Different routing schemes can be cast in this framework.

■ It avoids on-demand routing computation; this reduces the impact on the call
setup time signifi cantly since paths are readily available; that is no “cost” is
incurred from needing to compute routes from scratch after a new fl ow arrives.

■ The framework can be implemented using a link state routing protocol with
some extension. For the PPC phase, some topology information, for example,

5.7 Source-Based QoS Routing with Path Caching 139

140 CHAPTER 5 Quality of Service Routing

needs to be exchanged at coarse-grain time windows. During the UPO phase,
periodic update on the status of link usage is needed at a fi ner grain time
window. Since different information about links is needed at different time
granularity for use by the PPC and the UPO phase, we refer to this as the
extended link state protocol concept.

■ Each of the three phases can operate independently without affecting the other
ones. For example, in the PPC phase, the k-shortest paths can be computed
either based on pure hop count or other costs such as link speed–based inter-
face cost. In some schemes the UPO phase may not be necessary.

A possible drawback of the framework is that path caching will typically
require more memory at the routers to store multiple paths; this will certainly also
depend on how many paths are stored. However, with the decreased cost for
memory, a path caching concept is more viable than ever before. Additionally,
there is some computational overhead due to k-shortest path computation on a
coarse-scale time window. Our experience has been that k-shortest path compu-
tation takes only a few seconds to generate 5 to 10 paths in a 50-node network
on an off-the-shelf computer. Thus, this overhead is not remarkable since it is done
in the PPC phase. If needed, a router architecture can be designed to include a
separate processor to do this type of computational work periodically.

5.7.2 Routing Computation

Consider the source destination node pair [i,j]. The set of cached paths for this
pair determined at time t (the PPC phase time window) is denoted by P[i,j](t) and
the total number of paths given by #(P[i,j](t)). For path p ∈ P[i,j](t), let Lp

[i,j](t) denote
the set of links used by this path.

Let bl(t) be the available capacity of link l at time t (obtained using the link
state protocol for the UPO phase). Then, from a bandwidth availability perspec-
tive, the cost of path p for [i,j] is determined by the nonadditive concave property
of the available capacity on the bottleneck link along the path:

z t b tp
i j, min[]() = (){ }1

1 ∈ ()[]L ti j
p

,

Since the path is known from the PPC phase, this fi lter operation is quite
simple. If the index p is now renumbered in order of the most available bandwidth
to the least available bandwidth at time t, that is, from the widest path, the next
widest path, and so on, then we have:

z t z t z ti j i j
P i j t

i j

1 2
, ,

,
,[] []

[]()()() ≥ () ≥ ≥ ()[]�

Similar to node i, all other source nodes can use the same principle to determine
their own ordered path sets.

How is the available capacity of various links known to nodes i? This can
be determined by receiving used capacity of various links through a link state

protocol, either in a periodic or an asynchronous manner. Note the availability of
the bandwidth on a link is dependent on whether trunk reservation is activated.
Suppose the capacity of link l is Cl, and the currently occupied bandwidth as
known at time t (based on link state update) is ul(t). In the absence of trunk res-
ervation, the available bandwidth on link l is given by:

b t C u tl l l() = − ()

If, however, a part of the link bandwidth rl(t) for link l is kept for trunk reser-
vation at time t, then:

a t C u t r tl l l l() = − () − ()

The former is sometimes also referred to as the residual bandwidth and the second
as the available or allowable bandwidth.

There are two important observations to note. First, if the last update value of
ul(t) changes dramatically, it can affect the decision process. Thus, in practice, an
exponential weighted moving average value ul(t) is more appropriate to use than
the exact value from the most recently obtained measurement. Second, the reserva-
tion allocation for different service classes may be different; thus, it may be benefi -
cial to keep different sets of alternate paths to consider for different service classes.
This means that each service class is essentially sliced into a virtual topology.

5.7.3 Routing Schemes

The computation just described can be used in a number of ways. An obvious one
is the maximum available capacity-based scheme (widest path); furthermore, the
availability can be proportioned to different paths to select a weighted path,
similar to dynamically controlled routing (DCR).

The decision on computation routes may depend on whether the information
is periodically updated. Finally, the crankback feature availability is a factor to
consider; here we will assume that the crankback is activated only at the source
node. This means that during the call setup phase, an intermediate node does not
try to seek an alternate path; instead, it returns the call control to the originating
node when the call does not fi nd enough resources on the outgoing link for its
destination.

Recall that a fundamental component of the QoS routing framework used here
is path caching. With this, in the PPC phase, a k-shortest paths algorithm is used
to generate a set of paths, which is cached. At this phase, the cost metric used is
additive. For the routing schemes, an extended link state protocol is used to dis-
seminate the status of the link (different information) at the PPC phase and the
UPO phase. Since paths are already cached, the UPO phase can use a simple fi lter-
ing mechanism to order paths based on available bandwidth (for services that
require bandwidth guarantee for QoS). If there are services that have other QoS
requirements such as path delay, these requirements can be easily incorporated
in the UPO phase as additional fi lters.

5.7 Source-Based QoS Routing with Path Caching 141

142 CHAPTER 5 Quality of Service Routing

Also recall that an important goal of reducing the impact on fl ow setup time
is addressed by the framework through the notion of path caching. Due to the
three-phase framework, the newly arrived fl ow attempts one of the paths already
pruned by the UPO phase—so there is no on-demand route computation delay in
this phase. Depending on the periodicity of the UPO phase and the arrival of the
link state advertisement, the pruned path set can have outdated information. Thus,
some newly arrived fl ows can be assigned to a path that may not have any avail-
able bandwidth at this instant. This cannot be completely avoided unless the
frequency of the update interval is reduced; if this is done, then more frequent
link state advertisement would be necessary, which leads to an increase in network
traffi c.

5.7.4 Results

For performance studies, we consider maximum available capacity routing with
periodic update and crankback (MACRPC), as well as for no crankback (MACRPNC).
Note that MACRPC uses the shortest widest path on residual bandwidth but with
trunk reservation turned on, and the computation is periodic. For comparison,
the utopian scheme, maximum available capacity routing with instantaneous
computation (MACRIC), is also considered. This is possible since we have used a
simulation environment where the instantaneous feature can be invoked. Also,
we consider a sticky random routing scheme that extends the dynamic alternate
routing scheme to the multiservice case, which is labeled as cached sticky random
adaptive routing (CaSRAR). Results presented here are based on call-by-call routing
simulation for randomly arriving calls that follow the Poisson process.

Revisit Homogeneous Traffi c Case
We fi rst start with results on call blocking for the homogeneous service case as
the number of cached paths K changes from 2 to 15 (for a 10-node fully connected
network); this is reported in Figure 5.3 for both the case of no reservation and
with trunk reservation set at 40 percent; while a very high trunk reservation value
such as 40 percent is rarely used in an operational network, the intent here is to
show how results are infl uenced, with and without trunk reservation. It is interest-
ing to note that for the no reservation case, the increase of cached paths does not
necessarily result in improvement in performance for all routing schemes. We see
improvement only for MACRPNC. However, with trunk reservation activated,
performance can improve with the increase in K for all routing schemes. This
substantiates the claim on performance degradation in the absence of trunk
reservation as reported elsewhere.

Furthermore, our result shows that this behavior is not necessarily consistent
for all routing schemes. For the utopian scheme, MACRIC, the performance
degrades drastically as K increases when there is no trunk reservation. Although
this may sound surprising, this is possibly caused by overuse of multiple-link
paths through instantaneous checking, which leads to local optimization and

bistability. We observe the same problem with MACRPC when there is no trunk
reservation. Overall, CaSRAR and MACRPNC are more robust in the absence
of trunk reservation. However, in the presence of high trunk reservation, as K
increases we found that MACRIC and MACRPC had better performances than
CaSRAR and MACRPNC. Overall, these results show that path caching is indeed
helpful; however, the actual routing schemes and factors such as trunk reservation
do matter.

Service Class Performance
Next we discuss the case of heterogeneous services where three different service
classes with differing bandwidth requirements for each service class are offered.
We consider two cases: the network capacity in the fi rst one is dimensioned for
low BDR (less than 1 percent) while the second one is dimensioned for moderately
high BDR (over 5 percent). (Dimensioning or sizing refers to determining the
capacity needed in a network to carry a given traffi c offered load at a prespecifi ed
level of performance guarantee.) From the scenario where the network is dimen-
sioned for low BDR (Figure 5.4(a)), we found that in the presence of trunk
reservation, as K increases, the BDR decreases for all schemes (similar to the
homogeneous case). However, this is not true when the network is dimensioned

K = 2 K = 5 K = 15

FIGURE 5.3

Homogeneous service fully connected network (with and without trunk reservation).

5.7 Source-Based QoS Routing with Path Caching 143

144 CHAPTER 5 Quality of Service Routing

for moderate BDR (Figure 5.4(b)), even in the presence of moderate trunk reser-
vation. The pattern is somewhat closer to the homogeneous case with no trunk
reservation. What we can infer is that even in the presence of trunk reservation,
the ability to hunt over multiple paths through crankback is benefi cial in a
network designed for low BDR, but crankback can be detrimental when the
network is designed for moderately high BDR as it impacts network performance
(and can also lead to higher fl ow setup time due to frequent path hunting).

Now we discuss briefl y the role of the UPO phase. Recall that different routing
update interval (RUI) parameter values can be used for the UPO phase. As one
would guess, with more frequent updates (i.e., for a smaller value of RUI), the
inaccuracy in link state information decreases. It is observed that both schemes
MACRPC and MACRPNC give better performance with more frequent updates as

12-node 30-link network (higher load), 5% TR and K = 5

(a)

(b)

12-node 66-link network (higher load), 5% TR and K = 15

M
ea

n
bl

oc
ki

ng
/

ba
nd

w
id

th
 d

en
ia

l
M

ea
n

bl
oc

ki
ng

/
ba

nd
w

id
th

 d
en

ia
l r

at
io

FIGURE 5.4

Performance of different routing schemes (and update periods): (a) low-load, sparsely
connected case, (b) higher-load case.

would be intuitively guessed. However, it appears that inaccuracy in link state
information can be well compensated by the availability of crankback in a network
designed for low BDR. Specifi cally, we note that MACRPC with an RUI of 360
seconds has much lower BDR than MACRPNC with an RUI of 120 seconds (Figure
5.4(a)). However, the reverse relation holds when the load is moderately high
(Figure 5.4(b)). We also saw in an earlier example (through MACRIC) that instan-
taneous information update is not always benefi cial in terms of network perfor-
mance (as well as negatively affecting fl ow setup time considerably). Overall, we
can infer that inaccuracy in link state information is not necessarily bad, and in
fact, can be well compensated through path caching; in any case, the specifi cs of
the routing scheme do play a role here.

So far we have discussed performance using the network-wide indicator band-
width blocking rate. We are next interested in understanding the effect on each
service class. For this, we have considered three service classes in increasing order
of bandwidth requirement; that is, the fi rst service (s1) class has the lowest band-
width requirement per fl ow, while the third service class (s3) has the highest
bandwidth requirement per fl ow.

For a network dimensioned for low BDR, we found that with a moderate to
large number of path caching, CaSRAR and MACRPNC tend to give poorer per-
formances to the higher bandwidth service class (s3), whether the network is fully
or sparsely connected (Figure 5.4(a) is shown here for the sparsely connected
case). Furthermore, the inaccuracy of routing information due to the update inter-
val of the UPO phase does not seem to affect MACRPC for different service classes
but can noticeably affect MACRPNC (Figure 5.4(a)). To check whether the same
behavior holds, we increased the load uniformly for all service classes. We made
some interesting observations (Figure 5.4(b)): The lowest-bandwidth service (s1)
has uniformly low fl ow blocking for all routing schemes; however, the highest-
bandwidth service class (s3) is affected worst under MACRPC at the expense
of the lower-bandwidth classes, therefore MACRPC is more unfair to higher-
bandwidth services as the network load uniformly increases. In general, we found
that CaSRAR works better than the other schemes in providing smaller variation
in performance differences seen by different service classes.

Call Admission Control
While it is known that higher-bandwidth, reservation-based services experience
worse performance than lower-bandwidth, reservation-based services in a single-
link system, these results indicate that this behavior holds as well in a network
with dynamic routing and trunk reservation. In other words, routing and trunk
reservation cannot completely eliminate this unfairness. Thus, in a network, if
fairness in terms of GoS to different service classes is desirable, then additional
mechanisms are needed. In this context, a concept called service reservation
beyond traditional trunk reservation has been proposed. This concept can be
manifested, for example, through source-based admission control at the time of
fl ow arrival.

5.7 Source-Based QoS Routing with Path Caching 145

146 CHAPTER 5 Quality of Service Routing

While a good source-based admission control scheme for a general topology
network in the presence of QoS routing operating in a link state protocol environ-
ment and trunk reservation remains a research problem, a probabilistic source-
based admission control scheme for fully connected networks in the presence of
routing and for two service classes has been presented. The ability to provide
service fairness in terms of fair GoS using this source-based admission control
scheme in the presence of routing and trunk reservation is shown in Figure 5.5.
This is shown for three different values of network load with two service class
scenarios (shown for normal load “lf-1.0,” 5 percent s2 overload “lf-s2,” and 5
percent network-wide overload “lf-1.05,” all for MACRPC). The right-most entries
(corresponding to p = 1) denote the no source-based admission control case. As
we can see, with the increase in load, the higher-bandwidth service suffers the
most in the absence of source-based admission control. As the admission control
parameter is tuned (by changing p toward 0.8) to invoke different levels of source-
based admission control, it can be seen that service-level fairness in terms of GoS
can be achieved.

Dynamic Traffi c
Finally, we discuss network performance impact due to network traffi c dynamics.
To show this we consider a homogeneous service, fully connected network where

MACRPC, flow blocking, CAC
N

et
w

or
kw

id
e

av
er

ag
e

fl
ow

 b
lo

ck
in

g

FIGURE 5.5

Performance impact in the presence of source-based admission control.

one source-destination node pair has dynamic traffi c while the rest of the traffi c
pairs have stationary traffi c (no source-based admission control is included here).
For our study, the dynamic traffi c has been represented through a time-dependent,
stationary process that follows a sinusoidal traffi c pattern. For the case with no
trunk reservation, we have found that MACRPC has much worse performance
than both CaSRAR and MACRIC as traffi c changes for the dynamic traffi c class
(pair); CaSRAR adapts very well with traffi c changes, although it has no UPO
phase. It is interesting to note that just the presence of dynamic traffi c between
a source-destination node pair can cause the rest of the (stationary) traffi c to show
dynamic performance behavior (Figure 5.6).

We also considered the case in which trunk reservation is imposed; purpose-
fully, we set the reservation at an unusually high value of 40 percent to understand
the performance implication—the result is shown in Figure 5.7; from this fi gure,
we note two phenomena: (a) MACRPC performs better than CaSRAR for dynamic
traffi c, and (b) the imposition of dynamic performance on the stationary traffi c
(from the dynamic traffi c class) is no longer there. Also, we found that the overall
performance improves in the presence of trunk reservation in a dynamic traffi c

Service blocking (no TR, K = 5)

Fl
ow

 b
lo

ck
in

g

Simulation time (seconds)

FIGURE 5.6

Dynamic performance behavior of stationary traffi c due to the infl uence of dynamic traffi c
(no trunk reservation).

5.7 Source-Based QoS Routing with Path Caching 147

148 CHAPTER 5 Quality of Service Routing

scenario (similar to the stationary traffi c case). From these results an important
question, although not directly within the purview of routing, arises: Should a
network allow a dynamic traffi c stream/class to impose its behavior on a stationary
traffi c stream? In other words, should a stationary traffi c stream suffer higher fl ow-
blocking just because the load for the dynamic traffi c stream is increasing? This
cannot be addressed alone through the three-phase QoS routing framework or any
other QoS routing framework. However, the impact can be controlled through
the use of trunk reservation and under controls; this is where lessons on controls
may be taken into consideration.

5.8 ROUTING PROTOCOLS FOR QOS ROUTING
The following subsections discuss protocols employed in QoS routing.

5.8.1 QOSPF: Extension to OSPF for QoS Routing

The OSPF extension for QoS routing mechanisms, described in RFC 2676, is com-
monly referred to as QOSPF. You may note that every OSPF hello, database

Network blocking (40% TR, K = 5)
Fl

ow
 b

lo
ck

in
g

Simulation time (seconds)

FIGURE 5.7

Performance of dynamic and stationary traffi c (with trunk reservation).

description, and link state advertisements (LSA) contain an options fi eld that is 1
byte long. One of the bits in the options fi eld, originally known as the T-bit to
indicate if an originating router is capable of supporting type of service (ToS), was
later removed. Instead, the QOSPF specifi cation proposed to reclaim this bit and
renamed it as the Q-bit to indicate that the originating router is QoS routing
capable. When this bit is set, two attributes are announced with a link state:
bandwidth and delay.

An important aspect about the QOSPF protocol is that it specifi es the path
computation mechanism, which is divided into the pre-computed option and the
on-demand option. For the pre-computed path option, a widest path version of
the Bellman–Ford approach based on bandwidth was proposed. For the on-
demand computation, a widest shortest path version of Dijkstra’s algorithm that
considered bandwidth and hop count was proposed; this is essentially least-hop-
widest path routing discussed earlier in this chapter.

Note that in QOSPF, as part of the protocol, both the path computation algo-
rithm and the attributes to be exchanged were specifi ed. It is important to distin-
guish this approach from traffi c engineering extensions of OSPF in which the
extension on exchange of information has been standardized, while the actual
path computation mechanism is left for the provider to decide.

5.8.2 ATM PNNI

Asynchronous transfer mode (ATM) technology is a packet-mode networking
technology with its own protocol stack architecture and addressing. In ATM, all
packets are of fi xed 53-byte size, known as cells. The Private Network–Network
Interface (PNNI) protocol, originally defi ned around the mid 1990s, is the standard
for QoS routing in ATM networks. PNNI is based on a link state routing protocol
framework; it has the basic elements of a link state routing protocol such as the
hello protocol, database synchronization, and fl ooding. However, PNNI is a topol-
ogy state protocol since besides the status of links, the status of nodes can also
be fl ooded; accordingly, the PNNI topology state element (PTSE) is equivalent of
the link state advertisement.

Parameters associated with a topology state are divided into two categories:
metrics and attributes; the main distinction is whether information is considered
on an entire path basis (“metric”), or an individual node or link basis (“attribute”).
Examples of metrics are cell delay variation and maximum cell transfer delay.
Attributes are either performance-related such as the cell loss ratio, the maximum
cell rate, and the available cell rate, or policy-related such as the restricted transit.
Since packet sizes are fi xed, cells as units are used instead of the raw bandwidth
rate; thus, effectively, the maximum cell rate refers to the total bandwidth of a
link, and the available cell rate refers to the available bandwidth, both counted
in cells as units. Although all information required for computing paths is pro-
vided, PNNI did not prescribe any specifi c way to do path computation; in this
sense, PNNI is a visionary protocol and is one of the early routing protocols to

5.8 Routing Protocols for QoS Routing 149

150 CHAPTER 5 Quality of Service Routing

decouple the routing information exchange part from the routing algorithm
computation.

PNNI allows crankback and alternate routing, much like dynamic nonhierarchi-
cal routing (DNHR) and RTNR for dynamic call routing in the telephone network.
Crankback can be local; that is, the control for a connection need not be sent
back to the ingress switch for performing crankback. By using addressing hierar-
chy, PNNI also handles scalability on information dissemination and storage. That
is, through addressing hierarchy, aggregation of information about a group of
nodes and links that are at the same hierarchy is performed—such a group is
identifi ed as a peer group; the aggregated information about a peer group is dis-
seminated, instead of announcing the PTSE for each element within the group.
Thus, a peer group can be thought of as a domain; in this sense, PNNI has both
intra- and inter-domain fl avors in the same protocol. Although PNNI routing is
considered to be source-routing based, this is true only within a peer group; to
reach an address that is in a different group, a designated transit list is created
that identifi es the peer groups the connection control message is to visit during
the connection setup; once such a request reaches a group identifi ed in the des-
ignated transit list, the group is responsible for actual source route within its group
to the appropriate egress node, which, then, hands off to the next peer group for
further processing.

5.9 SUMMARY
In this chapter, we have discussed QoS routing. We started by discussing what
QoS means, and the scope of QoS routing and its inherent relation to traffi c engi-
neering. Based on arrival and service frequency, we have also identifi ed how dif-
ferent services may be classifi ed into three types of classifi cations; this was
summarized in Table 5.1. We have indicated that QoS routing falls under the Type
A classifi cation.

We then presented a taxonomy for QoS routing and showed how QoS routing
can be divided based on different types of networks, and whether one or more
attributes are to be considered in the QoS routing decision, especially for packet-
switched networks. Next we discussed extendibility of widest and shortest path
routing to QoS routing. An important issue to consider here is that periodic updat-
ing of information induces inaccuracy on link state information—thus, to properly
address service performance, a path caching mechanism that allows alternate path
routing can be helpful; this is presented as a three-phase framework. Performance
results are presented to understand the interrelation in the presence of heteroge-
neous guaranteed services, update frequency, traffi c dynamism, and so on.

The importance of QoS routing goes beyond the telephone network. It is
also applicable to MPLS, optical, and wavelength routing when service requests
with guaranteed resource requirements are to be connected on demand and
quickly.

Before we conclude, we briefl y comment on QoS guarantee in a generic
best-effort network such as the Internet. This QoS guarantee issue should not be
confused with QoS routing. In an intra-domain environment running a best-effort
model, QoS guarantee for services are quite possible if the network is engineered
to meet QoS guarantee—this might require overprovisioning. A better environ-
ment is a differentiated services environment, where priority to certain packets
can be given by using a router’s scheduling algorithm for services that require
certain guarantee—in this case, the overprovisioning can be moderate since the
routers have mechanisms to discriminate packets that require guarantee and those
that do not. MPLS is also a mechanism to enable QoS guarantee. In an inter-domain
environment, it is much more diffi cult since each provider on a path for a request
that requires QoS guarantee would need to have the proper mechanisms—this is
diffi cult in practice since it might not be possible to enforce every provider to
provide the same QoS guarantee. However, instead of stringent QoS guarantee, it
is possible to provide certain quality through broad service level agreements
(SLAs). SLAs are possible to implement among different providers through which
traffi c may fl ow. Thus, meeting SLA agreements can be thought of as meeting
“soft” QoS guarantee.

5.9 Summary 151

This page intentionally left blank

CHAPTER

6Quality of Service in
IP-Based Services

Although there are many IP technologies that are very helpful in building basic
IP-based services and networks, those technologies may not be able to meet
the requirements of all customers who make use of the Internet Protocol (IP)
network. Some customers may have additional quality-of-service (QoS) require-
ments (other than just connectivity), such as guaranteed bandwidth, guaranteed
minimized end-to-end delay and jitter, security, data privacy, and so on. With
the rapid emergence of modern applications—B2B, e-commerce, video-on-
demand, and voice over IP—the requirements listed are important, so there is
more demand on IP-based networks to deliver the QoS requirements of the various
applications.

Applications like voice over IP and video are sensitive to delay and jitter. Delay
is the amount of time taken by the IP network to deliver a packet from the source
to the destination. Jitter is the variation in the delay. Unlike traditional IP-based
applications that depended on best-effort services, voice over IP applications have
strict delay and jitter requirements. Packets from these applications must be
delivered to the destinations with a fi nite delay (about 150 milliseconds). Video
applications, such as videoconferencing and video on demand, have bandwidth
requirements in addition to delay and jitter requirements. They require guaran-
teed end-to-end bandwidth, meaning that at any given time the IP network can
guarantee a minimum throughput (measured in kilobits per second) from source
to destination.

Privacy and security of data are of special concern to customers like banks and
insurance companies. Privacy means that this data should not be accessible to
others, and security means that even if the network is insecure and the IP packets
transporting the data are accessible, contents of the packets must still be secure
and not be compromised. These customers deal with sensitive data and are very
concerned about the safety of that data. Since the traffi c from these customers
traverses the same IP backbone of the service provider, it is necessary to ensure
that data privacy is maintained at any given time.

154 CHAPTER 6 Quality of Service in IP-Based Services

This chapter, excerpted from Chapter 7 of Developing IP-Based Services by
Monique Morrow and Kateel Vijayananda, examines the techniques and protocols
used to meet the quality of service expectations of the users of IP networks. The
mechanisms discussed can help service providers to enhance and add new IP-
based services to their portfolios in order to meet the additional requirements of
their customers. The demand for QoS in an IP network is increasing every day.
With the rapid emergence of applications like voice over IP and video-on-demand,
the expectations of customers are also increasing. QoS and applications like voice
over IP are discussed in separate sections.

6.1 QUALITY OF SERVICE
The term quality of service, or QoS, can be used in a broad sense and, depending
on context, can have several meanings. QoS is normally understood to indicate a
set of service requirements that have to be met by a network. QoS functions are
intended to deliver the service requirements that have been guaranteed by the
network. This is achieved by giving the network operator control over the usage
of network resources, including bandwidth, memory to store and forward packets,
and CPUs. Some of the techniques that can be used to satisfy QoS requirements
are the following:

Resource reservation at each node in the network. Reservation is done according
to policies implemented by the service provider based on customer require-
ments. The reservation mechanism depends on routing tables/routing proto-
cols to fi nd the path with suffi cient resources. This gives the operator control
over the resources that are allocated to customers.

Scheduling mechanisms to effectively allocate resources based on demand. The
scheduling mechanisms have to be implemented by the service provider based
on customer requirements.

A combination of resource reservation and scheduling mechanisms to manage
the network resources and meet the QoS requirements of the customers.

Scheduling mechanisms are local to a network device. However, in order to
ensure the end-to-end QoS requirements (meaning that QoS is guaranteed along
all the links and nodes, from the source node to the destination node), it is impor-
tant that all of the nodes in the network have a common agreement on how to
implement the scheduling mechanisms. Resource reservation also requires coop-
eration among all of the nodes in a network. All of the nodes that are in the path
from the source to the destination must implement the reservation policy. Resource
reservation depends on routing to fi nd out the path from the source to the desti-
nation and reserve resources on all of the nodes.

6.1 Quality of Service 155

QoS in an IP network is not an afterthought. Founders of IP had envisioned
the need for QoS and have provided for a fi eld called type of service (ToS) in the
IP header (see Figure 6.1) to facilitate QoS in IP networks. Traditionally, IP net-
works offered best-effort services, meaning that the only QoS offered was that
packets might be eventually delivered to the destination. Since the Internet was
mostly used by applications like Telnet and fi le transfer, best-effort service was
enough to meet the QoS requirements of these applications. The QoS require-
ments of the applications that use the Internet today are much higher.

Internet QoS development has undergone a lot of standardization to provide
end-to-end QoS over the Internet. These standardization efforts are concentrated
in two areas:

Integrated services: Based on reserving the resources on all network devices for
each fl ow, or connection, before data from the connection is transported
across the network. This requires a reservation protocol like RSVP to be under-
stood by all network devices. (Section 6.1.2 provides more details about this
activity.)

Differentiated services: Based on managing the resources on all network devices
for each fl ow (based on some information, e.g., IP address, ToS fi eld, or tags)
as the data packets are transported through the network. This requires imple-
menting QoS functions like packet classifi cation, policing, traffi c shaping, and
the queuing mechanism on each network device. (More details about differen-
tiated services can be found in Section 6.1.3.)

6.1.1 QoS Parameters

The QoS guarantees provided by the network are measured using the performance
of the network. Bandwidth, packet delay and jitter, and packet loss are some
common measures used to characterize a network’s performance. The QoS

Version
length Len ID Offset TTL Protocol FCS IP-SA IP-DA Data

IP packet

ToS
1 byte

D
el

ay

T
h
ro

u
g
h
p
u
t

R
el

ia
b
ili

ty

ToS fieldPrecedence ECN

FIGURE 6.1

ToS fi eld of an IP packet.

156 CHAPTER 6 Quality of Service in IP-Based Services

requirements vary depending on the requirements of the applications: for voice
over IP or IP telephony, delay, packet loss, and jitter are important; for applica-
tions that involve bulk data transfer, bandwidth is a QoS requirement.

Bandwidth
The term bandwidth is used to describe the throughput of a given medium, pro-
tocol, or connection. It describes the size of the pipe that is required for the appli-
cation to communicate over the network. An application requiring guaranteed
bandwidth wants the network to allocate a minimum bandwidth specifi cally for it
on all the links through which the data is transferred through the network. Depend-
ing on the type of network, the bandwidth guarantee can be provided at either the
IP layer or the data-link layer. Guaranteed bandwidth at the IP layer depends on the
type of data-link network. Not all data-link network support guarantees bandwidth
when several IP connections share the same network—for example, it is not pos-
sible to reserve bandwidth in an Ethernet network with several hosts.

Packet Delay and Jitter
Packet delay, or latency, at each hop consists of serialization or transmission delay,
propagation delay, and switching delay.

Serialization or transmission delay: The time it takes for a device to send the
packet at the output rate. This depends on the size of the packet and the link
bandwidth. A 64-byte packet on a 4 Mbps line takes 128 μs to be transmitted.
The same 64-byte packet on a 128 Kbps line takes 4 ms to be transmitted.

Propagation delay: The time taken for a bit to be transmitted by the transmitter
and to be received by the receiver. This is a function of the media and the
distance, and is independent of bandwidth.

Switching delay: The time taken for a device to start transmitting a packet after
receiving it. This depends on the status of the network and the number of
packets in transit at this hop.

End-to-end delay for a packet belonging to a fl ow is the sum of all of the pre-
ceding types of delays experienced at each hop. All packets in a fl ow need not
experience the same delay—it depends on the transient delay in each hop in the
network. If the network is congested, queues will be built at each hop, and this
increases the end-to-end delay. This variation in the delay is called jitter. Queuing
mechanisms at each node can be used to ensure that the delay of certain fl ows is
minimized and also that the jitter has an upper bound. (This is described in Section
6.1.4.)

Packet Loss
Packet loss specifi es the number of packets lost in the network during transmis-
sion. The loss can be due to corruption in the transmission media, or packets

6.1 Quality of Service 157

can be dropped at congestion points due to lack of buffer space in the
incoming or outgoing interface. Packet loss due to drops should be rare for a
well-designed network that is correctly subscribed or undersubscribed. Packet loss
due to faulty transmission media can also be avoided by building good physical
networks.

QoS at Layer 2
Depending on the QoS requirements, QoS functions are available at the data-link
layer (Layer 2) and network layer (Layer 3) of the Open Systems Interconnection
(OSI) model. Guaranteed bandwidth as a QoS requirement can be provided by
several Layer-2 technologies, such as Frame Relay or asynchronous transfer mode
(ATM), when the physical medium is shared by several Layer-3 connections simul-
taneously. ATM can also meet other QoS requirements such as minimizing delay
and jitter.

6.1.2 Integrated Services Model

The integrated services (IntServ) model is based on the concept of requesting
resources along all the links in a network from the source to the destination.
This reservation is done using protocols such as the Resource Reservation Proto-
col (RSVP)—a network-control protocol that enables Internet applications to
obtain special QoSs for their data fl ows. The RSVP is not a routing protocol;
instead, it works in conjunction with routing protocols and installs the equivalent
of dynamic access lists along the routes that routing protocols calculate. RSVP
occupies the place of a transport protocol in the OSI model seven-layer protocol
stack.

Researchers at the University of Southern California Information Sciences Insti-
tute (ISI) and Xerox Palo Alto Research Center originally conceived RSVP. The
Internet Engineering Task Force (IETF) is now working toward standardization
through an RSVP working group. RSVP operational topics discussed later in this
chapter include data fl ows, QoS, session start-up, reservation style, and soft-state
implementation.

How Does It Work?
IntServ using RSVP works in the following manner:

1. Applications signal their QoS requirements via RSVP to the network.
2. Every network node along the path must check to see if the reservation

request can be met.
3. Resources are reserved if the service constraints can be met.
4. An error message is sent back to the receiver if the constraints cannot

be met.
5. Network nodes make sure there are no violations of the traffi c contract.
6. Nonconforming packets are either marked down or dropped.

158 CHAPTER 6 Quality of Service in IP-Based Services

The following are some of the main drawbacks of the IntServ model:

■ It is an “all-or-nothing” model, meaning that it cannot be partially
deployed—every node in the network must implement it in order for it
to work.

■ The network needs to maintain each reservation for each fl ow.
■ It is oriented for real-time traffi c.
■ Scalability: The number of RSVP reservations is directly proportional to

the number of IP streams that require resource reservation. This issue is
addressed by aggregating multiple RSVP reservations into one reservation.
Work is currently ongoing to provide aggregated RSVP.

An example of an application that uses the IntServ model is voice over IP,
which makes use of RSVP to make path reservations before transporting voice
traffi c over a data network. For more details, see Section 6.2.3.

6.1.3 Differentiated Services Model

The differentiated services (DiffServ) approach to providing QoS in a network is
based on employing a well-defi ned set of blocks with which one can build a variety
of services. It is based on the differentiated services code point (DSCP) byte and
ToS byte of the IP packet. The DiffServ architecture provides a framework within
which service providers can offer a wide range of services to customers, each
service being differentiated based on the DSCP fi eld in the IP packet. This value
specifi es the per-hop behavior (PHB) of the packet as it traverses the service
provider network.

Differentiated Services Code Point
To allow traffi c to have different policies applied to it, some method of differen-
tiation of packets is required. Within the IP header is an eight-bit fi eld known as
type of service (ToS), within which three bits are used as precedence, allowing
for eight classes to be used. This fi eld has recently been redefi ned by the IETF as
the differentiated services code point (DSCP) and uses six bits of the fi eld, allow-
ing for 64 different classes. Figure 6.2 shows the details of the DSCP fi eld (and
also the precedence fi eld) of the IP header. In the case of DSCP, the currently
unused bits are not used and are reserved for future implementation.

Multiprotocol Label Switching (MPLS) has only three bits in the experimental
(EXP) fi eld of the MPLS (shim) header. The IP precedence bits (three left-most
bits of the ToS fi eld of the IP header) are copied to the EXP fi eld of the MPLS
header when the MPLS header is appended to the packet. This effectively means
that full use of DSCP can only be made in links where MPLS is not enabled. All
other links in the network run MPLS, but only the fi rst three higher-order bits of
DSCP can be used to classify traffi c.

The limited number of bits in the MPLS header is not necessarily a drawback
of MPLS. MPLS is used in the core network. The DSCP fi eld of the IP header is

6.1 Quality of Service 159

used to classify the customer traffi c. In the core network, traffi c from several
customers can be aggregated into a single class. Typically, there are up to four
classes in the core network: voice, priority, guaranteed bandwidth, and best-effort.
Since the MPLS packet encapsulates the IP packet with the MPLS header, the DSCP
fi eld in the IP is not lost and can be recovered at the edge of the network when
the MPLS header is stripped and the IP packet is forwarded to the customer.

DiffServ Architecture
All the nodes that follow the DiffServ model are in a DiffServ domain. All the
nodes on a DiffServ domain observe the PHB of a packet based on the DSCP value.
Figure 6.3 shows the DiffServ architecture and the two functional building blocks,
traffi c conditioners and PHB.

Traffi c conditioners are used to classify the IP packets by marking the ToS or
DSCP fi eld of the IP packet or the EXP bit of the MPLS packet. Traffi c condi-
tioners are applied when the traffi c enters the DiffServ domain. These func-
tions are implemented on the edge nodes of the DiffServ domain. Packets are
policed and marked based on the traffi c profi le. The DSCP fi eld of the packets
is also marked based on the traffi c profi le. The traffi c conditioner used to police
the packet may drop the packets if they do not match the profi le or may shape
the traffi c when it does not meet the requirements of the profi le.

Version
length Len ID Offset TTL Protocol FCS IP-SA IP-DA Data

IP packet

ToS
1 byte

Delay

Th
ro
ug
hp
ut

ReliabilityPrecedence

Differentiated services code point

ECN

CU

FIGURE 6.2

Description of the ToS fi eld of the IP header.

160 CHAPTER 6 Quality of Service in IP-Based Services

PHB functions must be implemented on all of the nodes in the DiffServ domain.
They allocate resources for the packets to be scheduled and transmitted out
of each node and implement the drop policy when there is congestion.

DiffServ versus IntServ
The DiffServ model is more scalable than the IntServ model and has fewer fl ows
than the IntServ model. However, this model requires that the traffi c conditioners
and PHB be implemented in the DiffServ domain. Provisioning the services using
the DiffServ model can be challenging because the traffi c conditioners and PHB
have to be correctly implemented on every interface of all the nodes in the Diff-
Serv domain. It can be a tedious task to implement and verify the implementation
on all of the nodes. The IntServ model on top of the DiffServ model is an interest-
ing concept that can be used to take advantage of both models. While the DiffServ
model will make it scalable, the IntServ model will assure that resources are made
available to each fl ow for which the IntServ model is used.

6.1.4 IP QoS Implementation

IP QoS implementation can be divided into the following categories:

Classifi cation: This involves marking the IP packet (setting DSCP or the IP prece-
dence value) based on customer requirements. Once the packets are correctly
classifi ed, they can be properly handled by the other QoS mechanisms like
congestion management and policing to implement end-to-end QoS require-

DiffServ domain

PHB PHB

PHBPHB

PHB per-hop behavior
TC traffic conditioner

=
=

TC PHB

TC PHB

TC PHB

TC PHB

TC PHB

FIGURE 6.3

DiffServ architecture.

6.1 Quality of Service 161

ments. Packet classifi cation is typically done on the edge of the network. Some-
times the service provider reclassifi es packets in the core network by re-marking
certain fi elds in the packet. This reclassifi cation is required when traffi c is aggre-
gated, however, the service provider must ensure that the original value of the
IP precedence (DSCP) fi eld in the IP packet is restored at the edge of the service
provider network when the packet is delivered to the customer. This can be
done in an MPLS network because two fi elds are available. The IP precedence
fi eld can be used to classify customer packets, and the MPLS EXP fi eld can be
used by the service provider to reclassify packets in the core network.

Congestion management: This involves the creation of queues, assignment of
packets to the proper queues, and scheduling of queues and the packets within
the queues. The number of queues depends on the customer requirements and
the number of CoSs offered by the service provider. Assignment of packets to
queues and the scheduling policies are determined by the service provider
depending on the type of QoS offered to the customer. For example, high-
priority traffi c such as voice over IP requires preemptive queue mechanisms
that will ensure that the packets are scheduled and transmitted before other
packets.

Congestion avoidance techniques: Congestion avoidance is a preemptive mecha-
nism that monitors the network load and ensures that there is no congestion
in the network. Congestion avoidance is achieved by dropping the packets;
the packets that have to be dropped are determined based on the drop policy.
This depends on the CoSs offered by the service provider. For example, during
network congestion, traffi c from the best-effort class should be dropped fi rst.
Traffi c from the guaranteed bandwidth class should not be dropped before the
minimum bandwidth has been guaranteed to that class.

Policing and shaping mechanisms: These ensure that each CoS (based on the
marked IP packet) adheres to the service contract. The service contract can
include several issues, such as bandwidth, burst size, and delay.

QoS signaling: This is used between nodes in the network to signal the QoS
requirements of each class and to reserve resources. RSVP is a QoS signaling
protocol that can be used to reserve resources like bandwidth. QoS signaling
mechanisms also depend on routing protocols to determine the best path
between the source and the destination.

Implementing QoS in an IP network is a challenging task. It requires a good
understanding of queuing theory and the requirements of customers in order to
determine the parameters for the queuing policies. One challenge is the commu-
nication between the signaling plane (QoS signaling protocols like RSVP) and the
data-forwarding plane (congestion in the network) to ensure that the resource
reservation for an application can be done in the correct manner. For example,
RSVP uses bandwidth as the resource in order to do reservations. In addition to

162 CHAPTER 6 Quality of Service in IP-Based Services

bandwidth, other network resources like queue buffers on the network devices
are also important resources that are required to guarantee QoS. Congestion in
the network device due to lack of queue buffers must be communicated to RSVP
so that RSVP can use alternate paths (between the source and the destination)
that have enough network resources (e.g., bandwidth, queue buffers) to meet the
QoS requirements of the application making the RSVP request.

6.1.5 Creating New Services Using QoS

Applications like voice over IP have strict QoS requirements regarding delay, jitter,
and bandwidth. Real-time applications like video-on-demand also have QoS require-
ments that cannot be met by the best-effort services offered by a traditional IP
network. By enabling QoS in the IP network (either by using the DiffServ model,
the IntServ model, or both), service providers can offer differentiated services or
guaranteed services (or both) to their customers. This will also enable them to
offer new services like voice over IP and use the last mile, or local loop, to imple-
ment telephony services.

Differentiated services (offered using the DiffServ model) can help the service
provider to distinguish between business customers (who pay more money for
the services) and customers who are satisfi ed with best-effort services. By offering
better QoS to the business customers—by allocating suffi cient bandwidth and
ensuring that the traffi c from the business customer gets forwarded preferentially
over the best-effort customer in case of congestion—the service provider can have
oversubscription in their network and still meet the QoS requirements of all of
their customers.

A QoS-enabled network will also help the service provider to offer additional
services such as guaranteed bandwidth to a customer. Applications like video-on-
demand and videoconferencing have bandwidth requirements. By ensuring guar-
anteed bandwidth to customers, the service provider assures customers that their
network is capable of meeting the bandwidth requirements of the customers’
applications.

QoS implementation helps the service provider to offer bundled services, like
voice, video, and data, on a single physical link. This requires QoS implementation
on a link between the customer premises and the service provider POP to dif-
ferentiate between the voice, video, and data traffi c. Cable, ADSL, Frame Relay,
ATM, and Ethernet are examples of access technologies with which the service
provider can offer bundled services.

6.2 VOICE OVER IP
Of the key emerging technologies for data, voice, and video integration, voice
over IP (VoIP) is arguably one of the most important. The most QoS-sensitive of
all traffi c, voice is the true test of the engineering and quality of a network.

Demand for voice over IP is leading the movement for QoS in IP environments,
and will ultimately lead to use of the Internet for fax, voice telephony, and video
telephony services. Voice over IP will ultimately be a key component of the migra-
tion of telephony to the LAN infrastructure.

6.2.1 Requirements

Voice traffi c is sensitive to delay and delay variations. Communication between
gateways must be reliable and be delivered on time. In an IP network, reliable
packet delivery can be assured by using robust transport and session protocols.
However, routers and specifi cally IP networks offer some unique challenges in
controlling delay and delay variation (see Section 6.1.4 for more details).

Traditionally, IP traffi c has been treated as best-effort, meaning that incoming
IP traffi c is transmitted on a fi rst-come, fi rst-served basis. Packets have been vari-
able in nature, allowing large fi le transfers to take advantage of the effi ciency
associated with larger packet sizes. These characteristics have contributed to large
delays and large delay variations in packet delivery. The second part of supporting
delay-sensitive voice traffi c is to provide a means of prioritizing the traffi c within
the router network in order to minimize the delay and delay variation. Section 6.1
provides details about assuring QoS in an IP network.

6.2.2 Components

In this section, we briefl y introduce the components that are involved in deliver-
ing voice traffi c over a data network:

Packet voice network: Responsible for converting the voice traffi c into data
packets and delivering the voice traffi c over a data network

Protocols such as H.323 and session initiation (SIP): Help to provide multimedia
communication (voice, video, and data) over a data network and operate with
the traditional voice networks

Packet Voice Network
All packet voice systems follow a common model, as shown in Figure 6.4. The
packet voice transport network, which may be IP-based, Frame Relay, or ATM,
forms the traditional cloud. At the edges of this network are devices, or compo-
nents, called voice agents or gateways. It is the mission of these devices to change
the voice information from its traditional telephony form to a form suitable for
packet transmission. The network then forwards the packet data to a gateway
serving as the destination, or the called party. This voice-agent connection model
demonstrates the two issues in packet voice networking that must be explored
to ensure that packet voice services meet user needs.

The fi rst issue is voice coding: how voice information is transformed into
packets and how the packets are used to recreate the voice. Voice has to be

6.2 Voice over IP 163

164 CHAPTER 6 Quality of Service in IP-Based Services

transformed into digital signals before it can be transported over a packet network.
At the other end of the packet network, the digital signal has to be reconverted
into voice signals. Special devices are used to convert voice to a digital signal and
then back to voice. These devices are called coder-decoders (CODECs).

The second issue is the signaling associated with identifying the calling party
and ascertaining where the called party is in the network. Two signaling protocols,
H.323 and SIP, are discussed in Section 6.3.

Voice Coding

Analog communication is ideal for human communication. However, analog trans-
mission is neither robust nor effi cient at recovering from line noise. Analog signals
have to be digitized before they can be transported over a packet voice network.
Digital samples are composed of one and zero bits, and it is much easier for them
to be separated from line noise. Therefore, when signals are regenerated, a clean
sound can be maintained.

When the benefi ts of this digital representation became evident, the telephony
network migrated to pulse code modulation (PCM). PCM converts analog sound
into digital form by sampling the analog sound 8000 times per second and con-
verting each sample into a numeric code. After the waveform is sampled, it is
converted into a discrete digital form. This sample is represented by a code that
indicates the amplitude of the waveform at the instant the sample was taken. The
telephony form of PCM uses 8 bits for the code and a logarithm compression
method that assigns more bits to lower-amplitude signals. The transmission rate
is obtained by multiplying 8000 samples per second by 8 bits per sample, giving
64,000 bits per second, the standard transmission rate for one channel of tele-
phone digital communications.

Telephone

Host

Fax

Voice agent/
gatekeeper

Packet voice/
data network

FIGURE 6.4

Packet voice network.

Two basic variations of 64 Kbps PCM are commonly used: MU-law and A-law.
The methods are similar in that they both use logarithmic compression to achieve
12 to 13 bits of linear PCM quality in 8 bits, but are different in relatively minor
compression details (e.g., MU-law has a slight advantage in low-level signal-to-noise
ratio performance). Usage has historically been along country and regional bound-
aries, with North America using MU-law and Europe using A-law modulation. It is
important to note that when making a long-distance call, any required MU-law to
A-law conversion is the responsibility of the MU-law country.

Another compression method often used is adaptive differential pulse code
modulation (ADPCM). A commonly used instance of ADPCM, ITU-T G.726
encodes using 4-bit samples, giving a transmission rate of 32 Kbps. Unlike PCM,
the four bits in ADPCM do not directly encode the amplitude of speech but the
differences in amplitude as well as the rate of change of that amplitude, employ-
ing some very rudimentary linear predictions.

The most popular voice-coding standards for telephony and packet voice
include the following:

G.711: Describes the 64 Kbps PCM voice-coding technique outlined earlier. G.711-
encoded voice is already in the correct format for digital voice delivery in a
public phone network or through PBXs.

G.726: Describes ADPCM coding at 40, 32, 24, and 16 Kbps; ADPCM voice may
also be interchanged between packet voice and public phone or PBX net-
works, provided that the latter has ADPCM capability.

G.728: Describes a 16 Kbps low-delay variation of code-excited linear prediction
(CELP) voice compression. CELP voice coding must be transcoded to a public
telephony format for delivery to or through telephone networks.

G.729: Describes CELP compression that enables voice to be coded into 8 Kbps
streams. Two variations of this standard (G.729 and G.729 Annex A) differ
largely in computational complexity, and both generally provide speech quality
as good as that of 32 Kb/sec ADPCM.

G.723.1: Describes a technique that can be used for compressing speech or other
audio signal components of multimedia service at a very low bit rate.

6.3 OPERATING VOICE OVER IP
The following subsections discuss various VoIP standards.

6.3.1 H.323

H.323 is the standard that has been developed for multimedia communication
over a LAN or network that does not provide guaranteed QoS. The accepted model

6.3 Operating Voice over IP 165

166 CHAPTER 6 Quality of Service in IP-Based Services

for internal signaling for IP packet voice networks is the H.323 standard. While
H.323 is popularly viewed as a packet video standard, it actually defi nes a set of
multimedia communications standards between users. In fact, only voice services
are required for H.323 participation; video and data support are optional.

H.323 defi nes a complete multimedia network, from devices to protocols.
Linking all of the entities within H.323 is H.245, which is defi ned to negotiate
facilities among participants and H.323 network elements. A scaled-down version
of ISDN’s Q.931 call protocol is used to provide for connection setup.

Figure 6.5 shows the components of H.323. In H.323 terms, the voice agents
are terminals, although the common usage of this concept suggests a single user.
H.323 also defi nes a gatekeeper function that performs the address translation and
also mapping between a telephone number and the IP address of the remote
gateways. If the network in a packet voice application is actually made up of
several different kinds of transport networks, H.323 defi nes a gateway function
between networks that performs the packet data format translation and signaling
translation required for proper communications across the network boundary.
The most common use of this gateway is the conversion of videoconferencing
from H.320 to H.323 format, permitting packet video users to communicate with
traditional room- or cart-based video systems that rely on the circuit-switched form
of video.

Gatekeeper

H.324
(over
telephone)

H.320
(over ISDN)

Telephone
network

Corporate LAN

Gateway

Speech only
(telephone)

Multipoint
conferencing
unit

H.323
terminal

FIGURE 6.5

Components of H.323.

6.3.2 Session Initiation Protocol

The session initiation protocol (SIP) is an application-layer control protocol that
can establish, modify, and terminate multimedia sessions or calls. These multime-
dia sessions include multimedia conferences, distance learning, Internet telephony,
and similar applications. SIP is defi ned in RFC 2543.

SIP is a peer-to-peer protocol where end devices (user agents, or UAs) initiate
sessions. The two components of an SIP system are UAs and network servers.
Calling and called parties are identifi ed by an SIP address. (Figure 6.6 shows the
SIP components.) UAs are client end-system applications that contain both the
user-agent client (UAC) and a user-agent server (UAS), otherwise known as a
client and server. The client initiates the SIP request and acts as the calling party.
The server receives the request and returns the response on behalf of the user
and acts as the called party. Examples of UAs include SIP phones, gateways, PDAs,
and robots.

Network servers are optional components in the context of SIP. There are
three types of servers: proxy server, redirect server, and location server.

Proxy server: Acts on behalf of the UA and forwards the SIP messages to the other
UAs after modifying the header. Rewriting the header identifi es the proxy
server as the initiator of the request and ensures that the response follows the
same path back to the proxy server.

IP
IP

IP

IP
IP

IP
SIP

RTP

Legacy
PBX

SIP user
agents

SIP
gateway

SIP
gateway

SIP proxy, registrar,
and redirect servers

SIP SIP PSTN

FIGURE 6.6

Components of SIP.

6.3 Operating Voice over IP 167

168 CHAPTER 6 Quality of Service in IP-Based Services

Redirect server: Accepts SIP requests from the UA and sends a redirect response
back to the UA with the address of the next server or the calling party. Redirect
servers do not accept calls, nor do they forward or process SIP requests.

Location server: Maintains the SIP address of UA devices. The redirect server and
the proxy server use the location server to locate the called UA.

SIP addresses, also called SIP universal resource locators (URLs), exist in the
form of user@host. The user portion can be a name or telephone number, and
the host portion can be a domain name or network address. The following exam-
ples depict two possible SIP URLs:

■ sip:vijay@vijay.com
■ sip:0012012012222@10.10.10.10

Figure 6.7 shows a call setup using a proxy server. A UA can send an SIP request
directly to the local proxy server or to the IP address and port corresponding to
the called party (e.g., vijay@10.10.10.10). Sending it to a proxy server is relatively
easy because the calling UA does not have to know the exact URL of the called
user agent.

6.3.3 How Does Voice over IP Work?

The general steps to connect a packet voice telephone call through a voice over
IP router are described in the example that follows. This example is not a specifi c
call fl ow, but it gives a high-level view of what happens when you make a phone

22222
INVITE

OK

INVITE

OK

ACK ACK

BYE

ACK

IP

Proxy server
(10.0.0.1)

SIP UA
(10.2.2.1)

RTP

SIP UA
(10.1.1.1)11111

FIGURE 6.7

Call setup using an SIP proxy server.

call work over a packet voice network. The general fl ow of a two-party voice call
is the same in all cases:

1. The user picks up the handset, signaling an off-hook condition to whatever the
local loop is connected to (e.g., PBX, PSTN central offi ce switch, signaling
application in the router).

2. The session application issues a dial tone and waits for the user to dial a phone
number.

3. The user dials the number, which is accumulated by the session application.

4. The number is mapped via the dial plan mapper to an IP host (by sending a
request to the gatekeeper), which talks either to the destination phone directly
or to a PBX, which fi nishes completing the call.

5. The session applications run a session protocol (e.g., H.323) to establish a
transmission and a reception channel for each direction over the IP network.
Meanwhile, if there is a PBX involved at the called end, it fi nishes completing
the call to the destination phone.

6. If using RSVP, the RSVP reservations are put in place to achieve the desired
QoS over the IP network.

7. The voice CODECs/compressors/decompressors are turned on for both ends,
and the conversation proceeds using IP as the protocol stack.

8. Any call progress indications and other signals that can be carried in band (e.g.,
remote phone ringing, line busy) are cut through the voice path as soon as an
end-to-end audio channel is up.

9. When either end hangs up, the RSVP reservations are torn down (if RSVP
is used), and the session ends, with each end going idle waiting for another
off-hook.

When the dial plan mapper determines the necessary IP address to reach the
destination telephone number, a session is invoked. H.323 is the current session
application. Figure 6.8 shows a breakdown of the steps taken to form the H.323
session. The initial TCP connection is usually made on port 1720 to negotiate the
H.225 portion of the H.323 session. During this portion, the TCP port number for
the H.245 portion of the H.323 session is passed back to the calling unit.

During the H.245 portion of the H.323 session, the RTP and RTCP addresses are
passed between the calling unit and the called unit. The RTP address used is in the
range of 16,384 plus four times the amount of channels available on the calling
device. After all portions of the H.225 and H.245 sessions are complete, the audio
is then streamed over RTP/UDP/IP. (RTP stands for real-time protocol.)

6.3.4 Services Using Voice over IP

This section presents a discussion on how voice over IP can help a service pro-
vider in creating new services and reducing operational costs. By offering voice

6.3 Operating Voice over IP 169

170 CHAPTER 6 Quality of Service in IP-Based Services

and data services over a single network, service providers can reduce the costs of
managing two networks. Voice over IP can also help service providers to augment
their portfolio with add-on services that will provide customers with single
network connectivity for both voice and data services.

Merging Voice and Data Networks
Voice over a packet network uses less transmission bandwidth than conventional
voice because the digitized signal is compressed before it is transmitted. This
allows more traffi c to be carried on a given connection in a packet network as
compared to a conventional voice network. Where telephony requires as many
as 64,000 bits per second, packet voice often needs fewer than 10,000. For many
companies, there is suffi cient reserve capacity on national and international data
networks to transport considerable voice traffi c, making voice essentially “free.”
A packet/data network can deliver voice traffi c using less bandwidth. Given a
certain amount of bandwidth, more voice traffi c can be transported using an IP
network compared to a voice network.

Voice over IP is an excellent solution that can help to carry both voice and
data traffi c using the same IP network (see Figure 6.9). An IP network connects
two remote sites, Site A and Site B. Voice (telephone) and data applications are
connected to the router at each site. The router is also the gateway for the voice
over IP application. X1234 and X5678 are the telephone numbers of Site A and

Setup

Connect

V
PSTN/

private voice V
PSTN/

private voice

Signaling

Bearer or
media

IP network

POTS/PSTN call setup: ringing, answer . . .

Capabilities exchange

Open logical channel

Open logical channel acknowledged

RTP stream
RTP stream

RTCP stream

H.245 (TCP)
RTP/RTCP address

negotiation

Media (UDP)

H.225 (TCP)

Q.931-derived call setup

FIGURE 6.8

Call setup in a voice over IP environment.

Site B, respectively. The IP network transports both voice and data packets. The
same network connection between Site A and Site B is used to transport both
voice and data traffi c. Merging voice and data onto one network can help reduce
the cost of maintaining two networks both in terms of infrastructure and the staff-
ing required to maintain the networks. The challenge lies in ensuring that the IP
network can guarantee the quality required for delivering voice traffi c. (Section
6.1 provided details about how to overcome some of these challenges.)

Toll Bypass
Toll bypass will be the most common application that corporations will look
toward for deploying voice over IP networks. It allows corporations to replace
the tie lines that currently hook up their PBX-to-PBX networks and route voice
calls across their existing data infrastructures (see Figure 6.10). Corporations will
also use voice over IP to replace smaller key systems at remote offi ces while
maintaining larger-density W voice over IP equipment at the sites with larger voice
needs. Another benefi t to using voice over IP is that real-time fax relay can be
used on an interoffi ce basis, an advantage since a large portion of long-distance
minutes is fax traffi c.

X1234 X5678

Site A Site B

Voice

R1

Data Data

Data
packet

Voice
packet

Data
packet

Voice
packet

IP
network

Voice

R2

FIGURE 6.9

Merging voice and data networks using voice over IP.

IP, FR, ATM,
WAN

PBX

Router/GW

Toll bypass
(tie trunk)

PBX

Router/GW
V V

FIGURE 6.10

Toll bypass using voice over IP.

6.3 Operating Voice over IP 171

172 CHAPTER 6 Quality of Service in IP-Based Services

6.4 IP SECURITY
IP security (known as IPsec) provides interoperable, high-quality, cryptographi-
cally based security for IPv4 and IPv6. The security services offered by IPsec
include:

■ Access controls (connectionless integrity ensuring data is transmitted
without alteration)

■ Data origin authentication (knowing received data is the same as sent
data and who sent the data)

■ Protection against replays and partial sequence integrity
■ Confi dentiality (encryption)
■ Limited traffi c fl ow confi dentiality

One of the most common ways of breaching the security of a network is to
capture some genuine data and then play it back to gain access. Therefore, IPsec
provides a means of securing against this data capture and replay. While it is good
to know whether data has been tampered with, a priority for most customers is
that they do not want their data read by unwanted parties. The most common
way of preventing the wrong people from reading data is encryption. This not
only protects data but also provides limited traffi c fl ow confi dentiality, as it can
hide the identities of the sender and receiver.

The IPsec protocol suite comprises a set of standards that are used to provide
privacy and authentication services at the IP layer. The current IPsec standards
include three algorithm-independent base specifi cations that are currently
standards-track RFCs. These three RFCs, listed next, are in the process of being
revised, and the revisions will account for numerous security issues with current
specifi cations.

RFC 2401, the IP security architecture: Defi nes the overall architecture and
specifi es elements common to both the IP authentication header and the IP
encapsulating security payload.

RFC 2402, the IP authentication header (AH): Defi nes an algorithm-independent
mechanism for providing exportable cryptographic authentication without
encryption to IPv4 and IPv6 packets.

RFC 2406, the IP encapsulated security payload (ESP): Defi nes an algorithm-
independent mechanism for providing encryption to IPv4 and IPv6 packets.

RFC 2408, the Internet security association and key management protocol
(ISAKMP): Defi nes the procedures for authenticating a communicating peer,
creation and management of security associations, key-generation techniques,
and threat mitigation (e.g., denial of service and replay attacks). All of these
are necessary to establish and maintain secure communications (via IP Security
Service or any other security protocol) in an Internet environment.

RFC 2409, the Internet key exchange (IKE): Describes a protocol using part of
the Oakley key-determination protocol and part of the secure key-exchange
mechanism (SKEME) in conjunction with ISAKMP to obtain authenticated
keying material for use with ISAKMP and for other security associations, such
as AH and ESP.

6.4.1 Concepts and Terminologies

This section introduces the concepts and terminologies related to IPsec. The fun-
damental concepts are authentication, encryption, key management, and security
association.

Authentication
Authentication, in IPsec terms, is knowing that we trust the “person” that has sent
us the data, that the data has not been altered in transit, and also, but to a lesser
extent, being able to prove that the data was sent. This can be achieved by using
a hashing algorithm: The sender takes the data and a key (a password of sorts)
and hashes these together. The answer, which is always the same length for that
particular key and hashing algorithm, is known as a message authentication
code. IPsec refers to the message authentication code as the integrity check
value (ICV). The message authentication code and the data are sent to the
receiver. The receiver takes the data, the key, and the hashing algorithm and
performs the same calculation as the sender. The receiver compares his or her
answer, that is, the message authentication code, with that sent by the user. If the
answers match, the receiver knows that the data has not been altered (or the
answer would be different) and knows who sent the data (the person who knows
the same key).

Encryption
Encryption is the transformation of a clear text message into an unreadable form
to hide its meaning. The opposite transformation, retrieving the clear text message,
is decryption. The keys are often symmetric—that is, the same key is used for
encryption and decryption. The most common encryption algorithm is the data
encryption standard (DES). DES is a block encryption algorithm: it takes the data
and encrypts it in blocks of bits. The blocks of data are 64 bits and the most
common key lengths are 56 or 168 (triple DES, or 3DES). With DES, the 56-bit
key is often expressed as a 64-bit number, with every eighth bit used for parity.
From the key, 16 subkeys are derived that are used in 16 rounds of the algorithm.
The cipher text is always the same length as the clear text.

Key Exchange
Both authentication and encryption are based on the use of keys. A key is a bit
pattern that is used to encrypt messages. The length of the key depends on the
encryption technique. The key is used by the sender, who encrypts the message

6.4 IP Security 173

174 CHAPTER 6 Quality of Service in IP-Based Services

with it, and by the receiver, who decrypts the message with it. Therefore, the key
has to be exchanged between the sender and the receiver.

The IPsec protocol suite also includes cryptographic techniques to support the
key management requirements of the network-layer security. ISAKMP provides
the framework for Internet key management and the specifi c protocol support
for negotiation of security attributes. By itself, it does not establish session keys;
however, it can be used with various session key establishment protocols, such
as Oakley, to provide a complete solution to Internet key management.

The Oakley key-determination protocol provides the important security prop-
erty of perfect forward secrecy and is based on cryptographic techniques that
have survived substantial public scrutiny. Perfect forward secrecy ensures that if
any single key is compromised, only the data encrypted with that particular key
will be compromised; it will not compromise any data encrypted with subsequent
session keys.

The ISAKMP and Oakley protocols have been combined into a hybrid protocol.
The resolution of ISAKMP with Oakley uses the framework of ISAKMP to support
a subset of Oakley key-exchange modes. This new key-exchange protocol provides
optional perfect forward secrecy and full security association attribute negotiation,
as well as authentication methods that provide both repudiation and nonrepudia-
tion. Implementations of this protocol can be used, for example, to establish
virtual private networks (VPNs) and also to allow users from remote sites (who
may have a dynamically allocated IP address) access to a secure network.

Authentication Header
An authentication header (AH) provides an authentication and integrity mecha-
nism for IP traffi c. Figure 6.11 shows the fi elds of the AH. The preceding IP header
will contain a protocol value of 51. The next header fi eld identifi es the type of
the next payload. The value specifi ed is one of the IP protocol numbers, as defi ned
in the most recent assigned numbers (currently RFC 1700).

Reserved

Authentication data

0 7 15 31

Next
header

Security parameter index (SPI)

Sequence number

Payload
length

FIGURE 6.11

Fields of the authentication header.

The payload length is the length of the header in 32-bit words minus 2. The
reserved fi eld is always set to zero. The security parameter index (SPI) is 32 bits
long, and the value is determined when the security association (SA) is estab-
lished. The sequence number is also 32 bits long and is always present, even if
anti-replay is not enabled. The sequence number is set to zero when the SA is
established and will never cycle if anti-replay is enabled. The size of the authen-
tication data fi eld contains the message authentication code—which in IPsec
terminology is the ICV. It must be a multiple of 32 bits, and padding can be added
if needed.

An extra authentication header is inserted onto the IP header (see Figure 6.12).
HMAC (keyed hashing for message authentication) algorithms, such as secure hash
algorithm (SHA) or MD5, are used to generate the AH. This header is generated
using the entire IP packet and a secret key. Fields of the IP packet that get modi-
fi ed in transit (TTL, ToS, header checksum, fl ags) are not used in generating the
AH. This header is used to verify that the content of the IP packet has not been
modifi ed.

Although IPsec is connectionless, it uses a sequence number to detect dupli-
cate packets in order to provide protection against denial-of-service (DoS) attack.
This mechanism is referred to as anti-replay because it prevents packets from
being duplicated and retransmitted by hackers as part of a DoS attack. The
sequence number in the AH is used to detect duplicate packets. AH does not
ensure the confi dentiality of the payload of the IP packet. This means that AH
does not encrypt the payload.

Encapsulated Security Payload
The encapsulated security payload (ESP) encrypts the entire payload of the IP
packet using DES or 3DES in order to provide confi dentiality for the payload of

AH

Keyed hashing for message authentication
algorithm (such as keyed secure hash algorithm/
message authentication digest)

Authenticated IP datagram

Original IP datagram

IP header Other headers and payloads Secret key

IP header Other headers and payloads

FIGURE 6.12

Generating an authentication header for an IP packet.

6.4 IP Security 175

176 CHAPTER 6 Quality of Service in IP-Based Services

the IP packet. As shown in Figure 6.13, the ESP header is inserted between the
IP header and the encrypted payload to generate the encrypted IP packet. It also
provides for an optional authentication/integrity mechanism for the payload. ESP
can be used by itself or in conjunction with AH. ESP is defi ned in RFC 2406.

Figure 6.14 shows the details of the ESP header. The IP header contains a
protocol value equal to S0 to indicate that the IP packet has an ESP header. (The
SPI and sequence numbers have been discussed in the preceding section.)

There are three different reasons why padding may be added: The fi rst is that
the encryption algorithm may require the data to be multiples of numbers of bytes.

ESP

Encrypted algorithm

Encrypted IP datagram

Original IP datagram

IP header IP payload Encryption key

IP header Encrypted IP payload

FIGURE 6.13

Encryption using ESP.

Security parameter index

Sequence number field

Initialization vector

Payload data

Padding (if any)

Pad
length

Next
header

Authentication data (optional)

Encryption cover

Authentication cover

FIGURE 6.14

ESP header.

The second is that the pad length and next header fi elds must be right-aligned
within the 4-byte words. The last, and sometimes surprising reason, is to hide the
size of the packet. The standard defi nes that a user may add between 0 and 255
bytes of padding. The pad length is the number of bytes of padding preceding this
fi eld. This fi eld is always present, so if no padding is added, the fi eld will be zero.
The authentication data fi eld is present if the security association demands authen-
tication, and its length is dependent on the authentication algorithm used.

Security Association
The concept of security associations (SAs) is fundamental to IPsec. An SA is a
connection that provides security to the traffi c it carries. The security is either AH
or ESP, but not both. An SA applies in one direction only, so for security for both
inbound and outbound traffi c, two SAs will be established. If both AH and ESP are
required for a particular connection, an SA bundle will be established. An SA is
identifi ed by three parameters: a destination IP address, the security protocol (AH
or ESP), and the SPI. The SPI is a 32-bit number that is used to uniquely identify
the particular SA. Numbers 1 to 255 are currently reserved by the Internet Assigned
Numbers Authority (IANA) for future expansion.

There are two main types of SAs: transport mode and tunnel mode (see Figure
6.15). In a transport mode SA, the source and destination of the IP packet also do
the IPsec processing. In this case, each end station would have a stack that was
IPsec capable and the traffi c would be secured end to end. If one or more of the
devices is a security gateway—for example, a router—the SA is in tunnel mode.
In this scenario, the IPsec processing is not done by either the source or the
destination of the IP packet.

In Figure 6.15, the IP packets would only be secured between the two routers.
Sometimes people refer to the routers as “acting as a proxy”—they are providing

Transport mode

Tunnel mode

IP

IP

FIGURE 6.15

Two modes of SAs.

6.4 IP Security 177

178 CHAPTER 6 Quality of Service in IP-Based Services

security for clients who are unable to provide security for themselves, or provid-
ing security in addition to that provided by the clients. It is important to realize
that a particular IP packet may experience both types of SAs in the path between
source and destination. For example, the sending station may use ESP to encrypt
the packet. The sending station would establish an security association in trans-
port mode. The forwarding router may then apply authentication header security
to that packet using an SA that is in tunnel mode.

So what is the difference between tunnel and transport mode, other than the
device that performs the IPsec processing? The main difference is that in transport
mode, the security is applied to upper protocol levels, whereas in tunnel mode,
the security is applied to the entire IP packet. Figures 6.16 and 6.17 show the
difference in the packets generated by tunnel mode and transport mode.

Original IP datagram

IP header Other headers and payloads

Tunnel mode

New IP
header IPsec header IP header Other headers and payloads

IP datagram tunnel mode

FIGURE 6.16

Tunnel mode packets.

Original IP datagram

Transport mode

IP header IPsec header Other headers and payloads

IP header Other headers and payloads

IP datagram transport mode

FIGURE 6.17

Transport mode packets.

6.4.2 How Does IPsec Work?

The IPsec standard will enable interoperable, secure, and authenticated data fl ow
at the IP level for interchangeable devices, including hosts, fi rewall products, and
routers. The following example illustrates how IPsec is used to provide for authen-
ticated, confi dential data communication between the remote router and campus
fi rewall, shown in Figure 6.18. All traffi c from the remote router destined to the
campus fi rewall must be authenticated before passing traffi c through. The router
and fi rewall must fi rst agree on a security association, which is an agreement
between the two on a security policy. The SA includes:

■ Encryption algorithm
■ Authentication algorithm
■ Shared session key
■ Key lifetime

A security association is unidirectional, so for two-way communication, two SAs
must be established, one for each direction. Generally, the policy is the same, but
this leaves room for asymmetrical policies in either direction. These SAs are negoti-
ated via ISAKMP, or they can be defi ned manually. After the SA is negotiated, it is
then determined whether to use authentication, confi dentiality, and integrity or
simply authentication. If only authentication is desired, the current standard spec-
ifi es the use of a hashing function. Specifi cally, implementations must use at least
the MD5 algorithm with 128-bit keys. The packet header and data are run through
the hashing function, and the results of the hash computation are inserted into the
specifi ed fi eld in the authentication header. Note that for IPv4, the following fi elds
are set to zero:

■ Type of service (ToS)
■ Time to live (TTL)
■ Header checksum
■ Offset
■ Flags

Campus network

Insecure
connection

Firewall

Remote
router

Remote
user

FIGURE 6.18

Router to fi rewall security.

6.4 IP Security 179

180 CHAPTER 6 Quality of Service in IP-Based Services

The new packet, with the authentication header between the IP header and
data, is now sent through the router to the campus destination. When the fi rewall
receives the packet, it verifi es the authenticity of the packet by recomputing the
hash with the hashing function specifi ed in the SA. The hashing function must be
the same on both sides. As shown in Figure 6.18, the fi rewall then compares its
computed hash with the parameter found in the fi eld in the AH, and if they match,
it is assured of authentication and integrity (i.e., that the packet came from the
remote router and no bits have been modifi ed). Note that since the original packet
is expanded because of the insertion of the AH, fragmentation may be required.
Fragmentation occurs after the AH for outgoing packets and before the AH for
incoming packets.

If there is also a requirement for confi dentiality, then the SA specifi es that all
traffi c from the remote router destined to the campus fi rewall must be authenti-
cated and encrypted before passing traffi c through. The ESP provides authentica-
tion, integrity, and confi dentiality. Note that since the original packet is expanded
because of the insertion of the AH, fragmentation may be required. Fragmentation
occurs after ESP for outgoing packets and before ESP for incoming packets.

6.4.3 IPsec Advantages

The advantages of IPsec network-layer security include the following:

■ It can support completely unmodifi ed end systems, though in this case,
encryption is no longer strictly end to end.

■ It is particularly suitable for building VPNs across nontrusted networks.
■ It can support transport protocols other than TCP (e.g., UDP).
■ It hides the transport-layer headers from eavesdropping, providing

somewhat greater protection against traffi c analysis.
■ With AH and replay detection, it protects against certain DoS attacks based

on swamping (e.g., TCP synchronization attacks).

6.4.4 IPsec versus MPLS-VPN

After reading this section on IPsec, some questions may arise:

■ How do the VPNs created using IPsec differ from the MPLS-VPNs?
■ Is there any need for MPLS-VPNs if VPNs can be created using IPsec?
■ What additional benefi ts does IPsec bring to the table?

The VPNs created by IPsec and MPLS-VPNs are quite different. MPLS-VPN
creates VPNs at the network layer by using special routing protocols that help to
distinguish between different networks and by using packet-forwarding mecha-
nisms based on labels to forward packets only within the VPN. The mechanisms
used by MPLS-VPNs are scalable and can be used to create and maintain several
VPNs. The MPLS-VPN solution is scalable because there is no need to build and
maintain point-to-point tunnels between the different sites of the VPN. The number

of labels required to build a VPN is directly proportional to the number of sites
(or the total number of network addresses within a VPN).

IPsec forms VPNs by creating associations between hosts and other network
entities that belong to the same VPN and ensuring that communication is possible
only between network elements that are part of the association. The solution
provided by IPsec is not scalable for a large number of VPNs because one needs
to form associations between the different entities belonging to a VPN and the
complexity of the number of associations is O(N2), where N is the number of
hosts belonging to a VPN. The advantage of IPsec lies in the additional security
mechanisms. IPsec can supplement the security by means of authentication and
encryption.

IPsec and MPLS-VPN are not two competing technologies, but they supplement
each other so as to overcome the disadvantages of each other. IPsec on top of an
MPLS-VPN provides a solution that is more secure (with the additional security
provided by IPsec) and also scalable (by using MPLS-VPN). IPsec can be used to
strengthen the security of the network and also to protect the integrity and con-
fi dentiality of the data that is transported across the IP network.

6.5 SUMMARY
This chapter has provided an overview on some advanced topics related to IP-
based services. These topics supplement the features supported by IP and enhance
the services that can be offered by the IP network. For readers who are interested
in more details about the topics covered in this chapter, the section that follows
provides suggestions for further reading.

Today, the requirements of applications using the IP network are more than
just “best-effort.” In order to meet requirements like guaranteed bandwidth; min-
imized delay, jitter, and packet loss; and security, it is necessary to implement the
QoS functions in the network. Transporting voice over an IP network helps to
merge the voice and data networks. This helps customers to reduce the cost of
maintaining two networks and also to make effective use of the IP networks. Voice
over IP has QoS requirements such as minimizing delay and jitter and ensuring
bandwidth. By enhancing the QoS functions of an IP network, it can support
applications like voice over IP.

6.6 FURTHER READING
Davidson, J., and J. Peters, Voice Over IP Fundamentals. Cisco Press, 2000: A detailed

source for information about voice-coding techniques and standards, and also about
H.323.

RFC 2205, “Resource Reservation Protocol (RSVP)—Version 1: Functional Specifi cation.”
Braden, R., et al., IETF, 1997.

6.6 Further Reading 181

182 CHAPTER 6 Quality of Service in IP-Based Services

RFC 2210, “The Use of RSVP with IETF Integrated Services.” Wroclawski, J., IETF, 1997.
RFC 2474, “Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers.” Nichols, K., et al., IETF, 1998.
RFC 2475, “An Architecture for Differentiated Services.” Blake, S., et al., IETF, 1998.
RFC 2597, “Assured Forwarding PHB Group.” Heinanen, J., et al., IETF, 1999.
RFC 2598, “An Expedited Forwarding PHB.” Jacobsen, V., et al., IETF, 1999.
RFC 3175, “Aggregation of RSVP for IPv4 and IPv6 Reservations.” Baker, F., et al., IETF,

2001: Provides detailed techniques for aggregating traffi c fl ow reservations using RSVP
control.

Vegesna, S., IP Quality of Service. Cisco Press, 2001: Gives more details about QoS imple-
mentations in an IP network.

CHAPTER

7The Foundation of Policy
Management

Management is critical to the delivery of quality of service. The network resources
must be marshaled to meet the customer requirements, and the traffi c fl ows must
be suitably arranged with a view across the whole network. This means that it is
not enough to manage each link or node in isolation, and the traffi c demands
created by the customer cannot be handled individually. Instead, a series of
network-wide policies must be implemented and applied to each provisioning
request. This gives rise to the concept of policy-based management.

This chapter, from Policy-Based Network Management by John Strassner,
provides a brief retrospective of how policy-based network management (PBNM)
has been conceived in the past. This will be used to point out two fundamental
problems of previous solutions—the lack of use of an information model, and the
inability to use business rules to drive confi guration of devices, services, and net-
works. A path forward, and benefi ts resulting from this improved approach, are
described.

7.1 INTRODUCTION—A RETROSPECTIVE
Policy management means many things to many people. As Michael Jude writes,

When fi rst conceived in the late 1990s, PBNM promised enterprise information
technology shops the ability to control the quality of service (QoS) experienced
by networked applications and users. . . . In fact, the hype went further than
that: Vendors promised that CIOs or CEOs would soon be able to control
policies through a simple graphical interface on their desk. Behind the scenes,
those instructions would translate into specifi c traffi c management adjustments,
bypassing traditional network operations.

QoS means many things to many people. Contrary to popular belief, QoS does not
mean “just” an increase or decrease in bandwidth speed. Rather, it means differ-

184 CHAPTER 7 The Foundation of Policy Management

entiated treatment of one or more metrics. These metrics are completely depen-
dent on the type of application(s) that the QoS is being designed for. Thus, QoS
for a voice application is usually different than QoS for a mission-critical data
application, because the characteristics of each application are different. This
causes the specifi c QoS mechanisms to be made different.

My favorite defi nition of QoS is “managed unfairness.” This describes the dif-
ferences in how network elements are programmed to provide different QoS
mechanisms to treat various application traffi c streams differently. Clearly, this is
complex to perform for the same type of devices; the complexity of this confi gu-
ration increases dramatically if different devices with different capabilities and
commands are used in the same network.

Differentiated QoS, which is the ability to provide different confi gurations of
QoS for different types of applications, is the key to opening up new avenues
of revenue. Because providing QoS is currently very diffi cult, the application of
policy to provide differentiated QoS is one of the primary drivers for implement-
ing PBNM solutions.

The emphasis on managing and implementing QoS describes some of the
buildup and excitement that followed the dawn of PBNM. The reason, of course,
is because networks are complex, and running different services, each of which
has different requirements on the same network, is very diffi cult. People who
were looking for a “quick fi x” to their network problems were disappointed;
PBNM was found to be a time intensive, complex, and expensive. There were
several reasons for this:

■ Most early PBNM solutions were single-vendor approaches and could only
manage some of the devices on the network. As a result, multiple incompatible
PBNM solutions had to be introduced to manage the entire network, which
caused hard-to-solve integration problems.

■ PBNM solutions were focused on particular technologies and devices. For
example, a QoS policy server might be able to control most (but probably not
all) of the QoS functions of a particular vendor’s device or device families.
However, it probably could not control other types of technologies, such as
security and Internet Protocol (IP) address management.

■ PBNM solutions focused on the IP world. This caused disruption in organiza-
tions that have different technologies present in their networks.

■ PBNM solutions were misunderstood.

■ PBNM solutions rushed forth without a solid set of standards in place.

Although the fi rst three problems are important, the last two are fundamental
problems that prevented the fi rst wave of PBNM solutions from realizing their
goals.

In addition, two other problems prevented wide adoption. First, the solutions
initially available were not very scalable, and hence could not easily be used in
large service provider networks despite the fact that they provided some attractive

7.1 Introduction—A Retrospective 185

technology (e.g., confi guring QoS functions). Second, network monitoring tech-
nology lagged behind the new provisioning technology promoted by PBNM solu-
tions to control the network. As a result, there was no easy way to monitor
whether the PBNM solutions were actually working.

7.1.1 Early PBNM Solutions Missed the Point

In its early days, PBNM was characterized (and unfortunately, this characterization
continues somewhat today) as a sophisticated way to manipulate different types
of QoS. The motivation for this was to avoid overprovisioning the network, (i.e.,
enough resources are present for the network to respond to any anticipated need).
The problem with this approach is that it is static and cannot adjust to the chang-
ing environment. Thus, if the network is provisioned according to the maximum
expected load, resources will be wasted most of the time. Furthermore, if that
load is exceeded for some reason (e.g., a heavy day of stock trading), then the
network will still be unable to perform.

PBNM was used to set the QoS levels based on inspecting different fi elds in
the header of traffi c that was being sent. People then reasoned that PBNM could
also be used for other applications (such as ensuring that high-priority traffi c was
delivered ahead of less important traffi c and that different services received the
level of service that they were contracted for) and for different types of security
applications (such as refusing traffi c from an unknown source to enter the network
or starting an accounting application when a connection was completed).

The common theme to each of these (and other) applications is the desire to
link the way the business runs to the services that the network provides. Regard-
less of application, PBNM was defi ned as reacting to a particular condition and
then taking an appropriate action. The missing point is that some centralized
authority has to decide which users and applications get priority over other users
and applications.

Business rules are defi ned as the set of rules, regulations, and practices for
operating a business. They often defi ne and sometimes constrain business proc-
esses. Business processes are defi ned as the means by which one or more activities
are accomplished in operating business practices. They take the form of an inter-
connected set of business functions (perhaps constrained by various business
rules) to obtain a specifi c set of business goals.

Recently, the focus has turned to integrating business rules and processes with
PBNM solutions. This focus makes intuitive sense, as it is certainly natural to want
the network to provide services according to business contracts. However, the
relationship can be, and should be, deeper than that. Business rules and processes
govern how a system is run. They are responsible for the many decisions that
must be made for every action performed by the system.

If policies are the reasons for doing something and business rules and processes
are the means for doing it, why not connect them together? Although this seems
obvious in retrospect, precious few information models have been constructed

186 CHAPTER 7 The Foundation of Policy Management

with this direction and capability. An important corollary of this decision is as
follows:

PBNM solutions require information models that contain business and system
entities that can be easily implemented.

This chapter describes a unique object-oriented information model, Directory
Enabled Networks-new generation (DEN-ng). It is being developed in the Tele-
Management Forum (TMF). The development is led by this author, and many
different companies are involved. The author’s company, Intelliden, is also actively
involved in implementing DEN-ng and has incorporated it into the latest release
of its product. Other companies, such as British Telecom, Telecom Italia, Telstra,
MetaSolv, Hewlett Packard, and Agilent, have participated in reviews of DEN-ng.

An object-oriented information model is a means to represent various entities
in a managed environment. An entity can be a person, a computer, a router, or
even a protocol message—anything that needs a uniform and consistent represen-
tation for confi guration and management is a possibility for defi nition and repre-
sentation in DEN-ng.

An object-oriented information model provides a common language in which
different types of management entities can be represented. This common language
is of the utmost importance. Operational support systems (OSSs) are large, complex
sets of applications that are composed of best-of-breed applications. This tendency
to use best-of-breed applications encourages the use of “stovepipe” applications,
which are applications that maintain their own defi nition of data. Much of the
data used by each stovepipe application should be shared with other stovepipe
applications. Unfortunately, this simply cannot be accomplished unless a common
language exists to represent these common data.

One diffi culty in building an OSS lies in the large variety of different manage-
ment objects that must be harmonized and shared among the different manage-
ment applications being used. Further exacerbating this problem is the fact that
different types of management data have different characteristics. For example,
very volatile data, such as statistical interface measurements, changes much too
fast to be placed in a directory. Other data are very appropriate to put into a
directory. Thus, an OSS needs to use multiple repositories to accommodate the
different characteristics and uses of different management information.

An object-oriented information model, such as DEN-ng, is independent of any
specifi c type of repository, software usage, or access protocol. Therefore, DEN-ng
can be used as a single authoritative means for describing how different manage-
ment information are related to each other.

To put this into perspective, Figure 7.1 shows fi ve exemplary management
applications that comprise an OSS. Notice that for two of these applications, the
same data appears. For the username attribute, two different names are given. This
makes it very diffi cult for applications to realize that these two different names
actually refer to the same attribute of the same object. Furthermore, both applica-
tions defi ne the same employee attribute. However, the data types are different.

7.1 Introduction—A Retrospective 187

This can cause problems in trying to write a single query to gather data based on
this and other attributes across these two repositories.

Thus, unless there is a way to relate different information that are implemented
using different data models to each other, it will be impossible to share and reuse
management information. This raises the cost of the OSS and increases the prob-
ability that errors (resulting from the inability to share and reuse management
data) will be embedded in the system. Furthermore, it means that entire processes
will be repeated to derive and/or retrieve the same data (because the data cannot
be shared). Instead, what is desired is a single, unifi ed information model that
relates the differences in data model implementations to each other.

DEN-ng is unique because it contains business and system entities that can be
used to build management representations and solutions. In fact, in the Intelliden
implementation, the DEN-ng information models are translated to two types of
data models (Java and directory models). Specifi cally, business and system entities
are represented in generic form in the information model and are then translated
to platform-specifi c implementations. The Intelliden product uses these models
to defi ne business rules to activate network services. Other companies, such as
MetaSolv (in their case, primarily a database), are using different repositories to
implement DEN-ng and the shared information and data (SID).

7.1.2 Early PBNM Solutions Were Ahead of the Standards

The Internet Engineering Task Force (IETF) took the DEN policy model and, in
August of 1998, formed a working group to start modeling policy. This working
group was originally co-chaired by myself and was based on using the DEN
policy model. This model concentrated on the generic representation of
policy and chose QoS as a representative application that would be modeled as a

Service order
management

Trouble ticket
management

Username: string 4
Employee: integer
IsAdmin: Boolean

Performance
management

Configuration
management

Inventory
management

Username: string 1
Employee: string 2
Manager: string 3

FIGURE 7.1

Problems in not using a single information model.

188 CHAPTER 7 The Foundation of Policy Management

separate set of extensions of the generic representation of policy. This is shown
in Figure 7.2.

The policy core information model defi ned a framework of classes and relation-
ships that could represent the structure of policy of any discipline. This is an
important point. The use case in 1998 is still the same as it is now—to build a
single PBNM solution that can be used to manage different types of policies
required by different applications. For example, QoS for voice applications is
fundamentally different than QoS for data applications. As such, the target of the
Policy Core Information Model (PCIM) was to be able to represent how a policy
was defi ned—it was not targeted at defi ning the content of the policy.

The policy QoS information model refi ned this framework and added semantics
to represent policies that could be used to control QoS mechanisms. The QoS
device data-path information model was derived from the Distributed Management
Task Force’s (DMTF) common information model and represented much of the
original DEN network model. The QoS device data-path information model was
used to represent the various mechanisms that the policy QoS information model
would be used to manage. Both information models were designed to provide
content within a common overall representational structure.

The DMTF’s Common Information Model (CIM) was proposed as a way to
provide a high-level representation of network elements. Thus, the policies could
be “grounded” and applied to a network device. For example, a policy could
describe a change in a function of a device; the content of this change could be
represented by the policy QoS information model, and the structure of the policy
could be represented in PCIM.

Unfortunately, the CIM model was too high-level and confused many people
in how policy would be applied. For example, the CIM had no representation of
either a physical port or a logical device interface (and this is true even today).
This made it very diffi cult for people to picture how policies were going to be
applied and built. Furthermore, the DMTF CIM was not really an information

Policy Core Information Model

QoS application

Policy QoS
information

model

QoS device
datapath

information
model

DMTF CIM

Inheritance
Inheritance

Derivation Derivation

FIGURE 7.2

Structure of the IETF information models.

model—it was more of a data model. An information model is supposed to be
independent of platform and technology. The DMTF CIM is based on the use of
“keys”—special attributes that are used to name and uniquely identify a particular
object. Keys are really a database construct, and their use must be carefully con-
sidered or else mapping to other types of data models that do not use keys (or
have different keys than those of a database) will be much harder. This is why
specifi c constructs used in one type of data model should not be part of a more
general information model.

In contrast, DEN-ng is a true information model in that it does not contain keys
or other technology-specifi c concepts and terms. It instead concentrates on defi n-
ing managed objects and their interrelationships. This is also true of the TMF’s
SID, of which the DEN-ng information model is one component.

The approach shown in Figure 7.2 was good. It took a very long time, however,
to get the participants in the IETF to agree to these models. The PCIM was not
published as an RFC until February 2001. Although the policy QoS information
model was ready, it was not published as RFC 3644 until November 2003. The
QoS device data-path information model is further behind.

There were many reasons for the holdup. This was the fi rst time that the IETF
was working with information models. Second, policy models of this depth had
not been done before in the industry. The main holdup was the fact that the IETF
is composed of many different people; each of whom are there primarily to rep-
resent the companies that they work for. Each network vendor had by then
launched its own set of policy applications. No one wanted a standard to come
out that would brand their products as noncompliant! Thus, the standards were
worked on, and watered down, and watered down some more, until they repre-
sented something that everyone could agree on.

The delay in issuing standards is due to these reasons plus the delay in getting
different companies (through their IETF members) to announce consensus.
Members are always fearful that a last-minute change in the standard will adversely
impact their companies’ products, and so consensus building is a relatively long
process.

However, there was another, more serious, problem. The above models focused
“just” on network devices. Although the PCIM was generic in nature, it was also
limited. For example, there was no model of how a policy rule would be evalu-
ated. More importantly, there were no business entities in these models and very
few non-network entities. Thus, there was no formal way to defi ne how business
rules could use policy to control network services. The primary motivation for
building the DEN-ng model was to address these problems.

7.2 WHERE WE ARE TODAY
Today, work has proceeded in various standards bodies and forums to rectify these
problems. Prominent among these is the work of the TMF. Two examples of this

7.2 Where We Are Today 189

190 CHAPTER 7 The Foundation of Policy Management

work are in the new generation operational systems and software (NGOSS) archi-
tecture and the TMF’s shared information and data (SID) model.

7.2.1 The NGOSS Architecture

The NGOSS Architecture is characterized by the separation of the expression and
execution of business processes and services from the software that implements
these business processes and services. Fundamentally, NGOSS is concerned with
defi ning an architecture that automates business processes.

For example, policies can be used to choose which set of processes are used
to perform a function. Feedback from executing processes can then be used to
change which policies are in force (or even applicable) at any given time. Thus,
although either policy management or process management can be used by itself
to manage an NGOSS system, to do so is to fail to realize the greater potential
afforded by using both to manage the same system.

The NGOSS behavior and control specifi cation defi nes in high-level terms the
architectural ramifi cations of using policy management. The NGOSS policy speci-
fi cation, defi nes in high-level terms the defi nition of a policy model that includes
business, system and implementation viewpoints. This is based on work from
the International Organization for Standardization (ISO) on a Unifi ed Modeling
Language (UML).

Although these are evolving specifi cations, credit should be given to the TMF
for having the vision to try and specify these important concepts and also to
develop them for all to use. A good example of this is the Catalyst programs of
the TMF. These team demonstrations are usually led by a service provider or
independent software vendor (ISV) and are designed to demonstrate one or more
concepts of the NGOSS architecture. This work is important because it defi nes
architectural and implementation ramifi cations of using PBNM solutions. This is
one of the few forums in the world where this is being studied in depth by com-
mercial, academic, and industrial players.

One of the prominent differences between the design of DEN-ng and the
design of other information models is that DEN-ng was built to support the needs
of the NGOSS architecture. All other information models that the author is famil-
iar with were not built to support any particular architecture.

The TMF approach is inherently better suited to produce useful standards faster.
First, it is centered on real-world work that is proven to be implementable through
its Catalyst programs. Second, the TMF has as one of its goals the production of a
shared information model. While the IETF emphasizes protocol development, the
TMF emphasizes architecture and information modeling. Finally, because the dif-
ferent vendors are all united in achieving common goals (architecture and informa-
tion modeling), it is easier for them to come to agreement than in the IETF.

7.2.2 The TMF Shared Information and Data Model

The TMF’s shared information and data (SID) model is a federated model, which
means that it is composed of different “sub-models,” which have either been

contributed by companies, mined from other standards, or developed within
the TMF.

The communications industry is seeking technological advances that will
improve time to market for new products and services. Service providers and
enterprises like to use best-of-breed software. However, this software is hard to
integrate with other software products constructed in a similar manner. Further-
more, each software product that is produced in a “vacuum” more than likely
redefi nes concepts that are used by other applications.

To achieve true interoperability (where data from different components can
be shared and reused), a common language needs to be developed and agreed on.
This goal is even more important in an NGOSS system, because one of its key
architectural principles is to use component-based software, interacting through
contracts. Therefore, the TMF embarked on building a shared information model
that could be used as a single source for defi ning common data.

The SID consists of inputs from Intelliden, MetaSolv, British Telecom, Telstra,
Vodaphone, Motorola, Agilent, AT&T, and others. Material donated includes DEN-
ng and several models and model snippets from many of these companies. The
objective of the SID is to provide the industry with a common language, defi ned
using UML, for common shared data. By agreeing on a common set of informa-
tion/data defi nitions and relationships, the team sets forth a common language
used in the defi nition of NGOSS architectures.

Another important feature of the SID is that it contains multiple models that
concentrate on different disciplines. Most other information models concentrate
on a single subject, such as networking. In contrast, the charter of the SID is to
defi ne business and system concepts for a variety of different domains. These
domains characterize how network elements and services are represented, used,
and managed in business and system environments.

7.2.3 The Ingredients in a Compelling PBNM Solution

The industry is now starting to appreciate the complexity of PBNM solutions.
PBNM is more than writing a policy rule and more than building elaborate UML
models; it is about a paradigm shift.

Historically, network management has focused on setting parameters of
individual interfaces of a device one at a time. Recent innovations of policy
management, ranging from new protocols to the use of information models to
represent policy rules, have helped simplify this daunting task. However, in and
of themselves these are insuffi cient to develop PBNM solutions that will solve
network confi guration problems and help make network services profi table once
again.

We need a more extensible, more robust solution. The key to implementing
this solution is to think more holistically about policy management. Most people
consider policy to be a set of rules that express a set of conditions to be monitored
and, if those conditions are met, one or more actions will be executed. This defi -
nition fails to take into account two key issues: users and process.

7.2 Where We Are Today 191

192 CHAPTER 7 The Foundation of Policy Management

First, different types of people use policy. Business people do not want to
express their policies in networking terminology, and networking people do not
want policies written using business concepts. However, business and network
personnel must work together to ensure that network services are managed
according to the business goals of the organization. A new form of policy is needed
that can translate business needs into device confi guration.

However, this by itself is not enough. The second missing feature is process.
No matter how simple or how sophisticated, every confi guration change has an
underlying set of business rules that govern its deployment. Business procedures
will defi ne who checks the change for correctness (sometimes from a technical
and a business point of view). They identify who must approve the change and
who must implement the change. They also describe how to verify that the change
has been properly implemented and what to do if a problem is discovered.

Policies defi ne how the shared resources of the organization are accessed and
allocated. Different users and services have different needs, and policy is the tool
that enables the appropriate process to be applied as a function of business prior-
ity. This enables network services to be adjusted in response to the changing
environment (e.g., new users logging on, different application usage, and so forth)
by providing dynamic and automatic (re)confi guration of the appropriate network
devices according to the business rules of the organization.

The realization that business rules and processes, device confi guration, and
service activation are all tightly bound together provides the clue to our answer.
We need a robust, extensible information model that can represent the managed
environment as a set of entities. If policies are also entities that exist in this infor-
mation model, then we can be assured that policies are represented using the
same tools, and therefore can be applied to users, applications, device interfaces,
services, and other managed objects. The information model provides a set of
formalisms through which we can build a robust system.

7.3 DEFINITION OF POLICY MANAGEMENT
Policy is typically defi ned as a set of rules. Each policy rule consists of a condition
clause and an action clause. If the condition clause is TRUE, then the actions in
the action clause are allowed to execute. Therefore, our fi rst defi nition of policy
management is:

Policy management is the usage of rules to accomplish decisions.

Policy is usually represented as a set of classes and relationships that defi ne
the semantics of the building blocks of representing policy. These building blocks
usually consist of a minimum of a policy rule, a policy condition, and a policy
action and are represented as shown in Figure 7.3. This simple UML model shows
the relationships between these three classes. Attributes and methods have not
been shown to keep the discussion simple. The fi gure shows that a PolicyRule

contains a set of conditions and a set of actions. These are represented by the
hasConditions and hasActions aggregations, respectively (an aggregation is a
special type of relationship that is used to represent whole–part dependencies).

PBNM solutions usually use an information model to represent policy. Some of
the better ones also use an information model to represent the subject and target
of the policy. DEN-ng is unique, in that it does this for business, system, and imple-
mentation viewpoints. By representing what you want the policy to do and how
you want it to act, you can use the power of an information model to represent
how different entities relate to each other. For example, two different users can be
logged on to the same system but receive different classes of service, which dictate
how the applications that each operate are handled in the network.

An information model is a means for defi ning common representation of infor-
mation. This enables management data to be shared, reused, and altered by mul-
tiple applications. The DEN-ng policy model is different to other policy models in
the industry. However, three differences are important to discuss now.

The fi rst difference is the use of an event model to trigger the evaluation of
the policy condition clause. This changes Figure 7.3 to Figure 7.4, which can be
read as follows:

On receipt of an Event, evaluate the PolicyCondition of a PolicyRule. If it
evaluates to TRUE, then execute the set of PolicyActions that are associated
with this PolicyRule.

The second difference is the use of constraints to better defi ne (through restric-
tion and more granular specifi cation) what the model represents. For example, it
makes no sense to defi ne a PolicyRule that does not have any conditions. This is

PolicyCondition PolicyRule0..n PolicyAction0..10..1

HasActions

0..n

HasConditions

FIGURE 7.3

A simplistic policy model.

PolicyEventSet

PolicyActionPolicyCondition PolicyRule

1..n

1..n

IsTriggeredBy

1..n 1..n
{ordered}

PolicyActionInPolicyRule

1..n 1..n
{ordered}

PolicyConditionInPolicyRule

{ordered}

FIGURE 7.4

A simplistic view of the DEN-ng policy model.

7.3 Defi nition of Policy Management 193

194 CHAPTER 7 The Foundation of Policy Management

allowed in the simplistic model of Figure 7.3, because the cardinality on each end
of the hasConditions aggregation is 0. However, this is not the case in Figure 7.4,
as the cardinality is 1..n on each side of the PolicyConditionInPolicyRule aggrega-
tion. Another example is the Object Constraint Language (OCL) expression
“{ordered}.” This expression requires that the PolicyEvents, PolicyConditions, and
PolicyActions are each ordered when aggregated in the PolicyRule.

The third difference is that DEN-ng uses a fi nite state machine to represent the
state of a managed entity. Most current information models, such as those from
the DMTF, the IETF, and the International Telecommunications Union (ITU), are
current-state models, (i.e., they defi ne a managed entity to represent a state of an
object). Although important, that does not make a closed-loop system. In particu-
lar, it does not enable the life cycle of the managed object to be represented.

Therefore, DEN-ng defi nes a fi nite state machine and instantiates multiple
current state models to represent the different states that a managed object can
take. This enables behavior of an individual or a group of managed objects to be
represented. More importantly, the behavior of an object or set of objects can be
related to the value of one or more attributes that are used to represent the current
state of the attribute. This helps simplify the design of closed-loop PBNM solutions.
For example, suppose that a particular state transition sets the attribute of an entity
to a particular value and that this represents a bad or failed state. The changing
of this attribute value is in fact an event, which can be used to trigger the evalu-
ation of a PolicyRule. The PolicyRule can cause a state transition back to a valid
state, which is checked by ensuring that the value of the attribute is changed to
an acceptable value.

Without events or a state machine, such closed-loop control is not possible.
More important, policy is represented as a means to control when a managed
object transitions to a new state.

This notion is simple, yet powerful. It succinctly captures the connotation of
“control” that policy has and shows how policy can be used to govern the behav-
ior of a managed object throughout its life cycle. Furthermore, it provides a means
to control the behavior of a managed system in a predictable and consistent
fashion. Events represent external stimuli that correspond to changes in state. If
policies are used to control state transitions, then policies can be defi ned that
govern each state of the managed object—from creation to deployment to destruc-
tion. This guarantees that the correct state of the managed object is achieved in
response to a given event, in a simple and consistent manner.

7.4 INTRODUCTION AND MOTIVATION
FOR POLICY MANAGEMENT

The promises of policy management are varied, powerful, and are often con-
ceptualized as a single, simple means to control the network, as illustrated in
Figure 7.5.

The simplicity of the components shown in Figure 7.5 is part of the appeal of
policy management. In particular, the ability to hide vendor-specifi c interfaces
behind a uniform information model is very important. Without this ability, a
common interface to programming the same function in different network devices
cannot be accomplished. This is one of the toughest problems a network manager
needs to deal with—how to string a network of multivendor equipment together
to provide a seamless set of customer-facing services. Furthermore, the growth of
large ISP networks that seek to provide multiple specialized services exacerbates
this problem.

This drive for simplicity has led to six commonly heard value propositions for
policy management that position policy management as a means of:

■ Providing better-than-best-effort service to certain users
■ Simplifying device, network, and service management
■ Requiring fewer engineers to confi gure the network
■ Defi ning the behavior of a network or distributed system
■ Managing the increasing complexity of programming devices
■ Using business requirements and procedures to drive the confi guration of

the network

These six points are discussed in more detail in the following subsections.

7.4.1 Providing Different Services to Different Users

The Internet was built to handle traffi c on a best-effort basis. Clearly, people will
not be satisfi ed with best-effort service. People want predictable services—
services that they can rely on for providing information and functionality that they
desire (whether the Internet is being used or not). This is the fundamental motiva-
tion for QoS.

Administrator Policy
management

software

Network

FIGURE 7.5

Promise of policy management.

7.4 Introduction and Motivation for Policy Management 195

196 CHAPTER 7 The Foundation of Policy Management

When I worked at Cisco, we used to describe QoS as “managed unfairness.”
This complements the above desire for information and functionality that meet a
specifi c set of needs. QoS is not just about providing faster downloads or more
bandwidth. Rather, it is about providing the right set of functionality to provide
a user with the service(s) that the user is requesting. Although this may mean
faster downloads or more bandwidth, the point is that such metrics in and of
themselves are not a good defi nition of QoS.

QoS is more diffi cult to provision and manage than it may fi rst appear because
of two main factors:

1. Its complexity of implemention.
2. The variety of services that can use it.

The complexity of implementing QoS is caused by two main factors: (1) network
vendors continue to add additional types of mechanisms that can be used (by
themselves or with other mechanisms) to implement QoS and (2) different devices
have different QoS mechanisms. This makes it hard to ensure that the same rela-
tive levels of service are implemented by different devices that use different
mechanisms.

Another problem is the lack of specifi city in standards. For example, the IETF
has completed a set of RFCs that specify different approaches for implementing
differentiated services (e.g., the Differentiated Services RFCs). However, these
RFCs by themselves are not suffi cient to build an interoperable network because
they concentrate on specifying behavior without specifying how to implement
that behavior. For example, none of the RFCs specify what type of queuing and
drop algorithms to use to implement a particular type of behavior. This is in rec-
ognition of the IETF—this is in fact in recognition of the fact that network vendors
have designed a vast arsenal of different mechanisms to condition traffi c as well
as recognizing that different services uses different QoS mechanisms.

Thus, we have the fi rst motivation for policy management—the promise of
using a set of standard declarations for managing the different QoS mechanisms
required to implement a service. This desire is amplifi ed by the fact that multiple
users want different services. Clearly, a service provider or enterprise cannot
provide tens or hundreds of different services because of the complexity of man-
aging these different services coupled with the fact that most approaches (such
as DiffServ) defi ne far less than these. DiffServ, for example, provides a set of 64
total code points, but these are divided into 32 standard and 32 experimental code
points. Most service providers offer between three and ten different services. This
provides the second motivation for policy management—the promise of providing
a small set of standard rules that can be used to manage the set of services provided
to multiple customers.

7.4.2 Simplifying Device, Network, and Service Management

PBNM was conceptualized as a set of mechanisms that can be used to “fi ne-tune”
different network services. Similarly to how a stereo equalizer gives the user

control over the response of the stereo to different frequencies, a PBNM-based
system provides a set of mechanisms that can be used to condition traffi c fl owing
through the network. PBNM systems also have the ability to defi ne a complex set
of mechanisms that can be used to implement a predefi ned service. This is a par-
ticularly attractive characteristic—choosing a single command to implement what
previously consisted of a set of commands.

In addition, the real power of PBNM systems is through abstraction. Imagine
a network where a switch feeds a router. The switch uses the IEEE 802.1q speci-
fi cation for delivering QoS, while the router uses DiffServ. This causes a problem,
because there is not a defi ned set of standards for relating an 802.1q marking to
a DiffServ code point (DSCP). Now, assume that the switch is programmed using
simple network management protocol (SNMP) set commands, while the router is
programmed using command-line interface (CLI) commands. The network admin-
istrator is now forced to learn two different ways to program a single network
connection.

The motivation for PBNM is one of simplifi cation through abstraction. By pro-
viding an intermediate layer of policy rules, PBNM users can concentrate on the
task at hand, rather than the myriad programming models and traffi c conditioning
mechanisms used to program a device.

However, an equally powerful motivation exists—recovery from changes and
failures. Networks present an ever-changing infrastructure for providing services.
The day-to-day management of this infrastructure includes making subtle changes
to how different components are confi gured. Sometimes, these changes can
adversely affect network services. These changes are hard to fi nd, because most
of the time, the change being made is not obviously related to the service that
was being changed. In addition, networks can develop faults that impair the ability
of the network to provide services that people and applications depend on. When
this happens, administrators tend to fi x the fault by changing the confi guration of
the device.

These and other factors culminate in a set of changes that, over time,
impact the ability of the device to support one or more of its services. When this
happens, PBNM systems can be used to restore the confi gurations of devices to
their original state. Thus, PBNM provides a means to fi x the fault and to also keep
track of the state of various network devices. This requirement for tracking state
is one of the reasons why DEN as well as DEN-ng both use fi nite state machine
models.

7.4.3 Requiring Fewer Engineers to Confi gure the Network

There is an acute shortage of engineers that understand new technologies and
mechanisms implemented by network vendors. There are even less engineers that
understand these technologies and are able to deploy and manage them on a
network. In addition, the cost of using an emerging technology is very high,
interactions with other legacy technologies are not completely known, and

7.4 Introduction and Motivation for Policy Management 197

198 CHAPTER 7 The Foundation of Policy Management

management costs associated with initially deploying the technology often out-
weigh the advantage provided by that technology.

For example, many network operators choose to overengineer their networks
to address any performance concerns rather than deploy QoS techniques. This is
because the cost associated with learning the new technologies (and the tools
used to deploy them) and managing them is much higher than the savings in
bandwidth-related costs that would result from deploying these technologies.
Another factor is the previous lack of specifi city mentioned—if different tech-
nologies are being used, then they can only interoperate if their functionality is
specifi ed at a suffi ciently detailed level. For example, there is no standard that
defi nes how to map ATM’s concept of QoS to the different DSCP values that are
present in an IP network.

The theory behind being able to use fewer personnel to run a network is based
on distributing intelligence to managed devices and applications that manage
devices so that dynamically changing environments can be more easily managed
and controlled. Although the number of skilled individuals may be reduced, it is
wrong to think that PBNM applications will eliminate the need for specialized
network engineers. Skilled personnel will always be needed to build and operate
systems.

However, PBNM systems provide two important benefi ts. First, the majority of
network confi guration tasks are simple in nature and do not require a specialist.
Many of these are also repetitive. If the PBNM system can be programmed to deal
with these mundane changes, then they enable more highly skilled engineers to
be used on other, more strategic, problems. Second, PBNM systems enforce
process. Figure 7.6 illustrates this.

PBNM can be used to defi ne processes, such as:

■ Which personnel are qualifi ed to build a confi guration change
■ Which personnel must approve a confi guration change

Deploy configuration
changes workflow

Configuration Management Workflow

Construct
configuration

changes workflow

A
pp

ro
va

l

In
st

al
la

tio
n

V
al

id
at

io
n

FIGURE 7.6

Processes used in confi guration management.

■ Which personnel must install a confi guration change
■ Which personnel must validate a confi guration change

These four processes are meant to be exemplary in nature and should not be
construed as being the “only” processes involved in device confi guration.

The strength of PBNM is that these four processes (and others) can be enforced
by a PBNM system independent of whether the PBNM system is used to implement
a confi guration change or not. For some reason, this message has not been empha-
sized by most vendors. Even some researchers tend to ignore it, concentrating
instead on the representation of policy. Two counterexamples to this trend are
Intelliden and Metasolv, both of which are building software to help in this
area.

PBNM systems also offer the ability to ensure that the same approved processes
are used to consistently implement specifi c types of confi guration changes. The
Intelliden product is a good example of offering these benefi ts.

7.4.4 Defi ning the Behavior of a Network
or Distributed System

Networks are growing in complexity because of several factors, including an
increasing number of people using networks, a growing number of different
applications used, and an increase in the number of different services required by
network users.

These factors all help to create an ever-growing overhead of operating and
administrating networks. As a result, it is very diffi cult to build management
systems that can cope with growing network size, complexity, and multiservice
operation requirements. There is also a need to be able to dynamically change the
behavior of the system to support modifi ed or additional functionality after it has
been deployed.

A single network device can have thousands of interfaces or subinterfaces.
Clearly, if an administrator has to manually confi gure each of these, the network
cannot scale. For example, assume each device interface takes 10 minutes to
confi gure and that there are 10,000 total interfaces. This works out to requiring
69.44 days, or 9.92 weeks, to program this set of interfaces. Without software,
this is simply not possible. In addition, the chances of making an error without
automation software are enormous.

PBNM software can help in several ways. First, it can be used to defi ne policy
rules once and mass deploy them. For example, the Intelliden product has a
concept called “command sets” that enable sets of confi guration changes (which
are controlled by policy) to be deployed to multiple devices concurrently. Second,
policy rules can be used in either an ad hoc or reusable fashion. Although ad hoc
policy rules are intended to be used once, reusable policy rules (or even policy
components) are designed to be used multiple times by different applications.
This concept can be used to help simplify the arduous process of confi guring
different interfaces. For example, an access control list can be defi ned that fi lters

7.4 Introduction and Motivation for Policy Management 199

200 CHAPTER 7 The Foundation of Policy Management

on certain fi elds in the IP header and then performs a set of actions if those fi elds
matched or not. This is a fundamental building block that can be used for many
different types of policies. Third, large systems will execute many different poli-
cies. PBNM systems should enable different sets of policies to be analyzed to
ensure that they do not result in confl icting actions.

However, and most important, PBNM software can be used to capture business
logic that is associated with certain conditions that occur in the network. Although
centralizing the development and management of this business logic is important,
coordinating its proper application is mandatory for large systems. This last point
raises four important questions that the reader should ask when evaluating PBNM
systems:

■ How many physical devices is the PBNM software capable of managing?
■ How many logical components (e.g., subinterfaces) is the PBNM software

capable of managing?
■ How many changes per time period (e.g., minute or hour) can the PBNM

software execute?
■ How does the PBNM solution handle errors?

Each of these points is important. The third point is especially important,
because most organizations operate using a “time window” in which changes must
occur. The point, then, is how many changes can your PBNM software physically
perform during that time window? The reader will fi nd that this is often the limit-
ing factor in choosing a PBNM system. The fourth point is also critical, because
one of the reasons for deploying a PBNM solution is to automate complex tasks.
The form of this question is different than a simple “can it scale” question. Vendors
will all claim that their solutions scale. Thus, a much easier way to be sure of what
you are buying is if it can provide a common error handling methodology for large
deployments. This is a simpler and better test of what you are buying.

7.4.5 Managing the Increasing Complexity of Programming Devices

Present-day IP networks are large, complex systems that consist of many different
types of devices. Different devices are chosen for cost and functionality. However,
from the end-user’s point of view, it is imperative that the end-user not have to
be explicitly aware of these differences. In other words, the network should
appear as a single homogenous entity that provides services for the end-user.

Therefore, when most services are defi ned, they are characterized as having a
set of properties that exist from one end of the network to the other. For example,
think of a service level agreement that specifi es availability (which in this example
is defi ned as remote access accessibility without busy signals). While the service
provider is likely to specify different times for different networks (e.g., a connec-
tion to a U.S. network versus a connection to a European network), it certainly
will not specify availability between different parts of the network. Not only is
this too hard to do (and very costly for the service provider), it doesn’t really

matter, because the service is specifi ed as an end-to-end service. The end-user does
not care what devices or QoS mechanisms are used or what the latency or drop
rate is along an intermediate path in the network as long as the service that was
contracted for is successfully delivered.

Network engineers do not have this luxury. In fact, ensuring that all of the
different devices that comprise a network interoperate smoothly is far from a
trivial task. This is because different devices have different functionality, repre-
sented as different commands that are available to the network developer. The
problem is that these different network devices are each responsible for doing
their best in providing consistent treatment of the traffi c. Clearly, if the two
devices have different commands, then this is harder to achieve, because a mapping
needs to be defi ned to map the different commands to each other.

For example, consider two Cisco devices, one running a pre-12.x release of
IOS (a common operating system used by Cisco routers and other types of devices)
and another running a 12.x release of IOS. Suppose that the task is to provide QoS
for traffi c that contains voice, video, and data. Both devices can do this. However,
the actual commands that are used are very different. As an example, the design
for the 12.x device is likely to use low latency queuing, which is not available in
pre-12.x IOS releases. Thus, someone (or something) has to provide a mapping
between the set of commands used in each version of an operating system. Clearly,
if different devices are using different operating systems, this mapping becomes
both harder and more important. Mapping the commands is a good start, but even
that is not suffi cient. Other factors must also be taken into account. Two important
ones are side effects and dependencies in executing each command.

Sometimes, when a command is executed, effects occur that cause other enti-
ties to be affected besides the ones that are targeted by the command. These are
called side effects, because though these changes were not intended, they never-
theless happened. If these commands have any side effects, then they must be
noted, and if the side effects affect the traffi c, then they must be emulated for
each device.

Exacerbating this situation is the notion of hardware and software dependen-
cies. For example, a device that uses an older processor may be unable to perform
the same functions as a device that uses a newer processor past a certain line rate.
This is a hardware dependency and must be accounted for to ensure that each
device performs traffi c conditioning in a consistent manner. Similarly, software
dependencies exist; if they affect the fl ow of the traffi c, then their effect must be
emulated in devices that do not have these same software dependencies.

If that is not bad enough, new technologies have emerged or will continue to
emerge to either address current limitations or to perform a task better. Thus, the
PBNM system must be capable of addressing new commands and features of the
devices that it supports. This is best done using an information model to abstract
the different functionality that is present in multiple devices. For example, Figure
7.7 shows a simplifi ed approximation of the DEN-ng QoS model, which is an
information model designed to represent QoS. (Remember that a line with an

7.4 Introduction and Motivation for Policy Management 201

202 CHAPTER 7 The Foundation of Policy Management

0..n

Service
Package
Atomic

PlatinumPackage

SilverPackage

BronzePackage

BestEffort
Package

CoS1Package

CoS2Package

CoS3Package

CoS4Package

Service
Package

Composite

ServicePackage ServiceBundle
NetworkForwarding

Service

1

0..n

hasServicePackages

1 0..n

packageContainsServiceBundle

0..n 0..n

nextService

Traffic
Conditioning

Service

Traffic
Identification

Service

QoSService
0..n

hasQoSSubServices

11..n

forwardingDefinedBy

0..1

0..n

conditionsQoSService

0..1

identifiesQoSService

ClassifierService

MarkerService
MeterService

QueueService

SchedulingService

DropperService

CompoundConditioning
Element

0..1

GoldPackage

FIGURE 7.7

Simplifi ed DEN-ng QoS model.

arrowhead denotes inheritance in UML. Thus, GoldPackage is a subclass of Ser-
viceBundle, which is a subclass of CustomerFacingService, which is a subclass of
Service.)

In DEN-ng, there are two types of services: CustomerFacingServices and
ResourceFacingServices. This is modeled as two separate subclasses that inherit
from the Service superclass.

CustomerFacingServices are services that a customer is directly aware of. For
example, a virtual private network (VPN) is a service that a customer can pur-
chase. ResourceFacingServices are network services that are required to support
the functionality of a CustomerFacingService, but which the customer cannot (and
should not!) know about. For example, a service provider doesn’t sell Border
Gateway Protocol (BGP, a means of advertising routes between networks) services
to a customer. Yet, BGP is required for different types of CustomerFacingServices
to operate correctly. Thus, BGP is an example of a ResourceFacingService.

A ServicePackage is an abstraction that enables different CustomerFacing
Services to be packaged together as a group. Thus, a GoldService user may access
high-quality voice, video, and data, whereas a SilverService user may be unable to
use voice.

Several types of ResourceFacingServices are shown in Figure 7.7. QoSService
is an abstraction that relates the particular networking architecture to its ability
to provide QoS. For example, ToSService uses the three-bit Type of Service bits
in IPv4 to defi ne the QoS that can be given, whereas DiffServService uses the six-
bit code point to defi ne much more granular QoS for IPv4. Because a given
network may have both DiffServ-compliant and DiffServ-unaware devices, the
information model provides a formal way to synchronize their confi gurations, so
that a given ToS setting provides the same QoS as a particular DiffServ setting.

Finally, NetworkForwardingService defi nes how traffi c is conditioned. This
consists of two types of “sub-services”: the ability to identify traffi c and the ability
to affect the order in which packets are transmitted from the device. Again,
because these are two distinct concepts, two distinct subclasses (Traffi cIdentifi -
cationService and Traffi cConditioningService, respectively) are used to represent
these concepts. With respect to Traffi cIdentifi cationServices, Classifi erService per-
forms the separation of traffi c into distinct fl ows that each receive their own QoS,
whereas MarkerService represents the ability of a device to mark or re-mark the
ToS or DiffServ bits. This marking tells the other devices what type of QoS that
fl ow should receive. With respect to Traffi cConditioningServices:

■ DropperService drops packets according to a particular algorithm, which
has the effect of telling certain types of sending applications to slow their
transmission.

■ MeterService limits the transmission of packets.
■ QueueService delays the transmission of packets.
■ SchedulingService defi nes which queue (of multiple output queues)

should send packets.

7.4 Introduction and Motivation for Policy Management 203

204 CHAPTER 7 The Foundation of Policy Management

■ CompoundConditioningService models advanced features, which are
combinations of the preceding basic services.

The objective in such a model is to describe a particular feature (such as
metering) and how that feature relates to other features (e.g., classifi cation and
dropping) in a particular function (e.g., traffi c conditioning) using classes and
relationships. The idea is that if the abstractions are defi ned properly they can be
used to model the types of functions that are present in different vendor devices
and accommodate new functionality.

Put another way, the model can be used as a design template for constructing
commands that are to be applied to a device or set of devices. The advantage of
such a model is that the model can be used to represent the functionality desired
and can hide the intricacies of translating to different implementations from the
user. In fact, this is one of the principles on which the Intelliden R-Series was
founded.

Sometimes, such models are all that is needed, and enable vendor-specifi c
programs that are derived directly from these models to be used. Often, however,
additional information is required. In the DEN-ng information model, this will take
the form of subclasses that are used to model vendor-specifi c differences from the
model.

7.4.6 Using Business Rules to Drive Network Confi guration

The thesis of A New Paradigm for Network Management is that existing network
management architectures prevent business processes from being used to drive
the confi guration and management of the network. In essence, this paper states
that businesses must defi ne and implement network services according to their
own business processes and policies. Although this is true for all businesses, it is
even more true for the so-called “next generation network” initiatives and corpo-
rations that are striving to become more profi table by changing the network
services that they provide.

Business driven device management (BDDM) is one example of using business
rules to drive network confi guration. As defi ned by the author, BDDM is a new
paradigm that enables business rules to be used to manage the construction and
deployment of network confi guration changes. The difference is that BDDM con-
trols both the construction and the deployment of confi guration changes using a
combination of policies and processes.

Most of the current research in PBNM systems revolves around the defi nition
of policy class hierarchies that can be used to represent functionality of a network
device. BDDM leverages this work, but combines it with policies and processes
that defi ne how confi guration changes are created, deployed, and modifi ed in a
scalable and consistent manner. Part of the desire to use business rules to drive
the confi guration of a device is because business rules provide a higher-level view

of what needs to be accomplished. This is necessary to ensure that those changes
will not disrupt the operation of the device or the network. This, in turn, requires
other entities besides devices and services (such as users and their various differ-
ent roles) to be modeled.

Although abstractions that are used to represent business entities can still be
modeled in UML, their content and detail is signifi cantly different than that used
for device and service entities. The administrator does not have to understand the
low-level details of the technology used to support a particular business need to
direct its usage. For example, suppose that a network operator needs to defi ne
three levels (gold, silver, and bronze) of customers. An administrator can easily
assign each customer to a particular level based on their contract. A variety of
techniques can be used to implement these three services in the network; one
such example is to use DiffServ.

However, there is a difference between the business person (whose job is to
assign a particular service level to a customer) and a network administrator, (who
is responsible for implementing commands that will enable the network to rec-
ognize and enforce these three network service levels). Both the business person
and the network administrator can use policies. For example, a business person
may need to write policies for handling service outages or interruptions, whereas
a network administrator will be more interested in writing policies that control
how the confi guration of a device is changed. This difference is fundamental to
how policies for each are used and expressed and mandates that different repre-
sentations of policy should be used for the business person and the network
administrator.

If business rules and processes are not used to manage changes made to the
confi guration of network devices, the device’s confi guration is reduced to chang-
ing lines in a fi le. This doesn’t refl ect how the business operates! Even worse, this
means that the network is probably not refl ecting the proper set of services that
the organization needs to run its business. The semantics of what to change, when
to change it, and who can change it are all captured using business rules and
processes. These semantics must be used to drive how the confi guration is con-
structed and deployed.

However, the problem is more complex than “just” modeling QoS commands
or defi ning which user can make a confi guration change. Fundamentally, different
types of people—having different responsibilities and different functions in the
organization—use policy for a variety of reasons. Network terminology is not
appropriate for expressing business policies. Similarly, business terminology is not
usually precise enough to be used for device management and programming.
However, it is essential that the network is operated in line with the business
goals of the organization, and this means that business and network personnel
must work together to ensure that they have a common understanding of their
objectives. A set of policies that supports the translation between one type of
policy and another is therefore needed.

7.4 Introduction and Motivation for Policy Management 205

206 CHAPTER 7 The Foundation of Policy Management

This translation between different types of policies is called the policy con-
tinuum (see Figure 7.8). Each level in the policy continuum addresses a specifi c
type of user that has a very specifi c understanding of the managed entities
operating at that particular level of abstraction. The PBNM system must
translate these entities and concepts between layers of the policy continuum. The
DEN-ng model is the only information model that uses the concept of a policy
continuum.

This chapter uses the new DEN-ng information model to represent managed
entities, people, and applications that use those managed entities and policy enti-
ties. The advantage of using a single information model that has multiple domains
is that it is easier to relate different elements in each domain to other elements in
other domains.

7.4.7 Summary of the Benefi ts of PBNM

The traditional promise of PBNM is that people will be able to deploy more
complex services across a wider array of devices with fewer highly skilled indi-
viduals. This will in turn simplify network and service management. This is aug-
mented by newer promises, such as those envisioned by BDDM, which use
business requirements to drive the confi guration of the network. This forms a
tight closed-loop system, in which decisions governing the behavior of the network
and the services that it provides are driven by business rules.

The results of these promises are compelling: increased revenue, faster time
to activate services, and decreased expenses.

The next two sections will focus on two key themes: (1) the need for and use
of a shared information model and (2) the benefi ts of using PBNM.

Business view: SLAs, processes, guidelines, and goals

System view: Device- and technology-independent operation

Network view: Device-independent, technology-specific operation

Device view: Device- and technology-specific operation

Instance view: Device-specific MIBs, PIBs, CLI, etc, implementation

FIGURE 7.8

Policy continuum as defi ned in DEN-ng.

7.5 THE NEED FOR A NEW SHARED INFORMATION MODEL
The two big issues that face us today concerning network devices and network
management are:

■ Lack of a consistent product model prevents predictable behavior
■ No standard for shared data

7.5.1 Lack of a Consistent Product Model

The lack of a consistent product model means that, despite all the standards that
you hear about, different vendors build devices with different hardware and soft-
ware. One router can have vastly different characteristics and functionality than
another router. This situation is exacerbated when mergers, acquisitions, and
divestitures occur, as the customer ends up buying completely different devices
that happen to have the same logo and vendor name on them. Therefore, when
different devices are used in the same network, predictable behavior cannot be
obtained. Standards help defi ne invariant parts of the programming model.
However, they are usually not explicit enough to guarantee interoperability. For
example, RFC 2474 defi nes the structure of a differentiated services code point
(DSCP), which is used to indicate how to condition traffi c. The invariant portion
of this RFC includes the fact that a DSCP is six bits long, and certain bit patterns
are already defi ned. However, this RFC does not defi ne which dropping and
queuing algorithms to use for different bit patterns. Thus, multiple vendors can
be compliant with the differentiated service standard (of which this RFC is one
element) without being able to interoperate.

This is also true, but to a lesser degree, of the emerging policy information
model standards. RFC 3060 and RFC 3460 defi ne a class hierarchy and relation-
ships for representing generic policy elements, while further work in the IETF
extends these to QoS models. There is even a Lightweight Directory Access Pro-
tocol (LDAP) mapping, and the beginnings of one for policy core extension LDAP
schema. These classes and relationships help defi ne how policy is used to control
various QoS mechanisms. However, these models have very limited semantics and
are subject to interpretation by different applications. For example, these network-
ing concepts are not linked closely enough to network device and service entities
to specify how policy could be used to program device features (let alone com-
mands). As a simple example, because these models do not specify the concept
of a device interface they cannot be used to specify how to program a device
interface.

More importantly, these models do not contain any associations to business
entities, such as Product and Customer. Thus, they cannot be used to defi ne which
Services from which Products are assigned to which Customers. This also contrib-
utes to the complexity of building a management system, because now additional
components must be used if business rules and processes are used to drive the
confi guration of the network.

7.5 The Need for a New Shared Information Model 207

208 CHAPTER 7 The Foundation of Policy Management

A networking model that is associated with other models that represent users
and targets of networking services and a policy model that controls how network-
ing services are implemented and provided to users are needed. This requires a
layered, integrated information model.

7.5.2 Lack of a Standard for Representing Shared Data

Until the TMF launched its SID model effort, no standard existed for sharing and
reusing data for network devices and services. The common information model
(CIM) of the DMTF is rooted in instrumentation of desktop applications. Although
the model has reached out over the last few years to encompass additional con-
cepts, it still lacks many telecommunications concepts that enterprise and service
provider networks need. For example, its physical device model has no physical
port, and its logical model has no device interface. Without these, the model
cannot be used in telecommunications applications. The CIM is not a bad model;
it is simply not a self-contained model that can be used for telecommunications
applications.

This is precisely why the DEN-ng and the SID efforts were started. The DEN-ng
effort was designed to extend and enhance the original DEN effort to tie it
more closely to the NGOSS effort of the TMF. The design of the DEN-ng model
is unique, because one of its use cases is to support the NGOSS architecture
specifi cation.

The DEN-ng effort focuses on modeling network elements and services.
However, it provides a business, system, and implementation viewpoint of these
models. The focus of the SID is on the entire NGOSS environment. The SID uses
many models, including DEN-ng, to provide comprehensive coverage of entities
and concepts present in an NGOSS environment.

DEN-ng is being developed in the TMF because the TMF Catalyst programs can
be used to validate and spread the model across different service providers,
vendors, and independent software vendors (ISVs). This distribution vehicle
(which also provides detailed feedback) is lacking in other standards bodies and
forums and is one of the main reasons why DEN-ng was developed in the TMF.

The DEN-ng policy model was developed using an iterative top-down, bottom-
up approach. Business concerns were fi rst considered, which provided a high-
level structure for and helped defi ne key concepts of the overall policy information
model. This model was then augmented by adding detail necessary to build a
system. This is currently where the public part of the DEN-ng set of specifi cations
exists.

Intelliden’s vision is to take this a step further in its product line. Once these
business and system views are defi ned, a set of tools will be produced that will
focus on translating the information model to two different data models: a direc-
tory data model and a Java model. This will enable the information model to be
implemented in software. A second set of tools will be developed, which will
focus on ease of implementation (Figure 7.9).

This brief description is meant to show the reader that information models can
and should be used to drive software implementations. By embedding the informa-
tion model in a product, that product is better able to adjust to changing features
and functions. For example, in the Intelliden R-Series, the different functions of
IOS are modeled using extensions of the DEN-ng logical model. When a new IOS
train is released, Intelliden only has to update the model. Code is then generated
that understands these features, and these features are updated as part of that
release’s product catalog. These features are assigned as capabilities to that par-
ticular IOS version.

This is a great example of building to accommodate the future. The information
model provides a formal structure to represent different device capabilities. Soft-
ware can then be written that uses this formal structure to represent these capa-
bilities in the R-Series product. This enables the structure of the R-Series to be
fi xed; when new IOS releases are produced by Cisco, Intelliden updates the infor-
mation model, new Java code is generated, and the rest of the interface and APIs
of the product stay the same.

As another example, in the Intelliden implementation, the information model
is used for the following tasks:

■ Representing different functions that can be programmed using the IOS
software
– Routing and forwarding functions
– Peering with other hosts and devices
– Traffi c classifi cation and conditioning functions

■ Representing different commands and their structure as a function of a parti-
cular software release

■ Representing different hardware and software capabilities of a given device

Policy model:
Business view

Policy model:
System view

Policy model:
Translation tools Policy model:

Implementation view

Define business
entities and

concepts

Define system
application

model

Define
mappings for
technology-

specific
implementations

Define
implementation

model

DEN-ng Policy Model

FIGURE 7.9

Design approach for building the DEN-ng policy model.

7.5 The Need for a New Shared Information Model 209

210 CHAPTER 7 The Foundation of Policy Management

■ Defi ning business policies that control
– Who can perform what changes on which devices
– Who must approve a certain change (or category of changes)
– When a change is deployed

■ Defi ning system policies that control when certain actions happen (e.g., when
a device is examined for changes to its confi guration and/or to its physical
composition)

■ Defi ning implementation policies that control how changes are made and how
services are activated

The information model serves as the centralized authority that links different parts
of the managed environment to each other. As shown in the preceding example,
the information model is used to defi ne different types of policies used to control
various types of behavior. Business, system, and implementation parts of the
product are all seamlessly integrated using the DEN-ng information model.

7.5.3 Why an Information Model Is Important

An information model is more than just a representation of a set of objects. The
most important feature of an information model is its ability to describe relation-
ships between managed objects. From this, other types of models and diagrams,
such as defi ning how data fl ows within the system, can be defi ned.

The information model serves as a normalization layer. By concentrating on
invariant aspects of an object (e.g., a device has physical ports over which infor-
mation fl ows), a framework can be defi ned that can represent the different fea-
tures and functions of heterogeneous devices. Device-specifi c differences can then
be modeled by extending the common framework to accommodate the features
and functions of these different devices.

Without a common framework, different device features and functions cannot
be easily accommodated because there is no common set of objects that can be
used to build them from. In other words, to accommodate ten new features, a
system that does not have a common information modeling framework must
defi ne ten new sets of objects (and more if interactions between these objects are
to be modeled). If it is desired to interoperate between these ten new features,
then in the worst case, all of the permutations of each new object operating with
not just the other objects, but existing objects, must be defi ned.

Compare this to a system that uses a common framework. Adding ten new
features means that the framework itself will be expanded to accommodate as
many of these as extensions (i.e., subclasses) as possible. Furthermore, by devel-
oping these new features as extensions, interoperability with existing concepts
and information is guaranteed.

It is not feasible to have a single information model that can represent the full
diversity of management information that is needed. This is because the charac-
teristics of managed data are very different and require many different subject

matter experts. DEN-ng solved this problem by defi ning a layered information
model that used patterns and roles.

A layered information model is one in which a common framework is built
that supports different domain models. A simplifi ed view of the DEN-ng layered
information model is shown in Figure 7.10.

The DEN-ng common framework model consists of a set of classes and relation-
ships that enable the different lower-level models to be associated with each other.
Because DEN-ng and SID are complementary, the DEN-ng model takes the work
of the SID team and either uses it in an unaltered state (as shown by the business
interaction model) or makes minor modifi cations to it (as is done in the party,
product, and location models). Note that for the Party, Product, and Location
models, DEN-ng takes the SID models and defi nes new subclasses wherever pos-
sible. This means that the DEN-ng versions are more granular versions of the SID
models. If DEN-ng needs to change something in the SID, then it is submitted as
a change for review by the SID team. In addition, many parts of the DEN-ng model
are in the process of being contributed to the SID team, as is shown in the policy,
service and resource models. Each of these is in reality another framework model,
which additional sub-models “plug into.” For example, the DEN-ng policy model
provides a generalized framework that business policy, application use of policy,
and other policy models can each plug into.

To provide as extensible a framework as possible, DEN-ng uses patterns and
roles to model common concepts in as generic a way as possible. This differenti-
ates DEN-ng from most other models (e.g., DMTF, IETF, and ITU), as they do not
use roles and patterns.

Modeling objects describes entities in a system, their inter-relationships and
behavior, and how data fl ows within the system. This provides the ability to rep-

DEN-ng Common Framework Model

S
ID

 b
us

in
es

s
in

te
ra

ct
io

n
m

od
el

SID product
model

DEN-ng
product
model

(subclass of
SID model)

SID location
model

DEN-ng and
SID policy
framework

model

D
E

N
-n

g
ap

pl
ic

at
io

n
po

lic
y

m
od

el

DEN-ng and
SID service
framework

model

D
E

N
-n

g
M

P
LS

V
P

N
 m

od
el

D
E

N
-n

g
IP

se
c

m
od

el

SID party
model

DEN-ng
party
model

(subclass of
SID model)

D
E

N
-n

g
bu

si
ne

ss
po

lic
y

m
od

el

Representative
of other models

Representative
of other models

Representative
of other models

DEN-ng
location
model

(subclass of
SID model)

D
E

N
-n

g
ph

ys
ic

al
re

so
ur

ce
 m

od
el

D
E

N
-n

g
lo

gi
ca

l
re

so
ur

ce
 m

od
el

DEN-ng and
SID resource

framework
model

FIGURE 7.10

Simplifi ed view of the DEN-ng layered information model.

7.5 The Need for a New Shared Information Model 211

212 CHAPTER 7 The Foundation of Policy Management

resent and understand the programming model of the device. Three examples are
CLI, SNMP, and Transaction Language One (TL1). TL1 is a set of ASCII instructions
that an OSS uses to manage a network element—usually an optical device. More
importantly, it provides the ability to understand dependencies between hardware
and software. For example, a router may have a line card that has a main CPU and
memory that are dedicated to performing traffi c conditioning functions. This may
work fi ne at low speeds (e.g., a fractionalized T1). However, at high speeds, such
as OC-48, suppose that this particular type of CPU cannot keep up. Or even if it
could, suppose that there was not enough memory.

This is an example of a dependency that most current PBNM systems will not
catch. That is, the card has the correct operating system version, and the operat-
ing system says that it can perform this type of function. However, the physical
media is simply too fast for this card to perform this type of function. The reason
that most PBNM systems will not catch this dependency is because there is no
convenient way to represent it. In contrast, any PBNM system that uses an infor-
mation model, such as DEN-ng, will be able to model this and other dependencies
naturally.

Information modeling provides a common language to represent the features
and functions of different devices. DEN-ng uses the concepts of capabilities to
represent functions of an entity and constraints as restrictions on those functions.
Think of the information model as defi ning a common language that enables the
different capabilities of each device to be represented in a common way. This
enables them to be programmed together to deliver a common service. But some-
times, a particular environment might restrict the use of certain commands. For
example, export control laws might restrict different encryption or other features
from being used. These are modeled as constraints. The combination of capa-
bilities and constraints form a set of powerful abstractions that can be used to
model current and future devices and services.

7.5.4 Linking Business, System, and Implementation Views

Most information models have focused on policy as a domain that is isolated from
the rest of the managed environment. Here, domain is used to signify a set of
related information and concepts. In contrast, the main use case for the DEN-ng
policy model is to defi ne a policy model that is closely integrated with the rest of
the managed environment. The DEN-ng policy model is best thought of as an
information model that defi nes how policy interacts with the rest of the managed
environment (which is also represented as an information model). This has three
important consequences, discussed in the following subsections.

Isolation
It was apparent that building a policy information model in isolation of other infor-
mation models was not going to work. The original DEN specifi cation, as well as
CIM, each had many different domains in addition to policy. However, little effort
was made to associate policy in detail with these other domains. In addition, the

original DEN and CIM models did not specify in enough detail how policy could be
applied to a managed object. The DEN-ng model takes a different approach. It
builds out the policy model as one of the last domain models and then concentrates
on associating appropriate parts of the policy model with appropriate parts of other
domain models.

Concentration on Policy
The existing models concentrated on representing policy. They either did not
address or addressed in a very superfi cial way how policy affected other managed
entities. The difference here is subtle but important. Current policy models con-
centrate on defi ning the structure of a policy rule, what its condition terms are,
and so forth. Although there was a lot of talk about policy changing a value in a
device confi guration fi le, the details of how that was accomplished were left
unspecifi ed. For example, the IETF and DMTF models do not specify the concept
of a device interface or physical port. If the device uses CLI to change its con-
fi guration, how then can policy be used if these fundamental concepts are not
modeled? The DEN-ng policy model fi xes this unfortunate situation by developing
other domain models alongside the policy model and ensuring that appropriate
elements in the policy model can be associated with appropriate elements in other
models. The goal of DEN-ng is the ability to translate policy expressions directly
to running code—something that cannot be done with existing models.

Static View of Policy
The original models (and almost all current additions to those models) are still
thinking of policy in a very static way (i.e., they use policies to express the static
confi guration of target devices). Most models concentrate solely on the network
layer and do not provide an information model for representing business entities
and how they affect target devices. In fact, there is very little literature on detailed
information models that are designed with business views in mind, and even less
literature describing how business information models can be linked to informa-
tion models of other domains.

For example, how does a changed Service Level Agreement (SLA) affect device
confi guration fi les? Clearly, the SLA defi nes how traffi c should be treated, but
when it is changed, the policy of treating that traffi c is changed—how is that
accomplished? Or how does a customer, who has just bought a new product with
a higher class of service, get that service installed and running? These are two
simple examples of linking the business world, with its set of entities and con-
cepts, to the system and networking worlds, which have different expressions
for those concepts. Although policy is required, unless the representations are
equated, the business, system, and networking domains will always remain discon-
nected. This adversely affects service activation and deployment.

Business Systems in NGOSS
Both the IETF and the DMTF approaches make no attempt to represent business
entities and objectives. Although a few other approaches do, none has addressed

7.5 The Need for a New Shared Information Model 213

214 CHAPTER 7 The Foundation of Policy Management

building a set of models that are designed to support business, system, implemen-
tation, and run-time views that are closely tied to an overall architecture.

This concept is shown in Figure 7.11, which is a conceptual view of the NGOSS
architecture. The NGOSS knowledge base is a collection of information and data
models, specifi cations, contracts, code, and supporting documentation that col-
lectively and cooperatively describe how to build an NGOSS system. The four
quadrants represent the business, system, implementation, and runtime views.
The overall behavior of the system is driven by the holistic combination of policy
and process management functions.

The TMF has developed a set of principles and procedures to coordinate each
of these four processes. This takes the form of the various architectural specifi ca-
tions (e.g., TMF053 series), the TMF documents, the contract work, and other
elements, which together form the NGOSS knowledge base. Each of the DEN-ng
domain models were built to fi t into this approach.

A key objective of the NGOSS methodology is the development of models that
focus on particular characteristics and procedures in an NGOSS system. These are
characterized by the four viewpoints shown in Figure 7.11. The viewpoints are
in turn tied together through the use of common shared information and a
common means to exchange that information—contracts. The combination of the
SID and contracts allow interoperability to be realized.

Need

M
odel

Validate
Ru

n

Customer
OSS

Gateway Services

Gateway
Interface

Provider Services

Customer
Management
Interface

Customer Management Services Product Management Services

<<SDM>>
ProductRequest

<<SDM>>
CustomerContact

<<SDM>>
Customer

<<SDM>>
InvoiceInquiry

<<SDM>>
CreditViolation

<<SDM>>
ProductCatalog

<<SDM>>
ProductService

Customer
Order

Manager
Product

Fulfillment
Manager

Ordering 3
Process

*

*

Customer
Relationship
Management

Resource
Infras'ture
Dev't and
Mngmnt

Supplier/
Partner

Service
Development
and Op'ns
Management

Information

Customer

Assess Service
Availability

Provide Service
Availability Date

Determine
Resource
Availability

Provide Availability
Date

Qualify
Customer

Identify Solution
Alternatives

Update Customer
Contact Record

Solution
Alternatives
Available

No Action
Required

Pre-Order
Feasibility
Request Made

Receive Pre-Order
Feasibility Request

Contract Interface

Service
Implementation

Policy and
Process

Management

Im
plem

entation

ViewSy
st

em
Vi

ew

B
usiness

View

NGOSS
Knowledge

Base

Ordering 3 Use Case
Thu Apr 05 12:47:19 2001

Use Case Diagram

Run
tim

e
Vie

w
FIGURE 7.11

TMF NGOSS architecture.

The SID (as well as DEN-ng) was built to provide a set of entities that model
business, system, implementation, and run-time concepts. Put another way, the
SID (and DEN-ng) were built to help realize the NGOSS architecture shown in
Figure 7.11 by providing a common language to represent the transition of a
concept from the business through the run-time views.

One main goal of the DEN-ng policy model was to accommodate the NGOSS
architecture as shown in Figure 7.11. The DEN-ng policy model accomplishes this
goal in two ways. First, it uses the different layers of the policy continuum to
defi ne different abstractions that must be modeled. This enables the different users
of policy to work with and express concepts in their own terminology, rather
than having the terminology and concepts of a static model given to them, never
to be changed. Second, the different viewpoints are each supported by different
views of the DEN-ng information model. This is realized by focusing on different
entities for each of the DEN-ng domain models.

7.6 THE BENEFITS OF PBNM
There are many benefi ts to PBNM solutions. Some of the original drivers were
listed at the beginning of this chapter. This section describes some of the more
popular current benefi ts.

7.6.1 An Intelligent Alternative to Overprovisioning the Network

The economic downturn has forced companies to stop overprovisioning their
networks and instead look to more intelligent means of delivering needed network
services.

Overprovisioning may be done for several reasons. An organization may be
running several mission-critical applications that must run in a timely, non-
interrupted fashion. Or, it may use overprovisioning to achieve the desired levels
of application delivery, such as quality of service, which its users require. However,
the real reason that most networks have been overprovisioned is that it is suppos-
edly easier and cheaper than its alternative—classifying, prioritizing, and condi-
tioning the different types of traffi c that exist in the network.

In truth, although overprovisioning can deliver on some of its promises, it
cannot really solve QoS, and it is very expensive. With respect to QoS, over-
provisioning attempts to solve the problem by making it go away. That is, its
approach is to provide more resources than will be needed. However, QoS is all
about levels. For example, although the following mechanisms all take a different
approach to QoS, they all use a particular level on which to act:

■ Congestion management methods, which essentially are different ways
to sort and schedule traffi c

■ Congestion avoidance methods, which use various techniques to avoid
congestion from occurring

7.6 The Benefi ts of PBNM 215

216 CHAPTER 7 The Foundation of Policy Management

■ Policing and shaping enable the input and output rates of traffi c to be
controlled

Part of managing different types of traffi c is planning on which types of traffi c
need which resources and trying to ensure that those resources exist. The problem
with overprovisioning is that it never establishes a minimum level of performance.
In addition, you must be careful what you overprovision. For example, providing
extra bandwidth for certain types of applications, such as SNA and voice, does
nothing; these applications need strict requirements on jitter, latency, and delay.

Of course, other problems exist with overprovisioning. The most important
of these is that your network is being severely underutilized most of the time.
Overprovisioning means that you will provision the network for a particular capac-
ity. The longer you run at less than that capacity, the less your valuable (and
expensive!) equipment is used.

PBNM solutions can be used to intelligently allocate resources. There is no free
lunch here, however. A lot of work must be done, and the amount of work is
arguably more than simply throwing equipment at the problem, as is done in
overprovisioning. This is because what is important is ensuring that different
applications having different needs of the network can peacefully coexist. This is
more diffi cult than simply “throwing bandwidth” at the problem. However, the
benefi ts are a more effi cient, cost-effective, streamlined operation. Plus, as PBNM
is implemented to classify traffi c, it can also be used for a variety of other tasks
(such as providing better security) at the same time.

7.6.2 Providing Better Security

As the number of users and applications proliferate, networks get more complex,
and with complexity, comes risk. One important form of risk is resource abuse.

The benign form of resource abuse is when authorized users misuse their
network privileges (e.g., downloading large music or video fi les when the network
is congested, playing network games, and other acts). Users often do not realize
what an adverse effect such acts can have on a network. PBNM solutions can help
by simplifying the enforcement of policies that clamp down on these abuses and
prevent them from happening.

The worrisome form of resource abuse is when unauthorized users attempt to
gain access to corporate information. A variant of this is when malicious users
attempt to disrupt the operation of the network by either a denial of service attack
or by sending a worm or virus into the network. PBNM can help categorize traffi c
into expected and unexpected types and assign rules to deal with each. For
example, if a web-based virus is detected, a PBNM product can easily shut down
the ability for routers to forward web traffi c. This helps contain the problem while
it is being diagnosed.

The dangerous form of resource abuse is when an employee or similarly trusted
user decides to willfully misuse his or her privileges and violate a company’s intel-
lectual property rights. Studies show that the greatest threats to intellectual prop-

erty come from within a company. PBNM lets administrators restrict users to only
those applications and information sources that they need during their current
session.

Any one of these forms can stop unauthorized applications from using shared
resources that they should not have access to. For example, if the goal is to meet
a particular SLA that has availability levels specifi ed, the seemingly innocent use
of the network to download research information may cause periods of congestion
that cause the SLA to fail. An SLA is a business concept. Therefore, it makes sense
to let the business and IT personnel defi ne which users can use which shared
resources. This allows the company to defi ne its network utilization based on the
real requirements of the business contract.

PBNM solutions are a good match for business policies that seek to optimize
the performance of the network—the PBNM tools can be used to catch such
unwanted occurrences and help ensure that the SLA is met. PBNM solutions can
also be used to reveal traffi c usage patterns, so that policies can be fi ne-tuned on
an ongoing basis.

The common thread in all of these examples is that PBNM tools operate by
fi rst classifying traffi c. Just as classifi cation is used to decide what type of traffi c
conditioning to give to a particular fl ow, it can also be used to determine whether
a particular user can access a resource or not. Depending on the capabilities of
the PBNM tool, it may be able to do even more. For example, some PBNM tools
can perform “deep packet inspection” and examine the contents of URLs. Security
improvements can be done if the PBNM tool enables administrators to write
policies to perform these checks and actions.

7.6.3 Managing Device Complexity

Network devices can be classifi ed along several different dimensions. Some of the
more important ways of classifying network devices are:

■ What is the role of this device? For example, will it be on the edge or in
the core? Is it a border router?

■ What is the physical capacity of this device? For example, how much of
a particular resource (e.g., number of ports) does a device have?

■ What is the logical capacity of this device? For example, how many VPNs
can a particular device support?

■ What is the programming model (e.g., CLI, SNMP, TL1, etc.) used to
program the device?

■ What is the programming model used to monitor the device?
■ Which version of the operating system is this device going to use?
■ What are the critical features (i.e., commands) that this device must support?
■ Which types of cards are available for this device?
■ Is the confi guration small enough to fi t in fl ash memory, or does it require

RAM?
■ Which types of services are planned to be activated on this device?

7.6 The Benefi ts of PBNM 217

218 CHAPTER 7 The Foundation of Policy Management

This is a very short list of many of the different factors that need to be consid-
ered. An information model is well-suited for managing this complexity, as it is
able to represent these different device characteristics, and relate them to each
other. For example, the simplifi ed DEN-ng model shown in Figure 7.10 provides
separate physical and logical resource models. Associations and constraints can
be defi ned that relate different logical features to different physical features,
thereby building up a more complete picture of the device. Similarly, policy can
be applied to control which combinations of features can be used in a given situ-
ation. Separating the different domain models (e.g., physical resource from logical
resource in the preceding example) enables each domain model to change without
adversely impacting the other domain models. All that needs to be updated are
the relationships between the different domain models. Furthermore, the ability
to work on each domain model in parallel enables the information model to be
more rapidly updated to accommodate new devices.

The benefi t of using an information model to model device features and func-
tionality is that this method is robust enough to justify the investment in under-
standing the capabilities of the information model. It provides a robust starting
point for managing device and service complexity and offers an extensible and
scalable platform to accommodate the future requirements of new devices and
services.

7.6.4 Managing Complex Traffi c and Services

The world has changed. Today, more types of applications are available that gen-
erate more types of traffi c than ever before. Some sophisticated applications
generate several types of traffi c of different types (e.g., H.323 traffi c, which gener-
ates both UDP and TCP fl ows). Other applications provide unpredictable behavior
(e.g., they open random ports for communication).

In addition, networks have increased in complexity. Security is more important
than ever, because a network can carry many different types of traffi c. Many of
the individual fl ows representing this traffi c load have different requirements. In
the typical converged network (i.e., a network that carries data, voice, and video
application traffi c), some of the fl ows are sensitive to delay and jitter, whereas
others are not. Thus, different fl ows require different types of traffi c conditioning.
For example, using any of the weighted fair queuing approaches will adversely
affect voice traffi c. Instead, voice traffi c demands priority queuing so that jitter,
latency, and delay can be controlled. However, if priority queuing is used for data
traffi c, relatively unimportant fl ows can swamp the priority queue and effectively
starve other types of traffi c. As another example, some traffi c is classifi ed as
mission critical. If this traffi c is to share the same network resources, then it
demands completely different treatment to avoid compromising its usage.

Therefore, simply throwing bandwidth at network traffi c is no longer the
answer (not that it ever was for certain types of fl ows, such as SNA traffi c, but
people keep stubbornly associating PBNM with bandwidth). The real problem that

network administrators face today is how to enable multiple applications that each
demand slightly different resources from the network to not just peacefully coexist,
but to work and consume shared resources according to their importance.

PBNM solutions are natural choices for these types of applications. PBNM solu-
tions are predicated on analyzing traffi c and classifying it into one of several pre-
defi ned categories. Each category will correspond to preprovisioned traffi c
conditioning that is suited to the type of traffi c that is being carried by that applica-
tion. Advanced network technologies, such as MPLS or DiffServ (or even both), can
be used to mark this traffi c so that appropriate traffi c conditioning is applied.

7.6.5 Handling Traffi c More Intelligently

Because PBNM solutions rely on classifi cation, they provide the opportunity to
make other more intelligent decisions regarding how to handle all types of traffi c.
In addition to deciding how the fl ow is to be conditioned, the classifi cation deci-
sion itself can be used to help direct different types of traffi c. For example:

■ Nonauthorized users, as well as other forms of unwanted traffi c, can be denied
access to network resources. This is not to say that fi rewalls or VPNs are no
longer needed; rather, it means that an additional measure of security is present
and available.

■ Business-critical applications can be identifi ed immediately and transported
using special mechanisms, such as policy-based routing (i.e., based on a classi-
fi cation decision, traffi c can be instructed to use a special path that normal traffi c
is not allowed to use).

Many more examples could be given. PBNM solutions provide the inherent
intelligence to be used to accomplish more tasks than those that were originally
intended.

7.6.6 Performing Time-Critical Functions

PBNM solutions can simplify and better implement two basic types of time-critical
network functions.

1. Changing device confi gurations within a specifi c time-window
2. Performing scheduled provisioning functions

The fi rst point refl ects the need to address common maintenance functions.
Most organizations perform maintenance operations on their network at night or
during other nonbusiness hours to avoid any inadvertent adverse effects on the
operation of network services. The second point addresses small, simple changes
for a specifi c customer or set of customers. This is the “network equivalent” of
setting up a conference call.

Part of the allure of PBNM solutions is that they can address both of these
functions.

7.6 The Benefi ts of PBNM 219

220 CHAPTER 7 The Foundation of Policy Management

7.7 SUMMARY
This chapter provided a quick retrospective on how PBNM was designed. Despite
many of its early limitations, such as being a single-vendor approach and being
focused on a particular technology, great promise was envisioned for PBNM solu-
tions. Accordingly, vendors poured resources into making various types of policy
solutions, and the press hyped these new solutions.

Unfortunately, these early solutions were misunderstood and were quickly
developed without supporting technology and, most importantly, standards.
Interoperability was destroyed, and PBNM started to get a bad reputation.

Fortunately, the TMF rejuvenated this effort. It brought a completely different
approach—one predicated on tying policy to an architecture that used a shared
information model—to the forefront. The TMF’s NGOSS architecture emphasized
the importance of business rules and processes, something that was lacking in
previous efforts. Furthermore, it resurrected early work done using viewpoints to
help provide an integrated, multifaceted approach for defi ning policy. This was
picked up by the TMF’s SID effort. The SID is a federated approach that incorpo-
rates DEN-ng and other models and information defi nitions. The result is that
policy has reemerged as a new approach that is tightly integrated with other
domain models.

The DEN-ng effort was based on this premise. It added additional insight, such
as the use of a policy continuum and a fi nite state machine, to transform it to a
collected set of models, each of which represented a state of a managed object.
Policy, then, was redefi ned as the means to control when a managed object
transitioned to a new state.

With this introduction in place, the motivation for PBNM was examined in
more detail. Part of the allure of PBNM was its simplicity. Other benefi ts were also
its ability to provide different services to different users, its promise of simplifying
device, network, and service management, and its promise of requiring less engi-
neers to do the work. Newer promises, such as helping to defi ne the behavior of
a system and managing the ever-increasing complexity of devices and services,
were added.

However, the true breakthrough was when PBNM was defi ned as a means for
business rules to drive the confi guration of the network. This brought forth the
promise of changing the network from a cost center to a profi t center. Although
the other benefi ts are very important, they only incrementally affect profi tability.
Transforming the network into a profi t center is very compelling, as it affects the
bottom line of the entire organization.

To complete this transformation, two key ingredients were needed. The fi rst
was the establishment of a shared information model. This was needed for many
reasons, but one of the most important ones was interoperability. Modern-day
OSSs are not purchased from a single vendor, as they are too complex. Instead,
they are built from best-of-breed applications. For these applications to scale, they
should be constructed as components. For the components to share and reuse

data, they need to use the same data, defi ned in a “universal language” that any
OSS component that needs to share data can use. This universal language takes
the form of a layered information model. DEN-ng and the SID are part of that
solution.

The second ingredient is a revolution in how management applications are
built. Management applications should be constructed using models to defi ne their
data and architecture. This revolutionary idea is epitomized by the NGOSS archi-
tecture. Its design process uses four viewpoints—business, system, implementa-
tion, and runtime—to defi ne the functionality and processes of the architecture.
Interoperability is achieved using the SID and contracts, which defi ne how data
are communicated using XML.

Finally, fi ve new benefi ts of PBNM solutions were provided. Two focused
on providing more intelligence to routing and managing traffi c. Instead of over-
provisioning the network and wasting valuable resources, policy-based network
management can be used to intelligently assign different traffi c to preprovisioned
paths that already have the appropriate traffi c conditioning in place. In addition,
managing complex traffi c and services, where different types of traffi c having dif-
ferent needs compete for the same shared resources, can be effi ciently managed
using PBNM solutions.

Additional benefi ts were provided by realizing that the classifi cation portion
of PBNM solutions can be used for providing better security, accommodating the
needs of confi dential and mission-critical traffi c, and others.

Finally, PBNM can be used to manage device complexity. Combined with an
information model, a system can be built that can accommodate new types of
devices that have new types of functionality by changing the information model
and ensuring that software can be used to translate changes in the information
model to code. In other words, the structure, GUI, and APIs of the application
remain constant; only the internals (which are governed by the information
model) change. An example of this new avant-garde application is the Intelliden
R-Series.

7.8 RESOURCES
Alhir S., UML in a Nutshell—A Desktop Quick Reference. O’Reilly, 1998.
Faurer, C., J. Fleck, D. Raymer, J. Reilly, A. Smith, and J. Strassner, “NGOSS: Reducing the

Interoperability Tax.” TMW University Presentation, October 2002.
“GB921: eTOM—the Business Process Framework, version 2.6.” TeleManagement Forum,

March 2002 (TMF member document).
“GB922: Shared Information/Data (SID) Model: Concepts, Principles, and Business

Entities and Model Addenda v1.5.” TeleManagement Forum, May 2002 (TMF member
document).

“GB922: Common Business Entity Defi nitions Addenda 1P.” TeleManagement Forum, May
2002 (TMF member document).

ISO, “RM-ODP Part 1. Overview and Rationale.” ISO/IEC 10746-1:1998(E).

7.8 Resources 221

222 CHAPTER 7 The Foundation of Policy Management

Jude, M., “Policy-Based Management: Beyond the Hype.” Business Communications
Review, March:52–56, 2001.

Moore, B., D. Durham, J. Strassner, A. Westerinen, and W. Weiss, “Information Model for
Describing Network Device QoS Datapath Mechanisms.” Draft-ietf-policy-qos-device-
info-model-08.txt, May 2002.

Moore, B., L. Rafalow, Y. Ramberg, Y. Snir, A. Westerinen, R. Chadha, M. Brunner, R.
Cohen, and J. Strassner, “Policy Core Information Model Extensions.” Draft-ietf-policy-
pcim-ext-06.txt, November 2001.

“The NGOSSTM Technology Neutral Architecture Specifi cation, Annex C: Behavior and Control
Specifi cation.” TeleManagement Forum, TMF 053, version 0.4, November 2002.

“The NGOSSTM Technology Neutral Architecture Specifi cation, Annex P: Policy Specifi ca-
tion.” The TeleManagement Forum, TMF 05, version 0.3, work in progress.

“The NGOSSTM Technology Neutral Architecture Specifi cation.” TeleManagement Forum,
TMF 053, version 3.0, April 2003.

Reyes, A., A. Barba, D. Moron, M. Brunner, and M. Pana, “Policy Core Extension LDAP
Schema.” Draft-reyes-policy-core-ext-schema-02.txt, June 2003.

RFC 2474, “Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers.” Nichols, K., S. Blake, F. Baker, and D. Black, December 1998.

RFC 3060, “Policy Core Information Model—Version 1 Specifi cation.” Moore, B., E. Elles-
son, J. Strassner, and A. Westerinen, February 2001.

Rumbaugh, J., I. Jacobson, and G. Booch, The Unifi ed Modeling Language Reference
Manual. Addison-Wesley, 1999.

Snir, Y., Y. Ramberg, J. Strassner, R. Cohen, and B. Moore, “Policy QoS Information Model.”
Draft-ietf-policy-qos-info-model-04.txt, November 2001.

Strassner, J., Directory Enabled Networks, Chapter 10. Macmillan Technical Publishing,
1999.

Strassner, J., “A New Paradigm for Network Management: Business Driven Network Man-
agement.” Presented at the SSGRR Summer Conference, L’Aquila, Italy, July 2002.

Strassner, J., “NGOSS Technology Overview.” TMW Asia-Pacifi c Conference, August
2002.

Strassner, J., B. Moore, R. Moats, and E. Ellesson, “Policy Core LDAP Schema.” Draft-ietf-
policy-core-Idap-schema16.txt, October 2002.

The UML 1.4 specifi cation is downloadable (see www.ibm.com/software/rational/).
The home page of the defi nition of the Differentiated Services working group of the IETF

is www.ietf.org/html.charters/OLD/diffserv-charter.html.
Low-latency queuing combines strict priority queuing with class-based weighted fair

queuing; see www.cisco.com/en/US/products/sw/iosswrel/ps1830/products_feature_
guide09186a0080087b13.html.

An innovation policy-driven confi guration management and activation product can be seen
at www.intelliden.com.

CHAPTER

8QoS Policy Usage Examples
in Policy-Based Network
Management

This chapter, using extracts from Chapter 10 of Policy-Based Network Manage-
ment by John Strassner, provides several examples of how policy is used in a
system. The policy continuum fi gures prominently in the recommended approach
for building Policy-Based Network Management (PBNM) systems because it enables
the business, system, and implementation views to be seamlessly integrated. In
addition, the multiple uses of policy will be emphasized through examples in this
chapter.

8.1 INTRODUCTION
The purpose of this chapter is to show how policy is used in different situations
in PBNM systems. There are two ways that policy is commonly described. One
group of people thinks of policy as a way to change lines in the confi guration fi le
of a device. Another group of people thinks of policy as only appropriate for
expressing rules in the business world.

Of course, both are right. Unfortunately, neither of these represents the use
of the full potential of how policy can be used. The Directory Enabled Networks-
new generation (DEN-ng) concept of policy is epitomized through the use of the
policy continuum. The policy continuum is the basis for defi ning how policy is
defi ned and used for different constituencies, ranging from the business analyst
to the system designer to the network administrator. These uses, as well as others
that are suited for different users of the policy continuum, constitute the potential
of PBNM. The holistic use of the policy continuum, and its ability to integrate the
needs of the business and system worlds, is key to realizing the potential of PBNM
solutions.

This chapter focuses on using policy to manage, as well as control, the con-
fi guration of devices. The policy continuum will be used to express policies at

224 CHAPTER 8 Examples in Policy-Based Network Management

different levels of abstraction and integrate them together to form a cohesive set
of policies.

8.2 POLICY APPROACHES
There are two fundamentally different approaches that can be used to develop a
PBNM system. They can be categorized as static versus dynamic. In either case, it
is important to note that this categorization is based on how the policies are
applied: In both cases the policies remain constant—it is the environment
that is changing. Thus, the approaches differ in how the environment is to be
controlled.

8.2.1 Static versus Dynamic

Static approaches are also called pre-provisioned approaches. Here, the idea is to
pre-provision the network according to some predefi ned scheme and plan into
that pre-provisioning the ability for different behaviors to take effect when condi-
tions warrant. The classic example of this is to use Differentiated Services (Diff-
Serv) to defi ne traffi c conditioning according to different predefi ned levels (e.g.,
Gold, Silver, and Bronze) and group traffi c into sets whose forwarding behavior
(i.e., how the packet is treated within the router between its input and output
interfaces) is the same. This is done by applying various rules to classify traffi c at
the edge and “mark” it (via setting appropriate bit values in the IP header) accord-
ing to a set of predefi ned “code points.” These code points defi ne a particular
type of forwarding behavior (e.g., dropping, metering, policing, shaping, queuing,
and scheduling) that should be applied.

Dropping means the selective dropping of packets, whether randomly or algo-
rithmically. This is used to tell TCP-based traffi c to slow down the transmission
rate. Metering is the act of limiting the amount of incoming traffi c to a predefi ned
rate, and is also called “rate limiting.” Policing combines metering with dropping
and optionally (re-)marking to indicate that further conditioning is necessary to
downstream elements. Shaping is similar to policing, except that it is applied on
the egress (whereas policing is applied on the ingress) and contains buffering of
packets (policing does not provide any buffering). Queuing is the act of delaying
the transmission of a packet by storing it and possibly transmitting the packet in
a different order than it was received. Scheduling is the act of defi ning which
packet to send from which queue when the interface is free.

The essence of a static approach is to allow changes in the environment to be
accommodated by the rules embedded in the network. In other words, policies
are used to initially provision the network, and then the network runs on “auto-
pilot” until something signifi cant happens that requires the download of new
policies. This works based on the ability to program complex behaviors into the
network that “do the right thing” in response to small or medium environmental

8.2 Policy Approaches 225

changes. For example, DiffServ has the notion of “drop probabilities” within a
particular class. As traffi c rate increases, the probability of dropping a packet
increases. When a packet is dropped, and the application sending the packet is a
TCP-based application, then the dropping of a packet causes the transmission rate
of the application to be slowed. Thus, we have a simple self-regulating mechanism
that is appropriate for many types of traffi c. (Note that I said “many types of traffi c”
and not all types of traffi c.) Clearly, dropping packets in a VoIP application cor-
responds to dropping parts of a conversation, which is not desirable.

What if “doing the right thing” is too complicated in order to be pre-
provisioned? This is where dynamic approaches are used. Note that DiffServ can
also be used in a dynamic approach. For example, suppose that the input interface
of a DiffServ router is monitored in order to observe the number of input fl ows,
and a policy exists that will change the traffi c conditioning based on statistics of
this interface, such as number of packets dropped. This has the effect of dynam-
ically adjusting a pre-provisioned mechanism. Note that the policy itself is static—
it is the changing statistics that cause the policy to be invoked.

However, the classic example of a dynamic mechanism is of course signaling,
such as with the Resoure Reservation Protocol (RSVP). In this approach, a client
asks for a new feature from the network, such as additional bandwidth. The client
signals its need of this new feature by explicitly asking for new bandwidth. This,
of course, requires a decision to be made as to whether this request should be
granted or not. Such requests cannot be “pre-provisioned,” since they cannot be
anticipated beforehand.

8.2.2 A Better Taxonomy: Proactive versus Reactive

Clearly, these approaches can be mixed. One can adjust pre-provisioned features
just as easily as one can pre-provision certain additional features that are not
invoked until necessary. Thus, a better way to categorize these approaches is by
classifying them as proactive versus reactive.

Proactive changes generally take the form of changing the confi guration of a
device by pushing a new set of commands to it. Proactive changes are usually
implemented as an attempt to avoid an undesirable state. For example, there are
many different ways to condition traffi c. Not only can traffi c be rate-limited at the
input (often called “policing”), it can also be regulated at the output (often called
“shaping”). The network devices can be preprogrammed to perform either of
these functions, or the network can be programmed to incorporate these func-
tions at any desired time. Typically, this is done in a closed-loop fashion by observ-
ing traffi c patterns and comparing them with desired traffi c patterns.

Note that this is simply another variation of using a Finite State Machine
(FSM)—a device dropping too many packets can be thought of as being in an
undesirable state. Thus, we can use one or more policies to develop confi guration
changes that alter the traffi c conditioning functions of the device in such a way
as to stop the dropping of too many packets. This set of confi guration changes

226 CHAPTER 8 Examples in Policy-Based Network Management

can be thought of as transitioning the state of the network device back to an
allowed state.

Reactive mechanisms enable parts of the network to offer high QoS guarantees
without having to over-provision those parts of the network that need to offer
additional guarantees. Traditionally, specialized protocols, such as RSVP, were
used to convey those additional guarantees.

Advantages and Disadvantages of Proactive Mechanisms
One of the important advantages of proactive mechanisms is that sets of them can be
easily confi gured to defi ne how to change device confi gurations given an event and/
or condition. Once these changes are implemented in the network, the network can
then run in a relatively hands-off manner. Another important advantage is scalability.
As will be seen, signaling and other reactive mechanisms come with a relatively high
price: the maintaining of individual state for each device that is participating in a
signaling path. Proactive mechanisms don’t require such state because they repre-
sent decisions taken to implement a predefi ned set of behaviors.

The main drawback to proactive mechanisms is that they cannot have any idea
of which resources specifi c applications entering at different points of the network
need. This will tend to waste precious shared resources. (i.e., instead of effi ciently
allocating extra resources exactly where they are needed, proactive systems will
confi gure entire portions of the network to act a particular way).

Advantages and Disadvantages of Reactive Mechanisms
The obvious advantage of reactive mechanisms is that they provide a way to
explicitly signal additional needs on demand. As we will see, this enables a more
effi cient use of the network. However, signaling mechanisms offer several impor-
tant additional advantages that shouldn’t be discounted.

Signaled information is, by defi nition, additional information that is to be
applied to a particular fl ow or set of fl ows. The beauty of signaled information is
that it can traverse the same network path as the traffi c that it is intended to
manage. This additional specifi city differentiates it from proactive mechanisms,
since the latter by defi nition cannot usually be linked to specifi c paths. Thus, the
advantage of signaling mechanisms is that specifi c QoS needs for specifi c paths
can be easily communicated. Furthermore, if the needs cannot be met for some
reason anywhere along the path, an explicit notifi cation can be provided. This
enables an application to pinpoint exactly where it cannot get the QoS that it
desires, which enables the application to either search for a different path, accept
degraded QoS, or postpone its request.

The most important advantage of reactive mechanisms is the ability to embed
additional information into the signaling mechanism. That is, in addition to request-
ing (for example) additional bandwidth, RSVP can be used to carry additional
information, such as user and application information. This is described in many
different RFCs. Identity representation can be used to securely identify the owner
and the application of the communicating process in RSVP messages in a secure

8.2 Policy Approaches 227

manner. Policy elements can be used to identify different application traffi c fl ows,
and a preemption priority policy element can be defi ned to assign a relative impor-
tance, or ranking, within the set of fl ows competing for preferential treatment.

The importance of signaling here is that without signaling, such information is
typically unavailable. For example, user information is not available in standard
packet headers. Even if it was, it and other types of information (such as application
identifi cation) would typically be hidden by the use of IPsec, which is often used
to secure traffi c. The ability to signal information can greatly simplify management,
because typically, services are allocated in terms of users and applications. This
provides us important information to be able to map users and applications to
terms that are recognizable to network devices, such as IP addresses and ports.

Of course, nothing in life is free. The advantages of reactive mechanisms such
as signaling come with several attendant costs. The fi rst is additional setup and
processing time for all devices, hosts, and end systems that are using the mecha-
nism. Thus, the fi rst rule is to not use such mechanisms for short-lived fl ows, or
the fl ow is likely to be fi nished before the network is fi nished being (dynamically)
confi gured.

A second-order effect from this additional setup and processing time is an
increase in network traffi c due to the increased overhead required so that signal-
ing can be used. Thus, for this method to be effective, fl ows using signaling
should ideally generate much more traffi c than is required to set up their traffi c
conditioning.

However, the main problem with such mechanisms is the need to carry state
information for each device participating in the fl ow. Otherwise, the device has
no idea whether it should grant the use of additional resources, how long to grant
them for, and other factors.

The Solution: Use Both
Integration of these two approaches is being discussed in several forums. One
good example is the IETF ISSLL working group, which was formed to address
(in part) how to integrate these two efforts—Integrated and Differentiated Ser-
vices. There are several important works that form part of the output of this
working group that defi ne how this can be done. Integrated Services (IntServ) can
be supported over a Differentiated Services network. This in effect provides the
best of both worlds. For example, different RSVP fl ows can be aggregated and
tunneled over a common DiffServ network.

There are other important variations of this general theme. For example, a
single RSVP reservation could be used to aggregate other RSVP reservations across
a common transit routing region.

8.2.3 The Role of Policy

Policies are essential to the use of either proactive or reactive models. Policies
enable confi guration changes, such as how many resources are to be applied for

228 CHAPTER 8 Examples in Policy-Based Network Management

any given use. For this to be done, however, we need to revisit the notion of policy
subjects and policy targets. The defi nitions of these two terms are as follows:

A policy subject is a set of entities that is the focus of the policy. The subject
can make policy decision and information requests, and it can direct policies
to be enforced at a set of policy targets.

A policy target is a set of entities that a set of policies will be applied to.
The objective of applying policy is to either maintain the current state of the
policy target, or to transition the policy target to a new state.

Using these defi nitions, we see that policy subjects are the controlling entities
in the policy equation, with policy targets being the means by which policies can
be used to change the behavior of the system. However, applying policy correctly
is more complicated than it appears.

Equating Different Views of the Same Policy
The fi rst problem is that different policy subjects have different views of the
network. Thus, unless a common unifying factor (such as FSM) is used, the same
policy executed by different policy subjects could have markedly different behav-
ior. The most likely cause of this would be because the different policy subjects
would make different decisions because they were monitoring different objects.
The advantage of using a FSM in this case would be to enable the different contexts
to be mapped to the same state.

Capability Mapping
The next and bigger problem is that different devices have different capabilities.
This manifests itself in several different ways. For example, two different devices
could have different commands and/or different features. This makes it very dif-
fi cult to use these devices to condition the same fl ows in concert.

Consider two devices that have slightly different capabilities. The same policy
cannot be applied unaltered to both devices, unless the different capabilities have
the exact same command. This is highly unlikely if the devices have different end-
user capabilities. But the problem is actually more involved than this. Mapping to
the same commands assumes that each device is able to process the same events
and respond to the same conditions. This means that for each of the three funda-
mental building blocks of a policy (event, condition, and action clauses), a mapping
must be done to defi ne equivalent functions in each device. Furthermore, it also
assumes that the end result of executing the policy has the same side effects. This
is in general a bad assumption to make in this case. The presence of different
capabilities is often a good indication that the devices internally are implemented
quite differently. For example, turning on fancy queuing might have different
effects due to different implementations.

As another example, consider the subfunction of classifi cation. Suppose the
two devices both need to classify traffi c, and the policy uses Differentiated Ser-
vices Code Points (DSCP) to specify how the device is supposed to classify traffi c.

8.2 Policy Approaches 229

If one of the devices is not capable of handling DiffServs, then neither device will
be able to read the policy and perform the classifi cation portion of the policy
(which may be part of the condition or action clauses). Cases like this can be
mitigated somewhat using the policy continuum. Deciding that DSCPs should be
used is a technology-specifi c feature. This means that there are two levels above
the continuum (the business and system levels, to be exact) that each contain a
higher-level specifi cation of this classifi cation function. Thus, a sophisticated
PBNM system could refer to the original policy continuum to retrieve a higher-
level specifi cation of the classifi cation function. (Note that in this example, it is
important to ensure that the values of the DSCPs map to the, more limited, values
of the other mechanism, for example type of service (ToS); otherwise, the devices
cannot be guaranteed of performing the same actions.)

Accommodating Device Limitations
While different capabilities make it diffi cult to ensure that different devices are
performing the same function, often devices have a set of restrictions or limita-
tions that must be accounted for when a policy is translated. Two common
examples are rule depth and condition complexity.

Rule depth manifests itself by limiting the number of rules that can be loaded
or executed at a given time. There may be many reasons for this, such as a lack
of memory or processing power. The problem lies in the complexity of the envi-
ronment that the PBNM system component is operating in. Often, complex envi-
ronments require many different rules to be executing concurrently. The only real
solution to this problem is to try and reformulate or combine rules so that the
limitations of the device do not adversely affect the deployment of the policy
rules.

Condition complexity refers to how many different condition expressions are
in a single condition clause, as well as how many different types of operators are
used to combine different expressions into a single clause. Both of these factors
can restrict the complexity of the condition that can be implemented by a device.
Sometimes, conditions can be simplifi ed by converting to a different representa-
tion. For example, in Boolean logic, there are some expressions that are very
diffi cult to implement using conjunctive normal form (i.e., a Boolean expression
defi ned as a logical ANDing of logical ORed terms), yet fairly simple to implement
using disjunctive normal form (i.e., a Boolean expression defi ned as a logical
ORing of logical ANDed terms). Options such as these should be used to see if
the condition can be translated into a form that the PBNM system component can
handle. Otherwise, the only recourse is for the PBNM system component to inform
the rest of the system that it is unable to process that condition or rule.

Accommodating Different Programming Models
Different devices can also have different programming models that make control-
ling them together very diffi cult. This takes the following two very different
forms.

230 CHAPTER 8 Examples in Policy-Based Network Management

1. Two different devices use completely different programming models, yet both
need to participate in implementing or enforcing a particular policy. The most
common example is where one device uses a vendor-specifi c command-line
interface (CLI), while the other device uses Simple Network Management Pro-
tocol (SNMP). The obvious problem is that there is no common information
model that equates the actions of the vendor-specifi c CLI commands to the
actions of the SNMP commands.

2. A device uses one programming model to confi gure a function and a different
programming model to monitor that same function. Without the use of a
common information model, it will be very diffi cult to correlate the same con-
cepts in each programming model.

In either case, the PBNM system must provide a mapping between the com-
mands of these different programming models. It is highly recommended that a
single common information model, such as DEN-ng, be used to do this. In fact,
DEN-ng has a model wherein CLI, SNMP, TL1, and other management methods
can be used as part of the same overall task. These and other problems greatly
complicate PBNM system design. This is why policy and information modeling
need to be used together to solve these problems.

8.2.4 Abstracting Network Interface Management
into Network Service Management

One of the important ideas behind policy management is that policies control
services. This means that the programming of network device interfaces is of
secondary importance—the main objective is to provision a service. This is a
fundamentally different approach than currently used in most management
systems. Figure 8.1 shows how current network management systems program
network services. In this approach, a set of n management applications are respon-
sible for programming a set of m device interfaces. Note in particular that a given
management application may be responsible for programming multiple device
interfaces from multiple devices.

The problem with this approach is that network services are not being
programmed. Rather, device interfaces are being programmed. This means
that the burden of constructing a network service is placed on the administra-
tor. Specifi cally, the administrator must know which applications can manage
which device interfaces, how to build part of a service on a device interface,
and what role each device interface plays in the construction of the network’s
services.

Figure 8.2 shows how current network management systems program network
services. In this approach, the objective is for the PBNM system to program
the network service directly. Clearly, device interfaces are still programmed.
However, they are no longer the primary focus—the service is instead the primary
focus.

8.2 Policy Approaches 231

In the fi gure, the Element Management Layer (EML) of traditional TMN systems
is still there. The point, however, is that in the PBNM approach, the EML is just
another way to instruct the device to do something. This is radically different than
the purpose of the EML in traditional TMN systems, which is to control and
manage the set of devices. This shift refl ects the fact that the PBNM approach
views the network as a provider of services, and therefore needs to defi ne the
service fi rst and then instruct the device what to do to meet the needs of the
service.

In the TMN approach, the EML is the focus because the service is present only
in the brains of the designers. There is no “service” when the device is being
programmed by CLI through a device interface, because there is no view or defi -
nition of the service in the CLI! (This also applies to SNMP, TL1, and other

Network service

Management
application 1

Management
application n

Device
interface

FIGURE 8.1

Current approaches program device interfaces (as shown), not network services.

Management
application 1

Management
application n

PBNM system

Network service

FIGURE 8.2

The PBNM system to program the network service directly.

232 CHAPTER 8 Examples in Policy-Based Network Management

programming models.) Rather, there is only a view of what that particular device
interface can do.

Thus, in the PBNM approach, the PBNM system as a whole is responsible for
programming the network service. It abstracts the task of programming individual
device interfaces. Put another way, policy in a PBNM system is used to control a
set of policy targets that collectively provide a network service. This means that
each policy target must interpret the policy (and the policy rules that make up
the policy) in the same way.

This enables a different approach to building a network service to be taken
compared to the nonpolicy approach shown in Figure 8.1. Specifi cally, the PBNM
approach can model the semantics of a network service, such as the relationship
between the roles played by different objects supplying the network service,
directly. This is usually impossible to do using a non-PBNM approach because the
methods used (e.g., CLI and SNMP) do not have the concept of a role, or con-
structs that show directly the dependencies and relationships between different
objects that support a service.

8.3 QOS POLICY USAGE EXAMPLES
This section will use the results of the previous section to provide three different
examples of how PBNM systems can be used. Each of these three examples will
be concerned with using policies to confi gure and enforce a particular type of
QoS.

A common thread that emerges from these three application examples is that
policy-based management does not solve the entire problem by itself. Just because
a PBNM system is being used does not mean that people no longer have to under-
stand how a network works! Rather, the point of policy-based management is to
make life easier for the administrator.

For example, suppose that a network is shared by multiple departments. If it
happens to be the end of the month, the fi nance department may need prioritized
use of the network to ensure that its large (and very important) monthly reports
are delivered on time. Without a PBNM system, the best that can be hoped for is
for the network administrator to either ask other network users to limit usage of
the network during these times, or for the network administrator to manually
prioritize the traffi c corresponding to the fi nance application. The former is very
diffi cult, not just because human nature seeks empowerment and does not like
being told what to do, but more importantly because it is very hard for a given
user to understand what impact (if any) the application that they are running will
have on the fi nance application. The latter is manually intensive and therefore
error-prone.

PBNM is thus a means for the network administrator to proactively manage
the network, as opposed to reacting to how users are using the network.

8.3.1 Providing Differentiated Services for Applications
Using a Shared Network

The objective is to enable different applications to get different service levels from
a common network, according to some prioritized usage defi ned by policy. We
are interested in providing this preferential access because without predictable
response for different types of applications, it is impossible to offer value-added
services that people will buy. We therefore have at a minimum two distinct uses
of policies:

1. Policy to defi ne which application gets which type of service
2. Policy to defi ne how the traffi c belonging to a particular application is

conditioned

Conceptually, what we want to do is to classify which applications should get
priority treatment. We will defi ne priority treatment as the ability to gain preferred
access to shared network resources. Assuming that we have many different appli-
cations (say, 20), we decide that we will aggregate traffi c into three different
classes: Gold, Silver, and Bronze. Our traffi c will be assigned to the “Gold” class,
meaning that it will always get preferential use of shared resources.

One way of satisfying these goals is to detect the traffi c emitted by various
applications, and then mark those packets according to a scheme wherein the
traffi c of each application is placed into a particular class of service (CoS). Traffi c
from each CoS gets appropriately conditioned so as to provide a level of preferred
access to shared resources. This is illustrated in simplifi ed form in Figure 8.3.

Note that all of the different traffi c conditioning functions are not shown in
Figure 8.3 for the sake of simplicity. The point of this basic approach is that at
the edge, we apply complex conditioning functions to classify traffi c into different

Application 1

Application 2

Application n

…

Edge device Core device

Classification, marking,
metering, policing

Forwarding, with pre-
configured queuing

and dropping

FIGURE 8.3

Basic traffi c conditioning functions.

8.3 QoS Policy Usage Examples 233

234 CHAPTER 8 Examples in Policy-Based Network Management

groups, or aggregates. We may do some basic policing and other functions to limit
the rate and volume of traffi c to conform to the capabilities in the core of our
network, but this is done so as to make the job of classifi cation more effective.
Once the traffi c hits the core of the network, the job of the routers is to forward
traffi c as fast as possible. They may apply queuing and dropping functions, as
specifi ed by the packet markings that they receive, to adjust traffi c as necessary
so as to satisfy CoS parameters. However, their main goal is to forward traffi c.
Hence, we can use the simplifi ed representation shown in Figure 8.3.

This idyllic situation is complicated by the fact that some applications generate
more than one type of traffi c. For example, H.323 traffi c generates many types of
different TCP and UDP traffi c fl ows. Database applications routinely open ports
on demand that do not conform to a predefi ned set of port numbers. These and
other factors make it very diffi cult to effi ciently classify a particular fl ow as belong-
ing to a given application.

Clearly, it is wasteful to classify all of those fl ows with the same marking.
However, it is important that different fl ows receive the conditioning that they
need in order for the overall application to have the desired end-user experience.
Thus, we need some intelligence in the PBNM system that knows that different
fl ows corresponding to a single application can have different markings, as long
as the overall traffi c conditioning for that particular application meets the objec-
tives of its CoS.

This approach to providing Differentiated Services is what the DiffServ working
group set out to accomplish. DiffServ describes a set of QoS capabilities that can
be delivered from one end of the network to another.

8.3.2 The DiffServ Approach

DiffServ is an approach that instructs the network to deliver a particular kind of
service based on the QoS marking specifi ed by each packet. This specifi cation is
made using the 6-bit DSCP setting in IP packets or source and destination addresses.
The DSCP is a tag that instructs each device in the network to perform appropri-
ate traffi c conditioning functions, such as metering, shaping, dropping and
queuing.

DiffServ defi nes four per-hop behaviors (PHBs). A PHB is defi ned as the exter-
nally observable forwarding behavior applied at a DiffServ-compliant node to a
DiffServ behavior aggregate (remember, packets from multiple sources or applica-
tions can belong to the same behavior aggregate). The four standard PHBs are:

■ Default PHB
■ Class-selector PHB
■ Assured forwarding (AF) PHB
■ Expedited forwarding (EF) PHB

The default PHB specifi es that a packet marked with this DSCP will receive the
traditional best-effort service from a DiffServ-compliant node. Packets arriving at

a DS-compliant node whose DSCP value is not mapped to any other PHB will also
get mapped to the default PHB.

The class-selector PHB is a set of DSCPs intended to preserve backward-
compatibility with any IP precedence scheme currently in use on the network.
These class-selector PHBs retain most of the forwarding behavior as nodes
that implement IP precedence-based classifi cation and forwarding. Class-selector
PHBs ensure that DS-compliant nodes can coexist with IP precedence-based
nodes. This set of PHBs enable routers that are compliant with DiffServ to be
used with routers that are not compliant with DiffServ but are compliant
with ToS.

Note that from the DEN-ng point of view, this is not a complete mapping.
While this does identify the basic functionality that needs to be supported by both
types of routers, it does not defi ne the complete behavior and semantics of each
router. For example, it does not take into account side effects, such as resources
consumed, of a router. Often, the functionality of a router is diminished when an
advanced type of queuing is being run, due to the increased resources needed to
support the advanced queuing function. DEN-ng seeks to model these and other
features as capabilities that are either available or not available; any dependencies,
as well as pre- and postconditions that arise from using that particular capability,
are also modeled.

The assured forwarding PHB is nearly equivalent to controlled load service
available in the IntServ model and is used to defi ne a method by which different
behavior aggregates can be given different forwarding assurances. This is usually
done by fi rst defi ning the type of buffering that will be used and then allocating
a percentage of the available bandwidth per class. Since different applications
have different characteristics, different buffering and queuing strategies are
employed. For example, one would not use class-based weighted fair queuing for
voice because it is too fair (meaning that it will not properly discriminate voice
traffi c and attempt to fairly interleave voice packets with other application packets)
and will not be able to deliver the latency and jitter guarantees that voice
requires.

As stated previously, the purpose of defi ning a behavior aggregate is to group
different applications together that have the same general characteristics. The AF
specifi cation defi nes three drop precedence values that you can use (within each
class) to further differentiate between different types of applications. If the appli-
cations are all TCP-based, then dropping a packet tells the application to slow
down its transmission rate. In effect, this penalizes traffi c fl ows within a particular
behavior aggregate that exceed their assigned bandwidth.

Finally, the EF PHB can be used to provide a guaranteed bandwidth service.
Applications such as voice over IP (VoIP), video, and online trading programs
require this kind of service. The EF PHB specifi es a low loss, low latency, low
jitter, and assured bandwidth service.

Figure 8.4 shows a simplifi ed view of the DEN-ng model to represent these
concepts.

8.3 QoS Policy Usage Examples 235

236 CHAPTER 8 Examples in Policy-Based Network Management

Using DEN-ng to Help Implement DiffServ
Although the different types of services are specifi ed by DiffServ, the specifi c
implementation (e.g., queuing and dropping algorithms) for each service is
not specifi ed. The EF and AF specifi cations “hint” that class-based weighted
fair queuing and priority queuing, respectively, should be used, but neither
mandates the use of a particular type of algorithm. This is where the information
model can help standardize the implementation of these types of services.
The idea is to defi ne a template that specifi es how a particular PHB will be
implemented, and attempt to use this template with every instance of that par-
ticular service. If a particular device foo cannot support the exact features defi ned
by this template, then the DEN-ng concept of capabilities can be used to map
between the features that foo has and the desired features that are specifi ed in
the template.

ToSService
tosPrecedenceValue : String

802Service
802PriorityValue : String

DiffServService
dscpValue : String
phbID : String
queuingRecommended : Integer
queuingUsed : Integer

AFService
afClassNumber : String
afDropProbabilityNumber : String

EFService
usesLimiting : Boolean

QoSService 0..n

0..1

hasQoSSubServices

FIGURE 8.4

Simplifi ed DEN-ng DiffServ model.

For example, assume that there are different types of routers available in the
network. Some are DiffServ-compliant, while others use different means (e.g., the
ToS byte in the IP header) to recognize different types of traffi c. Furthermore,
assume that these different routers have different capabilities.

In this particular situation, DiffServ gets us part way to a solution, but it cannot
specify the complete solution. This is because it only specifi es the marking to be
used to identify a PHB—it doesn’t specify how to implement the PHB. Furthermore,
it cannot be used to specify the implementation of how different device capabilities
are mapped to each other. Finally, as pointed out above, it cannot be used to defi ne
what capabilities are no longer available when a given capability is used.

Thus, we arrive at the motivation for using an information model, such as DEN-
ng, to represent DiffServ and other capabilities of network devices in a common
representation. The DEN-ng information model was developed to facilitate nor-
malization of functions (so that mapping between functions could be more easily
accomplished) and to defi ne dependencies and inter-relationships between func-
tions using the notion of capabilities.

DEN-ng provides the ability to normalize different functions, and map them to
device-specifi c implementations. For example, the information model can defi ne
“AF” (which is a particular DSCP) as being implemented with class-based weighted
fair queuing, along with a particular set of values for weighted random early detec-
tion (a type of dropping algorithm). This corresponds to the “template” defi nition
of this DSCP. If a particular device doesn’t have class-based weighted fair queuing,
but does have other types of queuing mechanisms, then the information model
can identify these other types of queuing mechanisms and organize them under
a common ontology. The PBNM system could then determine the set of queuing
mechanisms that a given device has, and choose the appropriate one to use to
implement AF for that device. Clearly, this method can be used for any desired
function, not just queuing.

Since DEN-ng has the concept of a capability, it can relate any feature or func-
tion of a managed element being modeled to a capability of that managed element.
This link enables relationships between one feature and other features to be
established, which lets us defi ne dependencies between these features. For
example, capabilities can be used to specify the particular type of traffi c condition-
ing that would be performed for a given type of traffi c. Note that this doesn’t
replace DiffServ—rather, it enhances the use of DiffServ.

An example is shown in Figure 8.5, which represents a (very) simplifi ed DEN-
ng model for representing the relationships between QoS and other ResourceFac-
ingServices and how they may be offered as a ServiceBundle to a Customer. This
example model works as follows.

In DEN-ng, there are two basic types of services. CustomerFacingServices are
services that customers purchase, whereas ResourceFacingServices are services
that are not purchased directly by the customer but are still required to support
a CustomerFacingService. This relationship is shown at the top of the hierarchy
in Figure 8.4.

8.3 QoS Policy Usage Examples 237

238 CHAPTER 8 Examples in Policy-Based Network Management

CoS4BundleSpec

ServiceSpecification
0..n

0..n

InvolvedServiceSpecs

CustomerFacingService
SpecAtomic

ResourceFacingService
SpecAtomic

CustomerFacingService
SpecComposite

CustomerFacingServiceSpec

0..1

0..n

HasCustomerFacingServiceSpecs

ResourceFacingService
SpecComposite

ResourceFacingServiceSpec

0..n 1..n

RequiresResourceFacingServiceSpec

0..1

0..n

HasResourceFacingServiceSpecs

ServiceBundle
SpecAtomic

ServicePackage
SpecAtomic

ServiceBundleSpec
Composite

ServiceBundleSpec

0..1

0..n

HasServiceBundleSpecs

ServicePackageSpec
Composite

ServicePackageSpec 0..n 0..nServicePackageSpecUsesServiceBundleSpecs

0..1

0..n

HasServicePackageSpecs

PlatinumPackageSpec

GoldPackageSpec

SilverPackageSpec

BronzePackageSpec

BestEffortPackageSpec

CoS1BundleSpec

CoS2BundleSpec

CoS3BundleSpec

FIGURE 8.5

Information model for QoS service implementation.

For example, consider an MPLS VPN. Customers buy VPNs, so an MPLS VPN
is an example of a CustomerFacingService. Further assume that this particular
type of MPLS VPN is as defi ned in RFC 4364. This type of VPN mandates the use
of Border Gateway Protocol (BGP) for route advertisement. However, service
providers do not sell BGP. Thus, we also have the concept of a service that is
related to the CustomerFacingService but is itself not sold. DEN-ng defi nes this
as a ResourceFacingService. This enables the various supporting services that are
needed to model a particular CustomerFacingService to be modeled (and, more
importantly, to have their relationships established to the CustomerFacing-
Service), while keeping the semantics between a CustomerFacingService and a
ResourceFacingService separated.

In this example, the service provider offers three different service packages—
Gold, Silver, and Bronze—which may represent the grouping of services. This is
illustrated in Figure 8.6. For instance, by grouping the same services into Bronze,
Silver, and Gold, the service provider can represent better performance for the
Gold services than the Silver services. Referring to Figure 8.6, we see that all three
services are given Data services. The difference is that the quality of data service
is best in Gold service and worst in Bronze service.

These different packages may also be used to represent access to a service not
available at a lower level. For example, as represented in Figure 8.6, VoIP may be
available only if the customer purchases Gold service.

The concept of a ServiceBundle enables the service provider to group a set of
related services together as a package. Different ServiceBundles enable a service
provider to model the concept of “upgrading” to a higher performance service
bundle, in order to access new or better performing services.

The discussion so far has defi ned the set of classes necessary to build a class
structure to represent different types of services. The next part of the discussion
will examine how to represent QoS.

The next step in the process is to realize that each service in the Service-
Bundle needs its own set of QoSServices. A set of QoSServices is needed because
different devices with different capabilities are used as a set to provide a service.
In this example, we had two different types of routers—one that used the ToS
byte and one that used DSCPs—to indicate how to condition traffi c. Therefore, a
service in a ServiceBundle may need both DiffServServices as well as ToSServices
(where DiffServService and ToSService represent a set of classifi cation, marking,
and traffi c conditioning services based on using DSCPs and ToS settings, respec-

Bronze serviceSilver service

Data

SAP

VoIP

Web

Data

SAP

Web

Data

Web

Gold service

FIGURE 8.6

Bundling of CustomerFacingServices.

8.3 QoS Policy Usage Examples 239

240 CHAPTER 8 Examples in Policy-Based Network Management

tively). The job of the PBNM system is to recognize this and provide a means for
all of these different services to be represented.

This process is formally defi ned in the DEN-ng model as follows. A QoS
Service is a subclass of ResourceFacingService, which can be related to a
CustomerFacingService through the CFServiceRequiresRFServices aggregation.
This aggregation is used to defi ne the set of ResourceFacingServices that
are required to support a particular CustomerFacingService. Thus, we have
the ability to defi ne which set of QoSServices are required by any particular
CustomerFacingService.

This is a powerful concept. For example, it enables a set of CustomerFacing
Services to all use the same QoSService, thereby ensuring that their side effects
will be very similar. In this example, the different CustomerFacingServices can
still be distinguished from each other through the use of classifi cation and marking,
and traffi c conditioning can similarly be assigned different values and hence dif-
ferent effect. However, the power of the DEN-ng design is that it masks these
details from the business analyst. Thus, all the business analyst needs to be con-
cerned with is which customer gets which level of QoS, not with how each level
of QoS is implemented.

Alternatively, different CustomerFacingServices can use different QoSServices.
The difference in the CustomerFacingServices is now explicit. Note, however, that
the same fundamental services—classifi cation, marking, and traffi c conditioning—
are provided in either case. This gives the network designer maximum fl exibility
in defi ning the set of network services that a particular customer receives.

We need some way to map between DSCPs and ToS settings. This can be done
by using the information model to fi rst defi ne such a mapping and second, to
relate instances of the DiffServService class to instances of the ToSService class.
By ensuring that both DiffServServices and ToSServices are defi ned as QoSSer-
vices, they are identical from an abstract point-of-view. This is important because
in each case they use a similar set of services that are keyed off of a marking in
the IP header of the packet. The mark of a good information model is the ability
to represent concepts that occur in the environment being modeled by simple,
natural means. This abstraction is the fi rst step in doing this.

We can defi ne a mapping between values of a ToS byte and DSCP values by
instantiating these two classes and writing simple OCL expressions to relate the
eight different ToS settings to eight corresponding DSCP values. This by itself is
important, but we need to defi ne what these values mean. The problem that we
face is that there is no standard that defi nes which specifi c services are required
to implement the desired traffi c conditioning. Thus, we represent this as two
additional types of ResourceFacingService—Traffi cConditioningService and Traf-
fi cIdentifi cationService classes.

Traffi cIdentifi cationService and Traffi cConditioningService abstract the fun-
damental processes of classifying and marking packets and defi ning how those
packets are to be treated internally by the routers. However, we need a way to

describe the different mechanisms that can be used in implementing DiffServ
Services and ToSServices. Therefore, DEN-ng defi ned the notion of a Network
ForwardingService. This is the base class from which all functions that operate
on network traffi c in the forwarding path of a network device derive.

A previous attempt at modeling these features was built by the IETF and later
modifi ed by the DMTF. In simplifi ed form, it looks as shown in Figure 8.7.

There are several problems with this model. First, classifi cation and marking
are mistakenly categorized as ConditioningServices. These two services have
nothing to do with traffi c conditioning. Furthermore, it does not differentiate
between a metering service (also called a policer), which limits the traffi c to a
specifi ed maximum rate, versus a shaper service, which delays transmission (by
buffering the traffi c) so that the total resulting traffi c is limited to a particular value.
The implementation of a policer versus a shaper has different architectural ele-
ments and different commands and therefore should be separated in the model.

In the DEN-ng model, neither the Classifi erService nor the MarkerService are
Traffi cConditioningServices. Rather, they are generalized services that perform
the function of further identifying network traffi c, through classifi cation and
packet marking. This was the motivation for calling them Traffi cIdentifi cation
Services in the DEN-ng model. Note also that the two associations NextService
AfterMeter and NextServiceAfterClassifi erElement technically go to a subclass of
Classifi erService, but this has been simplifi ed in the fi gure.

This enables the Traffi cConditioningService to focus on representing specifi c
mechanisms inside the router that can be programmed by the PBNM system to
supply different types of traffi c conditioning. The key to specifying which traffi c
conditioning mechanisms are to be used is by marking the packets appropriately;
this is represented by the MarkerService in the DEN-ng model of Figure 8.4. In
order to mark the packets, the traffi c must fi rst be classifi ed into different fl ows

Enabled: boolean

ConditioningService NextService* *

ClassifierService MeterService
*

*

MarkerService DropperService QueuingService

NextService
AfterMeter

ForwardingService

FIGURE 8.7

Simplifi ed CIM representation of traffi c conditioning and classifi cation services.

8.3 QoS Policy Usage Examples 241

242 CHAPTER 8 Examples in Policy-Based Network Management

that may in turn be aggregated together, so that the same traffi c conditioning can
be applied to them. This is the purpose of the Classifi erService. A more complete
portion of the DEN-ng QoS model, which shows these points, follows.

By defi ning a Traffi cConditioningService class and a Traffi cIdentifi cation
Service class as defi ned in Figure 8.8, we can relate one or more of each of these
two types of services to a DiffServService as well as a ToSService. To be exact,
we can defi ne a particular set of Traffi cConditioningServices and Traffi cIdentifi -
cationServices to be used to implement a DiffServService, and either the same or
a different set of Traffi cConditioningServices and Traffi cIdentifi cationServices to
be used to implement a ToSService (or any other QoSService, for that matter).

Furthermore, the types as well as the values of Traffi cConditioningServices
and Traffi cIdentifi cationServices can be different for the DiffServService com-
pared to the ToSService (or any other QoSService, for that matter). For example,
the ToSService could use a single MeterService with two attribute values, whereas

ResourceFacingService
Atomic

ToSService

tosPrecedenceValue : String

802Service

802PriorityValue :String
802QValue : String

DiffServService
dscpValue :String
phbID : String
queuingRecommended :Integer
queuingUsed : Integer

ResourceFacingService
Composite

TrafficConditioning
Service

TrafficIdentification
Service

QoSService

NetworkForwarding
Service

ResourceFacing
Service

0..1

0..n
ConditionsQoSService

0..n

0..1

HasQoSSubServices

0..1

0..n
IdentifiesQoSService

0..n

0..n

NextForwardingService

0..1

1..n
ForwardingDefinedBy

0..1

0..n

RFSCompositeHasRFServices

CustomerFacingService 0..n 1..n

C11FServiceRequires
RFServices

CustomerFacingService
Composite

ServiceBundle

ServicePackage

0..n
0..n

0..n

ServicePackageUsesServiceBundles

FIGURE 8.8

DEN-ng representation of QoSServices.

the DiffServService might need two or more cascaded meters to provide multiple
metering levels, each with its own set of attribute values that are different than
those used for the ToSService.

Figure 8.8 shows a simplifi ed view of the DEN-ng top-level quality-of-service
model. Attributes and other detail have been suppressed to simplify the fi gure.
There are four important points to make about this fi gure. First, CustomerFacing-
Services aggregates ResourceFacingServices using the aggregation CFService-
RequiresRFServices. Second, ServicePackage aggregates ServiceBundle using the
ServicePackageUsesServiceBundles aggregation. Third, the (business) attributes for
the QoSService subclasses are shown to emphasize their different natures. However,
despite these differences, they can each defi ne their own set of NetworkForward-
ingServices using the ForwardingDefi nedBy aggregation. Finally, a ServiceBundle
aggregates QoSServices using the RFSCompositeHasRFServices aggregation.

In spite of these differences, however, the important point about this design
is that the ToSService and the DiffServService are related to each other, since they
come from the same defi nition (QoSService). This happens naturally through the
defi nition of the DEN-ng model.

The Identifi esQoSService aggregation is used to defi ne the set of Classifi er
Services and MarkerServices that are needed to identify a particular QoSService.
Note that this is an aggregation, because sophisticated traffi c classifi cation may
require more than one Classifi erService.

Consider, for example, Figure 8.9, which shows Gold traffi c being split into
three types of subtraffi c fl ows—fl ows that are completely, partially, and noncon-

Marker

RemarkingMarking

Meter
E

gr
es

s
in

te
rf

ac
e

Gold, non-
conforming

Gold, non-
conforming

Gold, partially
conforming

Gold, conforming
Gold

Gold

Dropper

ShaperMeter Queue

Classifier Silver

Bronze

Ingress
interface

FIGURE 8.9

Complex classifi cation and marking in the forwarding path.

8.3 QoS Policy Usage Examples 243

244 CHAPTER 8 Examples in Policy-Based Network Management

forming to the basic traffi c profi le defi ned for Gold service. (Remember, this is a
conceptual realization of the different functions provided inside the router). This
can be implemented in several ways. The simple method in the fi gure shows two
cascaded meters being used to separate the traffi c into three types of fl ows. We
could also have used two sets of classifi ers.

Figure 8.9 also shows the close bond between Classifi erServices and Marker
Services. Here, we have used two different MarkerServices, at different points in
the traffi c conditioning process, in order to re-mark packets after some preliminary
service (such as metering) has been performed. Note that both are conceptually
part of identifying traffi c and in so doing often defi ne which particular Traffi c
ConditioningService is required.

The ConditionsQoSService is used to specify the set of Traffi cConditioning
Services that are required by a particular QoSService. This enables different traffi c
conditioning services to be specifi ed for a particular QoSService. Alternatively, as
stated earlier, it is possible that a particular implementation might want the exact
same type of Traffi cConditioningServices for two different QoSServices. For
example, if the traffi c consists of voice and data, then regardless of whether we
are using a DiffServService or a ToSService, we still want to use a form of priority
queuing for voice and a form of class-based weighted fair queuing for data (please
note that these subclasses exist in the DEN-ng model, but are not shown to make
the diagram easier to read). In this particular example, what is important is to
specify an appropriate scheduling algorithm, which controls how these different
queues are combined and serviced by an output interface of the device. This is
present in the DEN-ng QoS model but is not shown for the sake of simplicity.

Note that the model shown in Figure 8.8 enables another form of differentia-
tion. In the last example, specifying advanced traffi c conditioning functions using
DSCPs is more fl exible than it is using a set of ToS markings. This is because there
are 64 DSCP values versus 8 ToS values, and also because the DiffServ specifi cation
defi nes dropping as part of the per-hop behavior. This can be easily accommo-
dated in the DEN-ng QoS model by simply relating dropping and queuing services
to a DSCP, versus only relating a queuing service to a ToSService. However, in
the DEN-ng model, this is not done, because ToS-based services will require
DroppingServices as well.

The DEN-ng model represents these different mechanisms (and others not
shown, such as a scheduler) as a set of building blocks that can be combined in
different ways, according to the capabilities of the network device. This generic
binding of different services is represented by the NextService association, which
enables any NetworkForwardingService to follow any other NetworkForward-
ingService. The DEN-ng model uses OCL to constrain which mechanisms can be
fi rst or last in the interface, as well as which can follow which. For example, it
would be technically incorrect to make a dropper the fi rst or last element (e.g.,
the fi rst or last mechanism after the input interface and before the output inter-
face, respectively) in the forwarding path. Similarly, following a dropper by a
dropper doesn’t make sense, whereas following a meter with another meter does

indeed make sense. Note that this level of specifi city does not exist in the IETF
and CIM models.

Three problems would surface if this and other dependencies were modeled
in detail. First, the model would become very complicated and therefore much
harder to understand. Second, the more explicit the model becomes at a granular
level, the more likely it is that our generic model will confl ict with how different
vendors are implementing these device-specifi c mechanisms. Third, if this behav-
ior isn’t specifi ed, then the degree of control that can be exerted over the device
is less.

If OCL isn’t available, the alternative is to either not specify this at all or to
build a set of different associations to model individual behavior. If we want the
model to be UML compliant, then we must remember that the different associa-
tions are not necessarily subclasses. This is because in UML there is a distinct
difference between associations and association classes. This is a problem with
the DMTF CIM model in general—it is not UML compliant and represents all
associations as association classes. The DEN-ng model can represent these
subtleties because it is derived from the UML meta-model and is therefore UML
compliant.

In summary, the DEN-ng approach is to model a generic capability in a simple,
extensible way, and then constrain it appropriately. Thus, the basic DEN-ng QoS
model uses the NextService association as shown in Figure 8.8 and offers two
ways to constrain it. The preferred way is to provide OCL expressions that restrict
how the NextService association is applied. The DEN-ng specifi cation also dis-
cusses how to subclass this model to explicitly model more detailed, and restric-
tive, combinations of NetworkForwardingServices. This latter may be appropriate
if the capabilities of specifi c vendor devices are being modeled.

8.3.3 Putting It All Together

We have had a brief glimpse of DiffServ- and ToS-based services, and now is the
time to see how policy is applied to implement them.

The basic approach is to integrate the policy and QoS models into one single
information model. This is done using the policy continuum. Throughout Strass-
ner’s Policy-Based Network Management, fi ve different levels in the policy con-
tinuum are defi ned—business, system, network, device, and instance levels. The
(generic) QoS model fi ts in at the system and network levels, and partially at the
device level. The policy model, of course, is applicable to all levels of the policy
continuum. The difference is because the policy model is itself a federated model,
consisting in reality of fi ve different models. Each of these fi ve models is focused
on a particular level of the policy continuum. In contrast, the QoS model is con-
cerned with modeling QoS in a generic fashion, and thus concentrates on a subset
of the policy continuum.

The business view is concerned with ensuring that the applicable business
rules and processes are used to direct how the PBNM system is to be managed.

8.3 QoS Policy Usage Examples 245

246 CHAPTER 8 Examples in Policy-Based Network Management

It does this in terms of business entities, such as customer, service, and product.
Thus, the business rule “John gets Gold service” can be expressed in terms of a
customer (John) who has bought a product that provides a service (Gold service)
for one or more applications he is using.

The system view expands on this view, detailing the composition of key
objects that are to be managed. For example, if the customer has contracted for
VPN-based connectivity, how will that connectivity be provided? At the business
level, it is a “blob,” but at the system level, the “blob” has been transformed into
a specifi c type of VPN (e.g., an MPLS VPN using BGP to advertise routes and OSPF
to connect the different provider routers together). Note the importance of the
use of a single information model. This enables the same concepts to be shared
among the business and system views, even though they are at two different levels
of abstraction.

The network view further specifi es how to implement the service by defi ning
the set of technologies that will be used to implement the service. However, this
is done in a device-independent way: it may defi ne the use of RSVP to reserve
bandwidth, but this defi nition is independent of how any particular vendor imple-
ments support for RSVP. Thus, the RSVP model will be limited to representing
only those features and functions that are present in the appropriate standards or
commonly implemented by multiple vendors.

The device view binds this approach to specifi c device features. This is the
level wherein different devices are chosen to support the VPN service, and so
differences in support and implementation of standards like RSVP become impor-
tant. This level also represents a melding of the standards-based DEN-ng model
and extensions to this model that represent how specifi c vendors implement
features defi ned in the standard. For example, DEN-ng defi nes a QueueService and
even defi nes the basic characteristics of several popular queuing algorithms (e.g.,
class-based weighted fair queuing). However, it only defi nes those features that
are described in the standards, or are otherwise commonly implemented by mul-
tiple vendors. Thus, in order to bind this specifi cation to the specifi c vendor
devices that are implementing class-based weighted fair queuing, it is necessary
to extend the DEN-ng model to represent the specifi c vendor implementation.

(As an aside, note that there are many different implementations of class-based
weighted fair queuing, even from the same vendor. This is because in order to
perform functions such as class-based weighted fair queuing at line rate, the algo-
rithm must be implemented using application-specifi c integrated circuits, or ASICs.
Different products use different ASICs, even if they are manufactured by the same
vendor. For example, this commonly occurs when one company acquires another
company. Hence, even a single vendor can have signifi cantly different algorithm
implementations for different products.)

Finally, we need to program the device. Each device has its own programming
model. If the device view can describe extensions to the DEN-ng framework that
represent the capabilities of the device that can be used, then the instance view
can in turn translate this model into the appropriate vendor-specifi c CLI com-

mands that are needed. The instance and device views work hand in hand. The
instance view models vendor- and device-specifi c commands, while the device
view translates these vendor-specifi c features into extensions of a common frame-
work. We can therefore represent vendor-specifi c features as part of a common
set of capabilities, which enables us to map different vendor-specifi c features to
each other. The effect of this is to be able to view the system in a standard way
while being able to program the system using different vendor-specifi c program-
ming models.

Thus, we see that networking, customer, and other objects come into and go
out of focus, according to what view is being used. However, policies are always
present, regardless of what view is being used. In order to see this, let’s continue
the development of our example.

In the example “John gets Gold service,” several underlying business policies
come into play, including:

■ Why is John entitled to get Gold service?
■ What does Gold service provide John?
■ How will the PBNM system ensure that John gets Gold service?
■ What will the PBNM system do if John doesn’t get Gold service?

Business rules are used to defi ne which users receive which types of services,
as well as what applications can be accessed within a particular service offering.
Different classes of service are often used to provide better than best-effort service
to either a specifi c set of users and/or a specifi c set of applications. This answers
the fi rst question.

To answer the second question, fi rst recall Figure 8.5, which illustrated the
use of classes of service to provide access to special applications. However, it also
can be used to designate differences between traffi c from the same application.
For example, consider two fl ows from the same application. One belongs to a
Gold service, and the other belongs to a Bronze service (perhaps because the two
users have different service contracts). Even though this traffi c is from the same
application, Gold service will ensure that the fi rst user gets “better” service than
the second user. Here, “better” can mean many things, depending on the particu-
lar application that is being used. For example, it may mean faster download times,
or provide an application with less latency and jitter.

The fourth question is also easy to answer. Clearly, a policy needs to be used
to defi ne the action(s) taken if the system violates its contractual obligation to
provide Gold service. If policy is not used, then each violation will need to be
addressed on an individual basis, which cannot scale. The use of policy is preferred
to ensure that a consistent and extensible response can be applied to a large
number of conditions. (The basic DEN-ng policy model is a triplet consisting of
event, condition, and action clauses. This strategy enables policies to be defi ned
that describe what actions to take when, for example, an SLA is violated.) The
structure of the event-condition-action policies facilitates associating the “normal”
policies with their counterparts that describe “violations.”

8.3 QoS Policy Usage Examples 247

248 CHAPTER 8 Examples in Policy-Based Network Management

The third question is related to how the system is being managed. Assume that
the PBNM system uses a model to represent the various components of the system
that provides Gold service. One way to ensure that business rules are used to
implement which users get which services is to translate the concepts present in
the business view into a set of objects that can be managed.

Specifi cally, if DEN-ng is used, then the management of objects will be done
by defi ning Finite State Machine (FSM). The FSM approach defi nes how to model
the behavior of a managed entity using a set of transitions that identify the current
and desired states that a managed entity should be in. The model is used to iden-
tify the set of statistics, attributes, and other characteristics of a managed object
that defi ne the current state, or characteristics, of that object. For example, we
may know that a software object may be in the “installed” state but not in the
“deployed” state because the measurement of certain statistics, via the reading of
particular object values, confi rms that this object is installed but not yet deployed.
The object values are, of course, defi ned in the information model.

This means that a set of models needs to be used. This is because, in general,
different states in the FSM correspond to different attribute values as well as
different sets of objects. In addition, different relationships and constraints
may be activated, based on the entity changing states. These changes require dif-
ferent instances of the same model to be used to track the transition between
states.

Therefore, a given model may be used by one or more of the fi ve different
views in the policy continuum, as shown in Figure 8.10. The DEN-ng approach
to PBNM uses an FSM in this fashion. As shown in Figure 8.10, each view can
make use of one or more models. Each model can represent one or more managed
objects. Thus, as the view of the managed object is changed in the policy con-
tinuum, the model for that managed object changes appropriately.

Model for State 1 …

B
us

in
es

s
vi

ew

S
ys

te
m

vi
ew

A
dm

in
is

tr
at

iv
e

vi
ew

D
ev

ic
e

vi
ew

In
st

an
ce

vi
ew

Model for State n

FIGURE 8.10

Use of individual models to represent FSM states in the policy continuum.

This is a key feature of the DEN-ng model and cannot be overemphasized. Put
another way, the DEN-ng view states that each of the views in the policy con-
tinuum is equally important. Consequently, each view has its own model. The
information model serves to unite each of these different views, and relate the
different objects that are present in one view to a potentially different set of
objects in another view. Note that this feature is unique to DEN-ng and the SID,
and is a by-product of the New Generation Operations Systems and Software
(NGOSS) effort.

Some managed objects are not present in a particular view because they are
not germane to that view. In fact, the appearance of a particular managed object
in a given view is indicative of the role played by a particular managed object in
that view. The disappearance of a managed object simply means that it is not
relevant or that it has been replaced by another object in that view. This is illus-
trated in Table 8.1.

The business view focuses on a high-level description of how to manage the
environment. At this level, the relationship between products, services, and cus-
tomers is usually of paramount importance. No details of how the service is going
to be implemented are provided, because they are not important at this level of
abstraction. Rather, the business view supplies a consistent view of common busi-
ness entities from which network services are derived. Policies are used to describe

Table 8.1 Sample Managed Objects Corresponding to Different Levels
of the Policy Continuum

Level in the Policy Continuum Sample Objects in This Level of the
Policy Continuum

BUSINESS VIEW (John gets Gold service) Customer (with John as an instance); Product;
Service; ServiceOffering; CustomerFacingService;
Applications; SLA

SYSTEM VIEW (defi ne multiple classes of
service)

Business objects plus ResourceFacingService;
DeviceRoles; DeviceCapabilities; QoSService

NETWORK VIEW (decide to use DiffServ and
ToS; use RSVP for bandwidth guarantee)

System objects plus defi ne all subclasses of
QoSService and NetworkForwardingService needed
to build a complete representation of the different
QoS services for each CoS

DEVICE VIEW (decide on vendor-specifi c
features; pick specifi c devices and software
releases)

Use models of each vendor-specifi c device
(derived as refi nement of above standard model);
use DeviceCapabilities to map between their
functional differences

INSTANCE VIEW (write device-specifi c CLI) Use above models to generate CLI for each state
in the FSM

8.3 QoS Policy Usage Examples 249

250 CHAPTER 8 Examples in Policy-Based Network Management

the fundamental business relationships (e.g., why does John get Gold service, and
what happens if this contract is violated) present at this level.

The system view defi nes the particular approach that will be used and the
supporting concepts and objects needed to implement that approach. In this
example, it defi nes the concept of different service offerings that each use differ-
ent classes of service. It defi nes the concept of a ResourceFacingService—a
service that is not purchased by the customer, but is nevertheless needed to
support the CustomerFacingService. It defi nes roles and device capabilities and
the notions of QoS. All of these objects add additional detail to the model. They
also offer new opportunities for policies to be used to control the objects intro-
duced at this level. It may be viewed as a link between pure business policies and
device confi gurations.

At the administrative level, the particular technologies (DiffServ and ToS mark-
ings in this example) that will be used are specifi ed. This in turn defi nes the
various objects necessary to manage the implementation of these technologies. It
helps defi ne the mapping between these different technologies, although it does
not defi ne their confi guration. Policies are used to ensure that the technologies
are each managed according to the higher-level business policies that they are
supporting.

At the device level, it defi nes the basic parameters of devices and helps choose
which OS release and line cards of which devices should be used through the
identifi cation of these basic parameters. However, since it does not model device-
specifi c features, it can not be used to specify the confi guration of the network
devices being used. Policies are used to manage the intricacies of the specifi c
devices that are being used to support the higher-level policies already defi ned.
The instance level models the CLI that confi gures each device in each state. Poli-
cies are used to manage how device confi guration is created and deployed, as well
as how different device confi guration changes are coordinated with each other.

We can therefore draw a very important conclusion:

Policies ensure that the semantics of different levels of the policy continuum
are applied to managed objects at appropriate levels of the policy continuum.

In other words, policies are not just a way to manage a device. Remember that
fundamentally, a policy represents goals and a method for achieving those goals.
Therefore, they can also be used to ensure that the semantics at different levels
of the policy continuum are properly matched up and supported.

More importantly, this approach enables us to defi ne a policy as a way to control
the transitioning of a current state to a new state. Here, “control” of a state transi-
tion means defi ning the semantics of the transition—who is in charge of the transi-
tion, what the transition is used for, when it occurs, where it occurs, and why it is
being done. This uses the DEN-ng concept of archetype—who, what, when,
where, and why—to control the state transition. The “what” part of this is typically
implemented by using the policy to select one or more processes to implement the
state transition. Thus, we have the following important conclusion:

Policies are used to control the state that a managed object is in at any given
time; the state itself is modeled using an information model such as DEN-ng.

This leads to one last conclusion:

The policy model is used to control which mechanisms to use, when to apply
them, and when to change device confi gurations. Integrating policy and device
management is done by integrating the policy model with appropriate models
of the device using a Finite State Machine.

For example, the QoS model can be thought of as specifying the changes
needed to a current device confi guration in order to provide a desired traffi c
conditioning; given this, the policy model can be thought of as controlling which
processes are used to implement the appropriate device confi guration changes.

8.3.4 Using Signaling

Signaling can be used with or without the provisioning approaches previously
described. In signaling, the idea is that important information is valid at a particu-
lar time, or because a particular set of conditions are active. This is fundamentally
different than provisioning approaches, which seek to embed rules within a
device so that the device knows how to respond when it detects different types
of traffi c. Nevertheless, there are similarities between signaling and provisioning
policies. This section will provide examples to clarify its use.

Requesting High QoS
Both provisioning and signaling can be used to request QoS. However, the way
in which each requests QoS is fundamentally different. Provisioning is limited by
the extent in which network traffi c capabilities can be understood. This under-
standing takes the form of building into each device’s confi guration commands
the ability to recognize and appropriately condition each type of traffi c fl ow that
is received. In other words, network traffi c patterns are anticipated, and devices
are programmed to react to a particular fl ow, match it against their installed rules,
and take action. Clearly, the problem is that if the current traffi c patterns do not
match what was pre-provisioned (or do not properly accommodate those pat-
terns), then business rules (at least!) will be violated, and the network will not
support the desired behavior.

A problem that is potentially far worse is when traffi c guarantees are desired.
If the network isn’t overengineered, then signifi cant variances in its load can
cause it to be oversubscribed. Oversubscription does not work well for pre-
provisioned networks trying to support traffi c guarantees because the guarantees
themselves get compromised. However, overengineering is not desirable, because
most of the time the resources are wasted. Signaling offers the ability to adjust
network resources on a granular basis. In addition, it can provide additional impor-
tant information on a per-fl ow basis to supplement the use of pre-provisioned
policies, as described in the next section.

8.3 QoS Policy Usage Examples 251

252 CHAPTER 8 Examples in Policy-Based Network Management

Supplying Useful Identifi cation Information
PBNM systems rely on the ability to identify sources and/or users of traffi c as part
of the classifi cation process. However, there are many diffi cult problems that are
often encountered. For example, applications may dynamically negotiate for port
numbers, making it impossible to predefi ne a classifi cation rule to detect the
application based on its port number. Worse, if IPsec is used, ports are encrypted
and therefore cannot be used at all in the classifi cation process. Finally, if there
are community machines (e.g., a “guest” machine, or one for general usage), how
can the PBNM system tell which user is using a particular machine?

Fortunately, most signaling applications have the capability of generating mes-
sages that can be used to describe the traffi c and/or the users or applications
sending or receiving the traffi c. For example, the RSVP protocol has the ability to
send additional information describing users and applications. This can be used
to help identify users and applications so that further processing may be applied.
In the case of IPsec traffi c, hosts provide an SPI that can be used as classifi cation
criteria instead of ports.

Thus, we see that signaling applications can be used to supply critical informa-
tion in addition to asking for specifi c requests such as bandwidth. The power of
signaling applications is that resources can be requested (as well as information
supplied) from particular devices along a path. This enables the network service
to be fi ne-tuned to suit the current needs.

Signaling Example
RSVP is arguably the most popular protocol used for requesting QoS resources
from the network. Policy can be used to control whether to admit or reject an
RSVP request based on the request’s attributes and the specifi ed policy. A signal-
ing policy can be used for several things. Three examples are:

1. To control the admission priority of resources
2. To provide preemption support
3. To provide mapping of services signaled by RSVP (or another suitable

protocol, such as COPS) to Differentiated Services in a core network

The fi rst two functions are used to control whether to accept or deny a request,
and what to do if there are many different fl ows competing for the same resource.
Admission priority controls what applications can have their resource requests
granted, while preemption priority defi nes a relative ranking among the set of
admitted fl ows that are competing for shared resources. The third enables differ-
ent technologies, used by different control approaches (signaling vs. provisioning)
to be mapped together.

An admission request decision can be based on comparing an RSVP TSpec
(specifi cation of the traffi c fl ow) or FlowSpec (the amount of QoS resources
requested) against a meter. Metering is the function of monitoring the arrival times
of packets of a traffi c stream, and determining the level of conformance of each
packet with respect to a preestablished traffi c profi le. This allows basing an admis-

sion decision both on the properties of the reservation request itself as well as on
the current temporal resource allocation.

For example, consider the following policy:

Allow resource assignment via RSVP for fl ows coming from the HR subnet up
to a total aggregated rate of 256 Kbps.

The meter is used to track the current state of resource allocated to the HR subnet,
and compares any new request for resources against a 256 Kbps traffi c profi le. In
this policy, individual resources will be admitted, so long as their cumulative rate
doesn’t exceed 256 Kbps.

Policy can be used to control and/or modify RSVP messages. Sample actions
include:

■ Replace/add DCLASS object in RSVP message
■ Replace/add preemption priority object in RSVP message
■ Trigger an error/warning RSVP message
■ Instruct the RSVP node to proxy RSVP message as if sent by the RSVP end

nodes

The fi rst two examples enable explicit control to be exerted over the behavior of
the nodes involved in the signaling decision. The third example—triggering warn-
ings and errors—enables end-nodes to be notifi ed that their resource reservation
is about to be adversely impacted (e.g., about to expire). The fi nal example is an
optimization. For example, if the device is part of the boundary of a DiffServ core
network, it may be more effi cient to simply map the RSVP request to a specifi c
PHB, rather than forwarding the RSVP Path message.

8.4 RESOURCES
ITU-T Recommendation M.3010, “Principles for a Telecommunications Management

Network,” May 1996.
OMG Unifi ed Modeling Language Specifi cation, Version 1.4, sections 3.41–3.49, Septem-

ber 2001.
RFC 1510, “Classless Inter-Domain Routing (CIDR): An Address Assignment and Aggrega-

tion Strategy.” Fuller, V., T. Li, J. Yu, and K. Varadhan, September 1993.
RFC 2205, “Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specifi cation.”

Braden, R. (ed.), L. Zhang, S. Berson, S. Herzog, and S. Jamin, September 1997.
RFC 2207, “RSVP Extensions for IPSEC Data Flow.” Berger, L., and T. O’Malley, September

1997.
RFC 2474, “Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers.” Nichols, K., S. Blake, F. Baker, and D. Black, December 1998.
RFC 2475, “An Architecture for Differentiated Services.” Blake, S., D. Black, M. Carlson,

E. Davies, Z. Wang, and W. Weiss, December 1998.
RFC 2597, “Assured Forwarding PHB Group.” Heinanen, J., F. Baker, W. Weiss, and

J. Wroclawski, June 1999.

8.4 Resources 253

254 CHAPTER 8 Examples in Policy-Based Network Management

RFC 2752, “Identity Representation for RSVP.” Yadav, S., R. Yavatkar, R. Pabbati, P. Ford,
T. Moore, and S. Herzog, January 2000.

RFC 2872, “Application and Sub-Application Identity Policy Element for Use with RSVP.”
Bernet, Y., and R. Pabbati, June 2000.

RFC 2998, “A Framework for Integrated Services Operation over DiffServ Networks.”
Bernet, Y., P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie,
J. Wroclawski, and E. Felstaine, November 2000.

RFC 3175, “Aggregation of RSVP for IPv4 and IPv6 Reservations.” Baker, F., C. Iturralde,
F. Le Faucheur, and B. Davie, September 2001.

RFC 3181, “Signaled Preemption Priority Policy Element.” Herzog, S., October 2001.
RFC 3246, “An Expedited Forwarding PHB (Per-Hop Behavior).” Davie, B., A. Charny,

J.C.R. Bennett, K. Benson, J. Y. Le Boudec, W Courtney, S. Davari, V. Firoiu, and
D. Stiliadis, March 2002.

RFC 3247, “Supplemental Information for the New Defi nition of the EF PHB (Expedited
Forwarding Per-Hop Behavior).” Charny, A., J.C.R. Bennett, K. Benson, J. Y. Le Boudec,
A. Chiu, W. Courtney, S. Davari, V. Firoiu, C. Kalmanek, and K. K. Ramakrishnan, March
2002.

RFC 4364, “BGP/MPLS VPNs.” Rosen, E., et al., February 2006.
Strassner, J. (ed.), Mining Information from the DMTF CIM into the TMF SID. TM Forum

GB922, July 2002.

The home page of the Differentiated Services working group of the IETF is www.ietf.org/
html.charters/OLD/diffserv-charter.html. The home page of the Integrated Services
working group of the IETF is www.ietf.org/proceedings/96dec/charters/intserv-charter.
html. The home page of the ISSLL working group of the IETF is www.ietf.org/proceedings/
96dec/charters/issll-charter.html.

The TMF Interface Implementation Specifi cation of the Fine Grain NGOSS Catalyst
Project is specifi ed in the document TMF839v1.5, and on the members-only website:
www.tmforum.org/sdata/documents/TMFC1379%20TMFC1000%20TMF839v1[1].5.pdf.

CHAPTER

9IPv6 Quality of Service

Providing quality of service (QoS) in IP networks has long been an important but
elusive goal for IETF working groups. The original IPv4 header specifi cation
included a type of service (ToS) fi eld that was rarely if ever implemented: It would
have required implementers to make judgments about which of their packets were
to be given worse-than-normal treatment. This simplistic approach has been
replaced over the years with the Differentiated Services (DiffServ) approach, and
the ToS fi eld has been renamed the Differentiated Services (DS) fi eld in RFC 2474,
“Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers.”

DiffServ allows the use of the DS fi eld for data that indicates how a packet
should be treated by routers. Rather than assigning a priority, the DS fi eld is used
to assign membership in a group that has a set of policies associated with it. These
DiffServ behavior aggregates (groups of packets that are to be treated in the same
way by a router at network boundary) work the same way in both IPv4 and
IPv6.

In an effort to remedy the faults of the ToS approach used in IPv4, an early
goal of the IPv6 effort was to replace ToS with the concept of fl ows, which were
to behave somewhat like behavior aggregates. The Flow Label fi eld in the IPv6
header was fi rst discussed in the early 1990s with RFC 1809, “Using the Flow
Label Field in IPv6.” This specifi cation was published half a year before the origi-
nal IPv6 specifi cations in 1995. At that time, the fi eld raised more questions than
it answered, including how to determine which packets should be assigned a fl ow,
how routers should handle fl ows that they didn’t have fl ow routing information
for, and even the length of the fi eld itself (before 1995 it was 28 bits long, by 1995
it had shrunk to 24 bits, and by 1998 it had reduced to its currently specifi ed size
of 20 bits).

By 1998 and the revised IPv6 specifi cation in RFC 2460, the Flow Label fi eld
was still considered experimental as the questions regarding its use had yet to be
resolved through extensive implementation and experimentation. A new specifi -
cation that explains appropriate use of the Flow Label in IPv6 was published in
2004 as a proposed standard in RFC 3697.

256 CHAPTER 9 IPv6 Quality of Service

Up to the late 1990s, applications that depended on underlying network pro-
tocols relied on Transmission Control Protocol (TCP) to respond to network
congestion. However, in January 1999, the experimental RFC 2481, “A Proposal
to Add Explicit Congestion Notifi cation (ECN) to IP,” was published detailing an
approach to congestion management that could include the network layer proto-
col, IP. Updated to proposed standard in September 2001, RFC 3168, “The Addi-
tion of Explicit Congestion Notifi cation (ECN) to IP,” updates some of the
mechanisms discussed in this chapter.

In this chapter, taken from Chapter 15 of IPv6: Theory, Protocol, and Practice
by Pete Loshin, we cover the IPv6 approach to QoS, including the use of the Diff-
Serv fi eld in IPv6, followed by discussion of IPv6 Flow Labels and the use of
Explicit Congestion Notifi cation with IPv6.

9.1 QOS BASICS
The IP model is a democratic one: All packets are (in theory) treated equally,
getting a “best-effort” delivery service from the systems in the Internet. This has
several implications for application performance and in some cases limits applica-
tions in a number of ways.

■ Packets may be delivered in order or out of order
■ Packets may be delivered smoothly or in spurts
■ Packets may or may not be delivered

In the case of real-time applications, this can require that receiving hosts buffer
data as it comes in, adding delay on top of whatever network delay exists. Instead
of passing incoming network data directly to the application, the incoming data
is stored temporarily as the host waits for all data, including out-of-order data and
data that may be temporarily delayed, to arrive.

The unpredictability of the IP datagram service is due to the way routers handle
traffi c: Packets come in from various sources, arriving at the router on different
interfaces with different networks, and the router processes those packets in the
order they are received.

Despite the fi rst pass at the problem through assignment of type of service
values, IP as originally defi ned lacks mechanisms for differentiating between
packets that have quality of service requirements and those that don’t.

■ Transient congestion, such as caused by a surge of packets from one source,
can cause unpredictable results. A packet surge may delay other traffi c passing
through a router. Or it might not.

■ All datagrams are created equal, which means that there is no way to give one
datagram priority over another.

■ Individual routers can be confi gured to favor packets being sent to or from some
particular network interface, but once the packet is routed, it will be treated

9.1 QoS Basics 257

just like any other packet by other routers. IP lacks a mechanism for fl agging
packets at their source and indicating that they should be treated differently in
some way from source to destination.

■ Even if packets can be fl agged for special treatment, IP lacks the mechanisms
for tracking packets and monitoring performance and resource use.

QoS protocols are intended to differentiate between packets on an end-to-end
basis and adding the mechanisms necessary to allocate resources throughout a
path for packets that require them.

9.1.1 Approaches to Quality

The two basic approaches to adding QoS to the Internet are the Integrated Ser-
vices (IntServ) and DiffServ models. Introduced and defi ned in 1994 in RFC 1633,
“Integrated Services in the Internet Architecture: an Overview,” the IntServ effort
grew out of implementation experience with multicast of IETF meetings. Accord-
ing to RFC 1633 authors, real-time applications work poorly across the global
Internet “because of variable queuing delays and congestion losses.”

In addition to QoS for real-time applications, the IntServ model would allow
network service providers control over how bandwidth is shared. Allowing all the
available bandwidth to be allocated among different classes of traffi c even when
the network is under a heavy load means that applications can count on having
a minimum amount of bandwidth to work with even when the network is con-
gested—instead of being summarily cut off when packets are dropped silently and
the hosts on the other end drop the connections.

The ability to control which traffi c categories are allowed how much of the
available bandwidth is called controlled link sharing. The IntServ approach
defi nes a service model in which best-effort and real-time services (services over
which there is some control of end-to-end packet delay) coexist and are facilitated
through controlled link sharing.

Whether or not overly infl uenced by their experiences with multicast, the
IntServ working group has agreed that any QoS solution would have to support
multicast: Real-time applications such as videoconferencing require the ability to
handle multiple recipients of the same packets.

9.1.2 Reserving Resources

QoS generally requires network resources—specifi cally, network bandwidth and
reliable routes—to ensure a uniform quality of service. The process of provision-
ing circuits, as in asynchronous transfer mode (ATM) and other telecommunica-
tion-oriented network protocols, is necessary before any communication can
occur between a source and a destination. The Resource ReSerVation Protocol
(RSVP), defi ned in RFC 2205, “Resource ReSerVation Protocol (RSVP)—Version
1 Functional Specifi cation,” defi nes a mechanism by which hosts can, in effect,
provision a connection across the connectionless IP Internet. RSVP, a required

258 CHAPTER 9 IPv6 Quality of Service

part of the IntServ model, also requires IntServ-capable routers in the network
over which services are to be provided.

This reservation infrastructure can be dispensed with when services are pro-
vided to more general categories of packet, rather than the very specifi c IntServ
fl ows. DiffServ does not specifi cally require any mechanism on hosts, but vests
the responsibility for managing bandwidth with the network itself. DiffServ packets
are marked for special treatment by their applications, but the specifi c way in
which those packets are treated is left to routers.

9.1.3 IntServ in a Nutshell

Central to IntServ is the concept of fl ow: If packets share source and destination
IP addresses as well as source and destination ports, then one can assume those
packets are all part of an application’s stream of data fl owing between source and
destination, with all that entails.

The IntServ approach requires that routers keep track of all these fl ows, exam-
ining each packet to determine whether it belongs in a fl ow and then computing
whether there is enough available bandwidth to accept the packet. In other
words, IntServ requires the following functions:

Admission control: Can the router, or the network at large, provide service to the
fl ow? Can it provide service to the individual packets that comprise the fl ow?
What about other, non-QoS packets?

Packet classifi cation: Every packet admitted must be classifi ed. What fl ow does
it belong to? What level of QoS does it get? The three options are to treat the
packet “normally” giving it best-effort; controlled load for allocating some
portion of an uncongested network; and guaranteed service for real-time
delivery with delays minimized to within preset levels of service.

Packet scheduling: Once a packet is classifi ed, how is it scheduled? Should some
packets jump ahead of others? How are packets within a queue treated when
the queue exceeds its limits?

Combined with RSVP, IntServ tends to be cumbersome to implement and it
certainly is not scalable to the global Internet. Nevertheless, it is quite good at
managing fl ows of data within smaller networks. Ultimately, however, IntServ has
proven inadequate to the task of providing a single solution to the QoS problem:
The IntServ mechanisms are not seen as being scalable to the global Internet, and
they can be diffi cult to implement.

The next pass at the problem became known as DiffServ to differentiate it
from IntServ. Cursory examination of the RFCs may not shed much light on the
differences between the two, but there are considerable differences. Where
IntServ is focused on ways of sharing available bandwidth among unique fl ows
(series of packets with the same source and destination IP and port addresses),

9.1 QoS Basics 259

DiffServ approached the problem by suggesting that a less granular classifi cation
of packets could provide the desired result.

9.1.4 DiffServ in a Nutshell

There is no way that Internet backbone routers can contend with the demands
of tracking individual fl ows in an IntServ-enabled global Internet, but network
customers and service providers both increasingly demand some form of QoS that
can scale well in the global Internet. Differentiated Services answers the call by
streamlining the process. DiffServ over IP is documented in RFC 2474, “Defi nition
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.”

Rather than building an elaborate infrastructure for emulating a circuit-based
network on top of IP, DiffServ allows communicating endpoints to classify their
packets into different treatment categories. These categories are identifi ed with a
per-hop behavior, or PHB. The PHB is the action that a DiffServ routing node can
be observed to take when it receives a packet. When a PHB is defi ned, DiffServ
routers are supposed to treat packets marked with that value in a certain way.

For example, the Expedited Forwarding (EF) PHB (specifi ed in RFC 2598, “An
Expedited Forwarding PHB”) is billed as “premium service” and indicates that the
packets in that behavior aggregate (BA) should all be processed as they are
received, rather than be queued or dropped. Unlike IntServ with its traffi c fl ows,
the DiffServ model calls for the use of BAs at each DiffServ router: These are
associated with a PHB that indicates how the router will treat the packet.

Aggregates or aggregated fl ows may also be referred to as classes of packets;
routers are confi gured to respond to these different classes in different (appropri-
ate) ways. Routers may also be confi gured to break up these classes into subag-
gregations to be treated slightly differently. For example, a router might be
confi gured to forward premium-service packets from preferred customers over
links that are more reliable than premium-service packets coming from customers
subscribing to a “budget-premium” service.

DiffServ brings with it the ability to create network service policies specifi c
to a single router, some part of a network, or an entire DiffServ routing domain.
As long as their policies don’t affect the ability to provide guaranteed QoS,
network providers can fi ne-tune their DiffServ routers to differentiate how they
treat packets.

The DiffServ model distributes the task of allocating resources to the
routers within a DiffServ domain, providing greater fl exibility as well as more
effi cient routing. A backbone router could process DiffServ traffi c far more easily
than it can process IntServ traffi c: There is no need to negotiate RSVP reservations
with all intermediary routers—and no overhead necessarily associated with failure
to maintain an RSVP session with one particular router. With DiffServ, the PHB
mandates how the packet is treated, and different routers can provide the same
service without having to maintain state for a particular connection, as with
IntServ.

260 CHAPTER 9 IPv6 Quality of Service

9.1.5 DiffServ versus IntServ

At fi rst glance, DiffServ and IntServ may seem to be competing with each other.
However, the two models are complementary, with IntServ working best within
smaller domains, whereas DiffServ provides somewhat less precise handling of
packets across much larger networks; the two can even be used together, as
documented in RFC 2998, “A Framework for Integrated Services Operation over
DiffServ Networks.”

In this informational document, the authors see IntServ, RSVP, and DiffServ as
“complementary technologies,” each of which is intended to achieve end-to-end
quality of service. “Together,” they write, “these mechanisms can facilitate
deployment of applications, such as IP-telephony, video-on-demand, and various
nonmultimedia mission-critical applications. IntServ enables hosts to request
per-fl ow, quantifi able resources, along end-to-end data paths and to obtain feed-
back regarding admissibility of these requests. DiffServ enables scalability across
large networks.”

9.2 DIFFERENTIATED SERVICES AND IPV6
The behavior defi ned for the Differentiated Services fi eld in both IPv4 and IPv6 is
the same, so an understanding of DiffServ for IPv4 should carry over to DiffServ
for IPv6. In both protocols, the Differentiated Services fi eld is defi ned for the six
bits following the protocol version number in the IP header. Those bits were
originally specifi ed in IPv4 as the type of service (ToS) fi eld in RFC 791, and
originally specifi ed as the Traffi c Class fi eld for IPv6 in RFC 2460.

RFC 2474, “Defi nition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers,” spells out how DiffServ works for both protocols. The follow-
ing are some other RFCs of interest for DiffServ.

■ RFC 2963, “A Rate Adaptive Shaper for Differentiated Services”
■ RFC 2998, “A Framework for Integrated Services Operation over DiffServ

Networks”
■ RFC 3086, “Defi nition of Differentiated Services Per Domain Behaviors

and Rules for their Specifi cation”
■ RFC 3260, “New Terminology and Clarifi cations for DiffServ”
■ RFC 3290, “An Informal Management Model for DiffServ Routers”
■ RFC 2430, “A Provider Architecture for Differentiated Services and Traffi c

Engineering (PASTE)”
■ RFC 2474, “Defi nition of the Differentiated Services Field (DS Field) in

the IPv4 and IPv6 Headers”
■ RFC 2475, “An Architecture for Differentiated Service”
■ RFC 2638, “A Two-bit Differentiated Services Architecture for the

Internet”
■ RFC 2983, “Differentiated Services and Tunnels”

Closely related to the issue of differentiated services is the use of fl ows in IPv6,
as will be seen in the next section.

9.3 IPV6 FLOWS
The Flow Label fi eld in the IPv6 header was originally designed as a 28-bit fi eld
(see notes in RFC 1809), reduced to 24-bits by 1995, and ultimately to 20 bits, as
defi ned in RFC 2460. RFC 2460 states the following.

The 20-bit Flow Label fi eld in the IPv6 header may be used by a source to label
sequences of packets for which it requests special handling by the IPv6 routers,
such as non-default quality of service or “real-time” service. . . . Hosts or routers
that do not support the functions of the Flow Label fi eld are required to set the
fi eld to zero when originating a packet, pass the fi eld on unchanged when
forwarding a packet, and ignore the fi eld when receiving a packet.

In an appendix to RFC 2460, a fl ow is defi ned as “a sequence of packets sent
from a particular source to a particular (unicast or multicast) destination for which
the source desires special handling by the intervening routers.” That “special
handling” might be specifi ed by a resource reservation protocol or by some data
within the fl ow packet headers such as a hop-by-hop option. As to the specifi cs
of the implementation of fl ows, however, RFC 2460 is silent other than to specify
the characteristics of the value of the Flow Header fi eld.

■ Packets that don’t belong to fl ows must have the Flow Header set to zero.

■ Each fl ow is assigned in a random or pseudo-random manner and (in combina-
tion with source address) is uniquely identifi able.

■ The Flow Label is assigned by the source of the fl ow.

■ Packets that belong to the same fl ow must all originate from the same source
address, must be addressed to the same destination, and must be sent with the
same value in the Flow Label Header fi eld. Flows are traditionally also identifi ed
by the transport layer protocol in use, as with TCP.

As of 1998, the Flow Label was considered an experimental portion of the IPv6
specifi cation; fi ve years after, the IETF had not yet published the IPv6 Flow Label
specifi cation as a proposed standard RFC. Publication of RFC 3697 titled, “IPv6
Flow Label Specifi cation,” occurred in March 2004.

The defi nition of a fl ow, meanwhile, has changed.

A fl ow could consist of all packets in a specifi c transport connection or a
media stream. However, a fl ow is not necessarily 1 : 1 mapped to a transport
connection.

One change from RFC 2460 is that fl ows can be specifi ed without reference to
the destination address or transport layer protocol type. These values may not

9.3 IPv6 Flows 261

262 CHAPTER 9 IPv6 Quality of Service

always be available in the IPv6 header, particularly if the packet is fragmented or
encrypted.

The fl ow label may not be changed from the value assigned by the sender,
unlike the DiffServ value, which may be modifi ed to refl ect the appropriate behav-
ior aggregate for a particular router or network as it traverses the Internet. Routers
that don’t offer fl ow-related handling are required to ignore the Flow Label and
treat the packet as any other.

IPv6 nodes that use fl ow labeling should assign separate fl ows for different and
unrelated transport layer connections as well as for different and unrelated appli-
cation layer data streams. Thus, a multi-user host with multiple Telnet sessions
from different users to the same remote host should assign a separate fl ow to each
of those sessions.

9.4 EXPLICIT CONGESTION NOTIFICATION IN IPV6
Quality of service specifi cations are largely intended to address the problem of
how to guarantee a particular level of service for a particular set of packets. For
example, an ISP may want to offer its customers a level of service that uses only
their premium, high-performance networks. To achieve that level of service, the
ISP would need to be able to differentiate packets coming from subscribers to that
service and assign those packets to a behavior aggregate for which the routing
policy is to always route on the most expensive link.

Network congestion can occur on any link as a result of high-demand condi-
tions or router malfunctions, and in most cases nodes sending packets that encoun-
ter congestion are only able to detect the condition as a result of some
timer—usually in the transport or application layer protocols—timing out. Explicit
Congestion Notifi cation was fi rst proposed as an experiment for the transport
layer in RFC 2481, “A Proposal to Add Explicit Congestion Notifi cation (ECN) to
IP,” in 1999, and quickly moved to the standards track in 2001 when it was pub-
lished as RFC 3168, “The Addition of Explicit Congestion Notifi cation (ECN) to
IP.”

Using ECN and a Congestion Manager implementation, nodes are able to nego-
tiate the use of ECN. The ECN fi eld in the IPv6 (and IPv4 header, as well), consists
of the two bits after the Differentiated Services fi eld. Unlike in earlier proposals,
the two bits are used together as codepoints rather than as separate fl ag bits. The
four different values possible for these two bits—00, 01, 10, and 11—indicate
whether the end-nodes (sender and destination) are using an ECN-Capable Trans-
port as well as whether there is congestion at the sender (though not so much
congestion that would cause the node to have dropped the packet). These are
the four codepoints and their uses:

■ 00—When a node is not using ECN, it puts zeroes in the ECN fi eld.
■ 01/10—These two codepoints are treated in the same way and are also

called ECT(0) [for the value 01] and ECT(1) [for the value 10]. These

values are set by the sender to indicate that ECN is supported at both
ends of the transmission.

■ 11—Routers that are just beginning to experience congestion, or that
are experiencing mild congestion, can signal their state by setting the
codepoint to 11 in outgoing packets.

The following current RFCs provide more information about Explicit Conges-
tion Notifi cation and congestion control in general.

■ RFC 2481, “A Proposal to Add Explicit Congestion Notifi cation (ECN) to
IP”

■ RFC 2914, “Congestion Control Principles”
■ RFC 3124, “The Congestion Manager”
■ RFC 3168, “The Addition of Explicit Congestion Notifi cation (ECN) to IP”
■ RFC 2884, “Performance Evaluation of Explicit Congestion Notifi cation

(ECN) in IP Networks”

9.5 SUMMARY
Quality of service, IPv6 Flows, and Explicit Congestion Notifi cation are all related
to the quest for better service over an Internet in which, by defi nition, all packets
are supposed to be treated equally. As we’ve seen in this chapter, quality of service
is designed to offer consumers of Internet connectivity options for guaranteed
levels of service, while IPv6 fl ows and Explicit Congestion Notifi cation are designed
to provide improved routing and connectivity for any nodes on the Internet.

Ultimately, the goal of providing improved performance becomes more impor-
tant as the network grows larger. An important part of network management that
can grow unwieldy in larger networks is the task of confi guring nodes.

9.5 Summary 263

This page intentionally left blank

CHAPTER

10QoS in IP Networks
Using SIP

In this chapter, based on Chapter 21 of Internet Multimedia Communications
Using SIP by Rogelio Martinez, we will introduce the quality-of-service (QoS) topic
as applicable to IP communication scenarios. QoS is a complex topic, and we will
describe in this chapter just some basic ideas that allow the reader to understand
the mechanisms and protocols that exist to provide quality of service.

We will start by looking at some of the available architectures at the IP trans-
port level to provide QoS, such as integrated services and differentiated services.
Then we will introduce the framework for policy control, which enables the
introduction of more intelligence in the admission control decisions for QoS. Then
we will see how these ideas are applied in a SIP-based communication scenario
and what the necessary SIP extensions are in order to integrate the SIP/SDP session
establishment process with the underlying IP transport-level processes for quality
of service.

10.1 QUALITY OF SERVICE IN IP NETWORKS
Many communication scenarios involve the exchange of real-time traffi c such as
voice or video. In real-time traffi c scenarios, it is critical that packets arrive at the
destination no later than a certain time after they were transmitted by the source.
If they arrive later, playback cannot happen and they have to be discarded. If the
amount of packets arriving late increases, the quality of service perceived by the
end user suffers, and, eventually, the received media (speech, video) may become
unintelligible.

In a congested IP network, routers cannot cope with incoming packets as they
come, so the routers are forced to queue the packets. This causes packet delay
to increase, which, in turn, may cause real-time traffi c packets to be discarded at
the receiver. If congestion is severe, then the queue length limits are reached, and
routers start to lose packets. In any case, a network congestion situation causes
the end users to perceive a degraded quality of service.

266 CHAPTER 10 QoS in IP Networks Using SIP

In an unloaded IP network, this effect is not produced because packets are
forwarded as soon as they are received, and therefore queues do not develop.
Hence, an approach to provide quality of service for real-time communications
has traditionally been, and still is, to overdimension IP networks. Obviously, one
may argue that this is not the most cost-effective solution.

Our experience with the Internet of the twenty-fi rst century tells us that Inter-
net backbones are reasonably well dimensioned so as not to cause a problem for,
for instance, voice transmission. Millions of people today around the world make
telephone calls over the Internet with reasonably good quality. However, the
explosion of high-bandwidth multimedia services, such as video, might pose a
challenge in the future.

Even if there seems to be extra bandwidth in Internet backbones, there is still
a point in the network where bandwidth is limited: the access. Although xDSL
technology has helped to overcome this issue in recent years, the issue still
remains for access networks that are inherently limited in bandwidth, such as
wireless networks.

There are, and there will be, cases where overdimensioning the network is not
an option, and therefore it is critical to implement some kind of mechanism that
helps preserve a certain quality of service for particular traffi c fl ows and/or for
particular users. If we assume that resources are limited, and that there is no
endless extra capacity in the networks, assuring quality of service necessarily
implies some way of prioritizing some packets over others. This calls for a differ-
ent model from the traditionally egalitarian best-effort Internet model.

In general terms, prioritization could be implemented for those types of traffi c
(such as the real-time traffi c) that have very stringent quality of service require-
ments. In that way, a router might prioritize a packet belonging to a real-time fl ow
(e.g., UDP packet carrying voice) over a packet belonging to non-real-time fl ow
(e.g., TCP packet carrying email). Another key aspect to consider here is charging.
A network provider might want to charge for the provision of quality of service.

Even if the techniques to offer quality of service and policy control in an Inter-
net environment have been defi ned for a long time, their implementation is
marginal, as of today, in the public network. However, the concepts of quality of
service and policy control are again becoming hot topics with the advent of tele-
communication standards such as those produced by the 3rd Generation Partner-
ship Project (3GPP) and ETSI TISPAN. These standards, conceived for telecom
operators, defi ne the use of a controlled SIP-based private infrastructure in order
to offer multimedia services (the so-called IP Multimedia Subsystem, or IMS).
These standards build on the traditional Internet ideas for quality of service, taking
them a step beyond, and allowing telecom operators to offer quality of service to
their subscribers while at the same time providing the tools to enable charging
for the use of QoS.

The fact that, in some cases—for example, in wireless networks—bandwidth
is limited, calls for such QoS mechanisms. Moreover, having the control of the
access network—and thus, the key to the provision of quality of service—is a tool

10.2 Mechanisms for QoS 267

in the telecom operators’ hands in order to compete with Internet multimedia
service providers that cannot offer such a quality of service. All in all, it is therefore
expected that the techniques for IP quality of service will gain relevance in the
short term associated with the deployment of telecom operators’ controlled
multimedia networks.

Having said this, we will review in this chapter some of the traditional ideas
around QoS in IP networks. These ideas will form the foundation that will allow
the interested reader to understand the evolved QoS architectures that are now
being defi ned—and, in some cases, deployed—in the remit of controlled 3GPP
and ETSI TISPAN multimedia networks.

The approaches to QoS in IP networks are independent of the application
layer—they all occur at IP level. This is a key design principle of the Internet, and
has the tremendous advantage of allowing the two domains, application layer and
transport layer, to evolve separately. Nevertheless, there is a need, at some point,
to integrate the SIP application layer with the media transport layer, as we will
see during this chapter.

The fi rst sections in this chapter deal with the application-independent Internet
approaches for providing quality of service and policy control. The last sections in
this chapter will cover how to integrate the SIP layer (i.e., the control plane) with
the previous approaches in an IETF-like multimedia network.

10.2 MECHANISMS FOR QOS
The IETF has developed extensions to the IP architecture and the best-effort
service model in order to deliver quality of service. More specifi cally, two addi-
tional models have been defi ned:

■ Integrated Services (IntServ)
■ Differentiated Services (DiffServ)

10.2.1 Integrated Services

The Integrated Services approach is based on having the IP routers give preferen-
tial treatment to some IP fl ows over others. An IP fl ow is defi ned as a distinguish-
able stream of related datagrams that result from a single user activity and require
the same QoS as described in RFC 1633. In practice, an IP fl ow is distinguished
by the combination of protocol, source and destination IP address, and source
and destination port.

To implement a preferential treatment for some fl ows, IP routers would need
to incorporate a couple of new functions:

The classifi er: That is, a component that inspects the incoming packet and marks
it as entitled to receive a specifi c QoS treatment by the router. The classifi er
passes the packet to the scheduler.

268 CHAPTER 10 QoS in IP Networks Using SIP

The scheduler: This component looks at the mark set by the classifi er, and manages
the forwarding of the packets in the different queues. The scheduler might,
for instance, based on the mark, decide that a packet pertaining to a particular
fl ow is forwarded before another packet pertaining to a different fl ow, even if
the latter packet arrived earlier to the queue than the former.

The IntServ approach defi nes two different services:

■ The controlled load service defi ned in RFC 2211
■ The guaranteed service described in RFC 2212

Both of them represent an enhanced quality of service as compared with the
basic best-effort service provided by the Internet. The controlled load service
provides users with a quality of service that closely resembles the QoS that they
would receive from an unloaded network. Even if the network is congested with
best-effort traffi c, the controlled load service would give preference to packets
subject to QoS, hence emulating the behavior of an unloaded network. The con-
trolled load service does not offer a guarantee that the delay will be bounded for
a particular fl ow; it just gives preferential treatment to some packets versus
others.

The guaranteed service, on the other hand, provides a specifi c fl ow with the
assurance of a bounded delay.

To implement integrated services, we need some additional pieces that we did
not mention so far. First, clients need to have a mechanism to ask for resources
to be reserved in routers so that they can assure a specifi c quality of service.
Second, routers need to have the capability of accepting or rejecting new reserva-
tion requests based on their existing available resources. The fi rst functionality is
called resource reservation; the second is referred to as admission control.

Figure 10.1 represents the different functionalities in an IP router extended
with IntServ functionality.

Resource reservation may be implemented with Resource ReSerVation Proto-
col (RSVP), defi ned in RFC 2205. Clients can, via the RSVP protocol, signal the
routers the identifi cation of the fl ow (protocol, source and destination IP address,
and source and destination UDP/TCP port) and the required quality of service for
it. Routers check if they have available resources to honor the request. If they
have, then the packet classifi er and scheduler are confi gured accordingly so as to
give a specifi c treatment to the packets in the fl ow as soon as they arrive.

RSVP reservations are unidirectional; in order to reserve resources in both
directions, two reservation processes need to be performed.

The way RSVP works is quite simple. To reserve resources in one direction, a
two-step process is followed. First the transmitter sends an RSVP Path message
that is destined to the receiver (i.e., destination IP address is the receiver’s
address). As this message traverses the routers in the path to the recipient, it will
store in each RSVP-enabled router the address of the previous RSVP router
(conveyed in the RSVP PHOP parameter). When the Path message reaches the

10.2 Mechanisms for QoS 269

receiver, the receiver will create an Resv message that is used to actually reserve
the necessary resources in the routers. The Resv message will backward traverse
all the routers previously traversed by the Path message.

Routing of the Resv message is performed in a hop-by-hop way using the state
previously stored by the Path message. In that way, it is assured that the resource
reservation is done in the very routers that will handle the packets from transmit-
ter to receiver, which will follow the same route taken by the Path message. This
is shown in Figure 10.2.

10.2.2 Differentiated Services

The Differentiated Services approach is also based on giving preferential treatment
to some packets over others in the routers. However, instead of treating different
fl ows separately, the DiffServ approach relies on border routers marking the incom-
ing packets with a tag called Differentiated Services Code Point (DSCP). Then the
internal routers in the network just need to look at the DSCP in the packet and,
based on it, apply a specifi c per-hop behavior (PHB) that is confi gured in the router.
In other words, DiffServ is based on applying specifi c treatment to aggregations of
packets, rather than to specifi c fl ows, as in Integrated Services. This fact allows
Differentiated Services to scale much better than Integrated Services.

Figure 10.3 shows the DiffServ approach. Differentiated Services are defi ned
in RFC 2474, RFC 2475, RFC 2597, and RFC 3260.

10.2.3 Integrated Services over DiffServ Networks

The fact that the IntServ approach requires routers to classify different fl ows (and
hence to look to several protocol fi elds in order to identify the fl ow) impacts its

Classifier

Packet scheduler

Admission

control

Input traffic Output traffic

RSVP

agent
RSVP requests

FIGURE 10.1

IP router, including IntServ functionality.

270 CHAPTER 10 QoS in IP Networks Using SIP

Sender Router Router Router Receiver

Path
Dest IP= IP5

RSVP PHOP=IP1

IP1 IP2 IP3 IP4 IP5

Path
Dest IP= IP5

RSVP PHOP=IP2

Path
Dest IP= IP5

RSVP PHOP=IP3

Path
Dest IP= IP5

RSVP PHOP=IP4

Resv
Dest IP=IP4

Resv
Dest IP=IP3

Resv
Dest IP=IP2

Resv
Dest IP=IP1

Stores IP1

Stores IP2

Stores IP3

Border

Router

Border

Router

DiffServ

router

DiffServ

router

IP packet

DSCP

IP packet
DSCP

IP packet
DSCP

IP packet IP packet

maps DSCP
to PHB

maps DSCP
to PHB

FIGURE 10.2

Basic message exchange in RSVP.

FIGURE 10.3

DiffServ network.

scalability. Thus, it is not considered a good approach for the core of the network,
though it might be a good fi t for the access network. For the core, the DiffServ
approach is a better choice. In this way, both mechanisms might prove to be
complementary when offering end-to-end quality of service to end users. More-
over, RSVP might be used, not only to reserve resources in the access network,
but also to signal to the edge router, between the access (IntServ) and the core
(DiffServ) network, how to set the DiffServ mark in packets pertaining to a
particular fl ow. This approach is described in RFC 2998. Figure 10.4 shows a
possible scenario.

Variants of this approach are proposed for the newest IP-based next generation
networks (3GPP IMS, TISPAN NGN), where, instead of RSVP, typically other pro-
tocols are used to signal the QoS requirements (e.g., 3GPP Generic Tunneling
Protocol, GTP).

10.3 POLICY-BASED ADMISSION CONTROL
We saw in the previous section that resource reservation requests need to undergo
an admission control function. This function is typically implemented in the access
network’s edge router. The admission control component takes the decision to
accept or reject the resource reservation request based on two factors:

■ The requester’s resource reservation request
■ The available capacity in the router

Nevertheless, service providers might want to base the admission control deci-
sion on additional parameters, such as the requester’s identity, his or her user
profi le, time of day or week, and so forth. For instance, the service provider might
want to grant access to quality of service only to those users who have paid an
extra amount.

RFC 2753 specifi es a framework for policy-based control over admission
control decisions. The framework defi nes two functional entities: the policy

Edge

router

Edge

router

Diffserv

router

Diffserv

router

Access Network

Access Network

RSVP agent
DiffServ classifier

RSVP agent
DiffServ classifier

FIGURE 10.4

Use of RSVP with an IntServ access network and DiffServ core network.

10.3 Policy-Based Admission Control 271

272 CHAPTER 10 QoS in IP Networks Using SIP

enforcement point (PEP) and the policy decision point (PDP). The architecture is
shown in Figure 10.5.

The PEP is a component located in a network node (e.g., router) that receives
the resource reservation request. If that request requires a policy decision, the
PEP will then formulate a request for a policy decision and send it to the PDP.
This request may contain information such as the description of the fl ow or the
amount of requested bandwidth that was present in the original received request,
plus additional information.

The PDP, when receiving the request, may look for additional info (e.g., might
query a user profi le database). Then the PDP makes a policy decision and com-
municates it back to the PEP.

The PEP receives the decision and enforces it—that is to say, accepts or rejects
the original request. This is shown in Figure 10.6, where an incoming resource
reservation request is rejected after a policy decision is made.

A possible option for the protocol between PEP and PDP is the Common Open
Policy Service (COPS) protocol, RFC 2748 and RFC 4261. COPS employs a simple
client–server model where the PEP sends requests, updates, and deletes to the
PDP, and the PDP returns decisions back to the PEP. The COPS protocol uses TCP
as a transport.

COPS was proposed for the communication between PEP and PDP in the fi rst
releases of 3GPP IMS. Since Release 7 (R7), it has been replaced by an application
on top of the DIAMETER protocol. The DIAMETER base protocol is defi ned in
RFC 3588.

Policy server

Edge router

PEP

PDP

COPS

FIGURE 10.5

Policy architecture.

10.4 SIP INTEGRATION WITH RESOURCE RESERVATION:
THE PRECONDITIONS FRAMEWORK

10.4.1 Motivation

Let us imagine that John wants to set up a voice call using SIP, and that he wants
to use resource reservation so as to ensure a certain quality of service. The reserva-
tion of network resources requires knowing the IP address, port, and session
parameters of the called party (so as to identify the fl ow in the RSVP request). This
information is obtained as a result of the Source Description Protocol (SDP) nego-
tiation, in the SDP answer. Therefore, John will send the initial INVITE carrying the
SDP offer. The INVITE request will cause Alice’s user agent (UA) to ring and
respond with a 180 (Ringing) provisional response that includes the SDP answer.
At this point, John starts the resource reservation process because he has all the
session information to do that. Let us imagine that the resource reservation process
fails because there is one router in the path that rejects the resource reservation
request. The call would then be dropped, but Alice has already been alerted, there-
fore resulting in a negative end-user experience. This is shown in Figure 10.7.

To avoid this problem, we need to make sure that the user is alerted only after
network resources have been successfully reserved. This implies that SIP session
establishment and resource reservation need to be somehow coordinated. The
preconditions framework is a SIP extension defi ned in RFC 3312 (the main spec)
and RFC 4032 (an update to the previous one) that specifi es the way to integrate
resource management with SIP and solve these issues. We will describe the usage
of the framework for integrating QoS resources; however, the framework is
general enough so as to be used for other types of resource management.

Edge router

PEP

Policy server

PDP

RSVP request

P
ol

ic
y

re
qu

es
t

P
ol

ic
y

re
sp

on
se

Reject

FIGURE 10.6

The PEP applies a PDP decision and rejects an RSVP reservation request.

10.4 SIP Integration with Resource Reservation 273

274 CHAPTER 10 QoS in IP Networks Using SIP

10.4.2 Overview

RFC 3312 introduces the concept of a precondition. A precondition is a set of
constraints about the session that need to be fulfi lled before the called user can
be alerted. The set of constraints is included in the SDP offer. When the called
user receives the SDP offer, it generates an answer, but does not alert the user or
proceed with session establishment. The recipient waits for the precondition to
be met—that is, it waits for the resources to be reserved. As soon as the precon-
dition is met, alerting can occur, and the session establishment can be resumed.

Figure 10.8 shows how this would work for a call between John and Alice.
John does not want Alice to be alerted until network resources are reserved in
both directions in order to ensure quality of service. So he sends an INVITE request
indicating that preconditions are required. This is indicated by:

■ Including a SIP Require header fi eld set to the option tag “precondition”
■ Including some additional attributes in the SDP offer (see the next section)

When the INVITE reaches Alice’s UA, the UA knows that Alice should not be
alerted. Alice’s UA agrees to reserve network resources. Alice will handle resource
reservation in the direction Alice-to-John, but needs John to handle the John-to-
Alice direction. Alice indicates this by sending back a 183 (Session Progress)
response to John, asking him to start resource reservation and to confi rm to her
as soon as the John-to-Alice direction is ready for the session. Both John and Alice

UA

John

UA

Alice

Access
network

Core network

INVITE (SDP offer)

Edge

router

180 Ringing (SDP answer)

Alice's phone is
ringing!!

Resource reservation request

No available
resource

reject

BYE

Call is dropped

200 OK

Access
network

FIGURE 10.7

Example negative end-user experience.

start resource reservation. Let us assume that Alice completes resource reservation
in the Alice-to-John direction; she does not alert the user yet because network
resources in both directions are needed. When John fi nishes reserving resources
in the John-to-Alice direction, he sends an UPDATE request to Alice. She returns
a 200 (OK) response for the UPDATE, indicating that all the preconditions for the
session have been met. At this point in time, Alice starts alerting the user, and
session establishment completes normally.

10.4.3 Operation

We will now look a bit more in detail at how the SDP exchange works and what
are the needed SDP attributes to handle preconditions.

From a user agent’s point of view, a precondition is characterized by the fol-
lowing parameters:

■ Type: RFC 3312 considers only the type “qos” (for quality of service). In
the future, new types may be defi ned.

■ Strength: Indicates whether or not the called party can be alerted if the
resources cannot be reserved.

RESOURCE

RESERVATION

UA

John

Access
network

Core network

INVITE (SDP1)

Edge

router

RESOURCE
RESERVATION

Access
network

Edge

router

UA

Alice

183 session progress (SDP2)

PRACK

200 OK (SDP 4)

UPDATE (SDP3)

180 Ringing

ACK

200 OK

200 OK (INVITE)

200 OK

FIGURE 10.8

Call preconditions protect the end user from knowing about the call until it succeeds.

10.4 SIP Integration with Resource Reservation 275

276 CHAPTER 10 QoS in IP Networks Using SIP

■ Status-type: Indicates whether the resource reservation needs to be done
end to end or segmented.

■ Direction: Indicates whether the resource reservation applies to one
direction (send or receive) or to both.

An end-to-end precondition implies that resources are reserved all along the
way between the two parties. A segmented precondition implies that end users
need to reserve resources only in their corresponding access networks. From a
user agent’s perspective, a segmented precondition can be local (if it applies to
his or her own access network) or remote (if it applies to a peer’s access network).
Figures 10.9 and 10.10 illustrate the differences between end-to-end and seg-
mented status-types. The strength tag can have the following values:

■ Mandatory: Alerting can only occur if resource reservation has been
achieved.

UA

John

Access
network

Core networkEdge

router

Access
network

Edge

router

UA

Alice

END-TO-END RESOURCE RESERVATION

FIGURE 10.9

End-to-end status.

Access
network

Core network
Edge

router

Access
networkEdge

router

UA

Alice

RESOURCE RESERVATION
IN ACCESS NETWORK

RESOURCE RESERVATION
IN ACCESS NETWORK

UA

John

FIGURE 10.10

Segmented status.

■ Optional: User agents should try to reserve resources, but the session can
continue irrespective of whether or not the resource reservation was
successfully accomplished.

■ None: No resource reservation is needed.

The direction parameter can have the following values:

■ sendrecv: Applies to both directions.
■ send: Applies to the send direction (from the user agent’s point of view).
■ recv: Applies to the receive direction (from the user agent’s point of

view).
■ none: Does not apply for any direction.

We have seen how a precondition is characterized; now let’s see how this
works.

When John, in our previous example, decides to call Alice using preconditions,
he adds some additional media-level attributes to the SDP offer for each media
type. One of those attributes is called the desired-status attribute (a=des). It rep-
resents the desired status for the required precondition. It might look like:

a=des:qos mandatory e2e sendrecv

What this means is that John requires a qos precondition, and that resource
reservation must be done end to end and applied to both directions. In addition
to the des attribute, John must also add another SDP attribute, the current-status
attribute (a=curr). This attribute represents the actual status of the precondi-
tion—that is, the actual status of the resource reservation. Given that John cannot
start resource reservation until he has received the SDP answer, the curr attribute
will indicate that resources are not reserved in any direction. So the complete
media-level content of SDP1 would be:

m=audio 20000 RTP/AVP 0
a=curr:qos e2e none
a=des:qos mandatory e2e sendrecv

The curr and des attribute must be present in any SDP offer/answer exchange
that requires preconditions. The user agent that receives the SDP offer compares
curr and des; if they match (except for the Strength indication, which is sent
only from calling party to called party), it means that the precondition is met, and
alerting can proceed.

When the INVITE reaches Alice, she will create and send the SDP answer
embedded in a 183 response, and start reserving resources in her sending direc-
tion. Given that the 183 response contains an SDP answer, it must be sent reliably
(that is, it will need to be acknowledged by a PRACK request). The SDP answer
refl ects the fact that Alice agrees to reserve resources for this session before alert-
ing. She copies the received des attribute into the SDP answer, and includes a
curr attribute that represents her view on the status of the precondition. In addi-
tion to those, she adds a new SDP attribute called confi rm-status (a=conf), which

10.4 SIP Integration with Resource Reservation 277

278 CHAPTER 10 QoS in IP Networks Using SIP

represents a threshold on the status of the precondition. By including it in the
response, Alice is indicating that she wants to be notifi ed by John when the pre-
condition reaches such a threshold.

SDP2 would look like (only the media-level):

m=audio 40000 RTP/AVP 0
a=curr:qos e2e none
a=des:qos mandatory e2e sendrecv
a=conf:qos e2e recv

When John receives this SDP, he will know that Alice agrees to reserve resources
for this session (otherwise the SDP would have been rejected), so he initiates the
resource reservation in his sending direction. The conf attribute in this SDP indi-
cates to John that when he fi nishes reserving resources in his sending direction
(which corresponds to Alice’s receiving direction, as indicated by the recv param-
eter), he needs to communicate that situation to Alice.

Let us imagine that Alice completes resource reservation in her sending direc-
tion. Then she will wait to receive the confi rmation from John about the precon-
dition status for his sending direction (which corresponds to Alice’s receiving
direction). When John completes resource reservation in his sending direction,
he sends Alice an UPDATE request that refl ects the new status for the precondi-
tion. SDP3 would look like:

m=audio 20000 RTP/AVP 0
a=curr:qos e2e send
a=des:qos mandatory e2e sendrecv

We can see that now the current status indicates send direction, as opposed to
none, as appeared in SDP1.

At this point, Alice’s UA knows that the precondition has been met, so she will
include SDP4 in the body of the 200 (OK) response to the UPDATE, and ringing
will start. SDP4 would look like:

m=audio 20000 RTP/AVP 0
a=curr:qos e2e sendrecv
a=des:qos mandatory e2e sendrecv

As we have seen from the example, the SIP preconditions extension requires
that two additional SIP extensions are supported by user agents: the PRACK and
UPDATE methods. Therefore, the INVITE requests that require preconditions must
additionally include the 100rel tag in the Supported header fi eld, and should
include an Allow header fi eld with the “UPDATE” tag.

10.5 SIP INTEGRATION WITH POLICY CONTROL:
MEDIA AND QOS AUTHORIZATION

10.5.1 Motivation

In SIP communication scenarios, SDP is typically used to describe the desired
session characteristics. SDP also allows a user agent to indicate that QoS require-

ments must be met in order to successfully set up a session. However, we have
seen that a different protocol, RSVP, is used to request the resources required to
meet the end-to-end QoS of the media stream. Therefore, there is a need to assure
that the resources requested through the resource reservation process match the
resources that were requested and authorized as part of the SIP/SDP session estab-
lishment process. In other words, we need a mechanism to link the SIP and
transport layer to ensure that policies are correctly enforced. RFC 3313 defi nes
such a mechanism and will be described in the next subsection.

It is worth mentioning that this mechanism is again in contrast to general
Internet principles, which completely separate data from applications. Thus, this
solution is not applicable to the Internet at large, but does fi nd a lot of applicabil-
ity scenarios in networks under a single administrative domain. The SIP extension
needed to implement these functions will then be defi ned as a private (P-)
extension.

10.5.2 Architecture

RFC 3521 and RFC 3313 defi ne the reference architecture for applying SIP ses-
sions set up with media and QoS authorization, which is depicted in Figure 10.11.
The following list describes the elements in the architecture.

Edge router

PEP

PDP

RSVP

agent

Data handler

QoS-enabled

SIP proxy

SIP
signaling

RSVP

MEDIA

FIGURE 10.11

SIP sessions can be set up with media and QoS authorization.

10.5 SIP Integration with Policy Control 279

280 CHAPTER 10 QoS in IP Networks Using SIP

■ End host: It is the user’s device. It comprises a SIP UA, an RSVP client, and a
media tool.

■ Edge router: It is the router connecting the end host to the rest of the network.
It includes the following three components.
– Policy enforcement point: that is the point where the policy decisions are

enforced
– RSVP agent
– Data handler, which includes the packet classifi er, packet scheduler, and the

admission control module

■ QoS-enabled SIP proxy: That is, a SIP proxy that has the capability to interact
with a PDP for the purpose of retrieving the media authorization token, as we
will see later on.

■ Policy decision point: The point where the policy decisions are made.

Figure 10.12 depicts, at a high level, how the media authorization process
works. During SIP session establishment, the QoS-enabled proxy will check if the
user is authorized to receive QoS. If he or she is, the proxy will contact the PDP
and obtain an authorization token. The authorization token is stored in the PDP
together with the negotiated session description.

Edge router

PEP

PDP

QoS-enabled

SIP proxy

1.
SIP

(S
DP

of
fe

r)

2.
 G

et

to
ke

n

3.
 T

ok
en

SIP (SDP offer)

SIP (SDP response)

4.
SIP

(S
DP

re
sp

on
se

)

+
to

ke
n

5. RSVP request (QoS+

token) 6.
P

ol
ic

y
re

q
(t

ok
en

)

7.
 P

ol
ic

y
re

sp
on

se

8. RSVP request

FIGURE 10.12

High-level view of the media authorization process.

The proxy includes the token in the response back to the UA. The token con-
tains all the information needed for the end host to perform resource reservation.
Therefore, the end host initiates the resource reservation, including the token in
the RSVP message requesting QoS. When this message is received by the edge
router, the PEP will forward the token, together with the requested bandwidth,
to the PDP. The PDP will check if the corresponding requested bandwidth is
within the limit of what was negotiated in the SDP exchange. The PDP uses the
token as the key to fi nd the stored negotiated SDP. If the check is passed, the PDP
sends back a positive response to the PEP, which reserves the resources and for-
wards the RSVP message.

10.5.3 Implementation

In order to carry the token in the SIP signaling, a new header is defi ned: P-Media-
Authorization. This header includes a P-Media-Authorization-Token, which repre-
sents the token in a specifi c format. In RSVP signaling, the token is conveyed in
an RSVP object called policy data—more specifi cally, in the Policy-Element fi eld
within that object, as defi ned in RFC 2750, which is an extension to the base
RSVP protocol defi ned in RFC 2205.

10.5.4 Example

We will now see an end-to-end example for a session setup with media/QoS
authorization and resource reservation. The call fl ow is shown in Figure 10.13.
We will assume that:

■ John wants to set up a multimedia session with Alice.

■ Both John and Alice have contracted QoS with their service provider.
 1. John sends an INVITE to his QoS-enabled outbound proxy (proxy A).

The INVITE request includes the SDP offer. The SDP offer contains the
description of the media that John desires to use for this communication,
and the bandwidth (“b” parameter) requested.

 2. When the outbound proxy receives the INVITE message from the UAC, the
proxy authenticates the caller and verifi es that the caller is authorized to
obtain QoS.

 3. Proxy A forwards the INVITE.
 4. Alice’s inbound proxy (proxy B) receives the INVITE. It authenticates the

originating proxy and authorizes the call.
 5. Proxy B sends a policy-setup message (AuthProfi le) to PDP-B including

the media description. PDP-B stores the authorized media description in
its local store, and generates an authentication token that points to this
description.

 6. PDP-B returns the authorization token to proxy B (AuthToken).
 7. Proxy B places the token in the INVITE message and forwards it to

Alice’s UA.

10.5 SIP Integration with Policy Control 281

UA
John

Proxy
A

Proxy
B

UA
Alice

PDP
A

Edge
router

B

Edge
Router

A

PDP
BCore network

5. Policy
Setup

6. Token

3. INVITE (SDP 1)

9. 183 Session progress (SDP 2)

10. Policy
Setup

11. Policy
Setup

14. PRACK

17. 200 OK

19. RSVP Path (token)

20.REQ (token)

21. DEC

22. RSVP Path

23. RSVP Path (token)

24. REQ (token)

25. DEC

26. RSVP Path

27. RSVP Resv

28. REQ

29. DEC

30. RSVP Resv

31. RSVP Resv

32. REQ

33. DEC

34. RSVP Resv

35. UPDATE(SDP 3)

36. UPDATE(SDP 3)

37. UPDATE(SDP 3)

38. 200 OK (SDP 4)

39. 200 OK (SDP 4)

40. 200 OK (SDP 4)

Alice's phone
rings !!

42. 200 OK (INVITE)
43. 200 OK (INVITE)

44. 200 OK (INVITE)

2. Call is
authorized

4. Call is
authorized

41. 180 Ringing

41. 180 Ringing
41. 180 Ringing

15. PRACK

16. 200 OK

8. 183 Session progress (SDP 2)

7. INVITE (SDP 1) + token

13. PRACK

12. 183 (SDP 2)+ token

18. 200 OK

1. INVITE (SDP 1)

FIGURE 10.13

The call message fl ow.

 8. Alice’s UA sends a 183 response (including the Source Description Protocol
response) reliably.

 9. Proxy B forwards the response to proxy A.
10. Proxy A sends a policy-setup message (AuthProfi le) to PDP-A including the

negotiated media description. PDP-A stores the authorized media descrip-
tion in its local store, and generates an authentication token that points to
this description.

11. PDP-A returns the authorization token to proxy A (AuthToken).
12–18. Proxy A forwards the 183 response to John’s UA. Then a PRACK trans-

action takes place to confi rm delivery of the 183 response.
19. As soon as Alice has sent the 183 response (step 8), she can request QoS

by sending an RSVP Path message that includes the received token as a
policy element.

20. The edge router B, acting as PEP for UA-B, upon receipt of the RSVP Path
message, sends a COPS message (REQ) to PDP-B. PDP-B checks the autho-
rization using the stored authorized media description that was linked to
the authorization token it returned to proxy B.

21. If the authorization is successful, PDP-B returns an “install” decision
(DEC).

22. Edge Router B checks the admissibility of the request, and, if admission
succeeds, it forwards the RSVP Path message toward John.

23–26. As soon as John receives the 183 response (step 12), he can start request-
ing quality of service by sending an RSVP Path message. So, steps analogous
to steps 20, 21, and 22 take place, but now on the originating side.

27. As soon as John receives the RSVP Path message (step 22), he sends an
RSVP Resv message to reserve resources on the network.

28. The edge router A, upon receipt of the RSVP Resv message, sends a COPS
message (REQ) to PDP-A. PDP-A checks the authorization using the stored
authorized media description that was linked to the authorization token it
returned to proxy A.

29. If the authorization is successful, PDP A returns an “install” decision
(DEC).

30. Edge router A checks the admissibility of the request, and, if admission
succeeds, it forwards the RSVP Resv message toward Alice.

31–34. As soon as Alice receives the RSVP Path message, she sends the
RSVP Resv message in order to reserve resources on the network. So, steps
analogous to steps 28, 29, and 30 take place, but now they are on the
terminating side.

35–40. As soon as John receives the RSVP Resv message, he sends an UPDATE
to Alice to indicate that the preconditions are fulfi lled. The UPDATE is
acknowledged.

41. As soon as the UPDATE is received, Alice’s UA starts ringing.
42. Alice accepts the call, and the media is established.

10.5 SIP Integration with Policy Control 283

284 CHAPTER 10 QoS in IP Networks Using SIP

10.6 SUMMARY
This chapter introduced many concepts. As a summary, for the process to apply
QoS in SIP communications, readers should remember:

■ The user agents (e.g., calling party and called party) ask for resources
through SDP in SIP signaling.

■ SIP proxies in the control plane then permit the media plane to allocate
these resources.

■ The clients must still request the routers in the media plane to actually
allocate these resources.

The architectures around QoS are well known, though they have not yet been
widely deployed. Broadband accesses and an Internet with increasing capacity
have made these architectures not needed in many cases so far. However, with
the advent of IP multimedia services for wireless, bandwidth-restricted accesses,
these ideas recover importance, and we will see that they will play a crucial role
in the IMS architecture for mobile operators.

10.7 RESOURCES
This chapter makes reference to the following IETF RFCs.

RFC 1633, “Integrated Services in the Internet Architecture: an Overview,” Braden, R.,
et al., 1994.

RFC 2205, “Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specifi cation,”
Braden, R., et al., 1997.

RFC 2211, “Specifi cation of the Controlled-Load Network Element Service,” Wroclawski,
J., 1997.

RFC 2212, “Specifi cation of Guaranteed Quality of Service,” Shenker, S., et al., 1997.
RFC 2474, “Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6,

Headers,” Nichols, K., et al., 1998.
RFC 2475, “An Architecture for Differentiated Services,” Blake, S., et al., 1998.
RFC 2597, “Assured Forwarding PHB Group,” Heinanen, J., 1999.
RFC 2748, “The COPS (Common Open Policy Service) Protocol,” Durham, D., 2000.
RFC 2750, “RSVP Extensions for Policy Control,” Herzog, S., 2000.
RFC 2753, “A Framework for Policy-Based Admission Control,” Yavatkar, R., et al., 2000.
RFC 2998, “A Framework for Integrated Services Operation over DiffServ Networks,”

Bernet, Y., et al., 2000.
RFC 3260, “New Terminology and Clarifi cations for DiffServ,” Grossman, D., 2002.
RFC 3312, “Integration of Resource Management and Session Initiation Protocol (SIP),”

Camarillo, G., 2002.
RFC 3313, “Private Session Initiation Protocol (SIP) Extensions for Media Authorization,”

Marshall, W., 2003.
RFC 3521, “Framework for Session Set-up with Media Authorization,” Hamer, L-N., 2003.

RFC 3588, “Diameter Base Protocol,” Calhoun, P., 2003.
RFC 4032, “Update to the Session Initiation Protocol (SIP) Preconditions Framework,”

Camarillo, G., and P. Kyzivat, 2005.
RFC 4261, “Common Open Policy Service (COPS) Over Transport Layer Security (TLS),”

Walker, J., and A. Kulkarni, 2005.

10.7 Resources 285

This page intentionally left blank

CHAPTER

11Core Capacity Planning
and Traffi c Engineering in
IP and MPLS Networks

This chapter, taken from Chapter 6 of Deploying IP and MPLS QoS for Multiser-
vice Networks: Theory and Practice by John William Evans and Clarence Filsfi ls,
addresses core capacity planning and how traffi c engineering can be used as a
tool to make more effi cient use of network capacity. This chapter has benefi ted
enormously from the input of Thomas Telkamp, Director of Network Consulting
at Cariden Technologies, Inc. Thomas’s work formed the basis of the capacity
planning section.

11.1 CORE NETWORK CAPACITY PLANNING
Capacity planning of the core network is the process of ensuring that suffi cient
bandwidth is provisioned such that the committed core network service level
agreement (SLA) targets of delay, jitter, loss, and availability can be met. In the
core network where link bandwidths are high and traffi c is highly aggregated, the
SLA requirements for a traffi c class can be translated into bandwidth requirements,
and the problem of SLA assurance can effectively be reduced to that of bandwidth
provisioning. Hence, the ability to assure SLAs is dependent on ensuring that core
network bandwidth is adequately provisioned, which is in turn dependent on core
capacity planning.

The simplest core capacity planning processes use passive measurements of
core link utilization statistics and apply rules of thumb, such as upgrading links
when they reach 50 percent average utilization, or some other such general utili-
zation target. The aim of such simple processes is to attempt to ensure that the
core links are always signifi cantly overprovisioned relative to the offered average
load, on the assumption that this will ensure that they are also suffi ciently over-
provisioned relative to the peak load, that congestion will not occur, and hence
the SLA requirements will be met.

288 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

There are, however, two signifi cant consequences of such a simple approach.
Firstly, without a network-wide understanding of the traffi c demands, even an
approach that upgrades links when they reach 50 percent average utilization may
not be able to ensure that the links are still suffi ciently provisioned when network
element (e.g., link and node) failures occur, in order to ensure that the committed
SLA targets continue to be met. Secondly, and conversely, rule-of-thumb approaches
such as this may result in more capacity being provisioned than is actually
needed.

Effective core capacity planning can overcome both of these issues. Effective
core capacity planning requires a way of measuring the current network load,
and a way of determining how much bandwidth should be provisioned relative
to the measured load in order to achieve the committed SLAs. Hence, in this
section we present a holistic methodology for capacity planning of the core
network, which takes the core traffi c demand matrix and the network topology
into account to determine how much capacity is needed in the network in
order to meet the committed SLA requirements, taking network element failures
into account if necessary, while minimizing the capacity and cost associated with
overprovisioning.

The methodology presented in this section can be applied whether DiffServ is
deployed in the core or not. Where DiffServ is not deployed, capacity planning is
performed on aggregate. Where DiffServ is deployed, while the fundamental prin-
ciples remain the same, capacity planning per traffi c class is needed to ensure that
class SLA targets are not violated.

11.1.1 Capacity Planning Methodology

We distinguish the following steps in the process of capacity planning:

1. Collect the core traffi c demand matrices (either on aggregate or per class) and
add traffi c growth predictions to create a traffi c demand forecast. This step is
described in Section 11.1.2.

2. Determine the appropriate bandwidth overprovisioning factors (either on
aggregate or per class) relative to the measured demand matrices, which are
required to ensure that committed SLAs can be met. This step is described in
Section 11.1.3.

3. Run simulations to overlay the forecasted demands onto the network topology,
taking failure cases into account if necessary, to determine the forecasted link
loadings. Analyze the results, comparing the forecasted link loadings against
the provisioned bandwidth and taking the calculated overprovisioning factors
into account, to determine the future capacity provisioning plan required to
achieve the desired SLAs. This step is described in Section 11.1.4.

This capacity planning process is illustrated by Figure 11.1. The steps in the capac-
ity planning process are described in detail in the sections that follow.

11.1 Core Network Capacity Planning 289

11.1.2 Collecting the Traffi c Demand Matrices

The core traffi c demand matrix is the matrix of ingress-to-egress traffi c demands
across the core network. Traffi c matrices can be measured or estimated to differ-
ent levels of aggregation: by IP prefi x, by router, by point of presence (POP), or
by autonomous system (AS). The benefi t of a core traffi c matrix over simple per-
link statistics is that the demand matrix can be used in conjunction with an
understanding of the network routing model to predict the impact that demand
growths can have and to simulate “what-if” scenarios, in order to understand the
impact that the failure of core network elements can have on the (aggregate or
per-class) utilization of the rest of the links in the network.

With simple per-link statistics, when a link or node fails, in all but very simple
topologies it may not be possible to know over which links the traffi c impacted
by the failure will be rerouted. Core network capacity is increasingly being pro-
visioned taking single network element failure cases into account. To understand
traffi c rerouting in failure cases, a traffi c matrix is needed which aggregates traffi c
at the router-to-router level. If DiffServ is deployed, a per-class of service core
traffi c matrix is highly desirable.

The core traffi c demand matrix can be an internal traffi c matrix (i.e., router-
to-router, or an external traffi c matrix (i.e., router to AS), as illustrated in Figure
11.2, which shows the internal traffi c demand matrix from one distribution router
(DR), and the external traffi c demand matrix from another.

The internal traffi c matrix is useful for understanding the impact that internal
network element failures will have on the traffi c loading within the core. An

Traffic
demand
matrix

Capacity
planning

simulation

Network
provisioning

Network

Demand
forecast

Service
subscription

Logical
topology

Routing
model

Physical
topology

Overprovi-
sioning factors

Step 1
(section 1.2)

Step 2
(section 1.3)

Step 3
(section 1.4)

FIGURE 11.1

Capacity planning methodology.

290 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

internal matrix could also be edge-to-edge (e.g., DR to DR), or just across the inner
core (e.g., CR to CR); a DR to DR matrix is preferred, as this can also be used to
determine the impact of failures within a POP. The external traffi c matrix provides
additional context, which could be useful for managing peering connection capac-
ity provision, and for understanding where internal network failures might impact
in the external traffi c matrix, due to closest-exit (a.k.a. “hot potato”) routing.

There are a number of possible approaches for collecting the core traffi c
demand matrix statistics. The approaches differ in terms of their ability to provide
an internal or external matrix, whether they can be applied to IP or MPLS, and
whether they can provide a per-class of service traffi c matrix. Further, the capa-
bilities of network devices to provide information required to determine the core
traffi c matrix can vary depending on the details of the particular vendor’s imple-
mentation. Some of the possible approaches for determining the core traffi c
demand matrix are discussed in the following subsections. Further details on the
options for deriving a core traffi c matrix are provided in Best Practices for Deter-
mining the Traffi c Matrix in IP Networks by Thomas Telkamp.

IP Flow Statistics Aggregation
The Internet Protocol Flow Information eXport (IPFIX) protocol has been defi ned
within the IETF as a standard for the export of IP fl ow information from routers,
probes, and other devices. If edge devices such as distribution routers are capable

Server farm

AS2 AS3 AS4

POP A POP B

CR

DR

DR

DR

DR

DR

DR

= Internal demand
= External demand

AS1

CR
CR

CR

ARs

ARs

ARs

ARs

ARs

ARs

FIGURE 11.2

Internal and external traffi c demands.

11.1 Core Network Capacity Planning 291

of accounting at a fl ow level (i.e., in terms of packet and byte counts), then a
number of potential criteria could be used to aggregate this fl ow information—
potentially locally on the device—to produce a traffi c matrix.

Where the Border Gateway Protocol (BGP) is used within an AS, for example,
each router at the edge of the AS is referred to as a BGP “peer.” For each IP destina-
tion address that a peer advertises via BGP it also advertises a BGP next hop IP
address, which is used when forwarding packets to that destination. In order to
forward a packet to that destination, another BGP router within the AS needs to
perform a recursive lookup, fi rstly looking in its BGP table to retrieve the BGP next-
hop address associated with that destination address, and then looking in its Inte-
rior Gateway Routing Protocol (IGP) routing table to determine how to get to that
particular BGP next-hop address (for further understanding on the workings of
BGP, see the further reading section at the end of this chapter). Hence, aggregating
IPFIX fl ow statistics based on the BGP next hop IP address used to reach a particu-
lar destination would produce an edge router to edge router traffi c matrix.

MPLS LSP Accounting
Where MPLS is used, a label switched path (LSP) implicitly represents an aggregate
traffi c demand. Where BGP is deployed in conjunction with label distribution by
the Label Distribution Protocol (LDP), in the context of a BGP MPLS VPN service
for example, and each provider edge (PE) router is a BGP peer, an LSP from one
PE to another implicitly represents the PE-to-PE traffi c demand. The distribution
routers in the generalized network reference model we use in this chapter will
normally be provider edge (PE) routers in the context of an MPLS VPN deploy-
ment. Hence, if traffi c accounting statistics are maintained per LSP, these can be
retrieved, using Simple Network Management Protocol (SNMP) for example, to
produce the PE-to-PE core traffi c matrix.

If MPLS traffi c engineering is deployed (see Section 11.2.3) with a full mesh of
traffi c engineering (TE) tunnels, then each TE tunnel LSP implicitly represents the
aggregate demand of traffi c from the head-end router at the source of the tunnel,
to the tail-end router at the tunnel destination. Hence, if traffi c accounting statis-
tics are maintained per TE tunnel LSP, these can be retrieved, using SNMP for
example, to understand the core traffi c matrix. If DiffServ-aware TE is deployed
(see DiffServ-Aware MPLS Traffi c Engineering section) with a full mesh of TE
tunnels per class of service, the same technique could be used to retrieve a per-
traffi c class traffi c matrix.

Demand Estimation
Demand estimation is the application of mathematical methods to measurements
taken from the network, such as core link usage statistics, in order to infer the
traffi c demand matrix that generated those usage statistics. There are a number
of methods that have been proposed for deriving traffi c matrices from link mea-
surements and other easily measured data (see Further Reading at the end of this
chapter), and there are a number of commercially available tools that use these,

292 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

or similar, techniques in order to derive the core traffi c demand matrix. If link
statistics are available on a per-traffi c class basis, then these techniques can be
applied to estimate the per-class of service traffi c matrix.

Retrieving and Using the Statistics
Whichever approach is used for determining the core traffi c matrix, the next deci-
sion that needs to be made is how often to retrieve the measured statistics from the
network. The retrieved statistics will normally be in the form of packet and
byte counts, which can be used to determine the average traffi c demands over
the previous sampling interval. The longer the sampling interval (i.e., the less fre-
quently the statistics are retrieved), the greater the possibility that signifi cant varia-
tion in the traffi c during the sampling interval may be hidden due to the effects of
averaging.

Conversely, the more frequently the statistics are retrieved, the greater the load
on the system retrieving the data, the greater the load on the device being polled,
and the greater the polling traffi c on the network. Hence, in practice the fre-
quency with which the statistics are retrieved is a balance, which depends on the
size of the network; in backbone networks it is common to collect these statistics
every 5, 10, or 15 minutes.

The measured statistics can then be used to determine the traffi c demand
matrix during each interval. In order to make the subsequent stages of the process
manageable, it may be necessary to select some traffi c matrices from the collected
data set. A number of possible selection criteria could be applied; one possible
approach is to sum the individual (i.e., router to router) traffi c demands within
each interval, and to take the interval that has the greatest total traffi c demand,
(i.e., the peak). Alternatively, in order to be sensitive to outliers (e.g., due to pos-
sible measurement errors), a high percentile interval such as the 95th percentile
(P-95) could be taken, that is the interval for which more than 95 percent of the
intervals have a lower value.

In order to be representative, the total data set should be taken over at least a
week, or preferably over a month, to ensure that trends in the traffi c demand
matrices are captured. In the case of a small network, it might be feasible to use
all measurement intervals (e.g., all 288 daily measurements for 5-minute intervals),
rather than to only use the peak (or percentile of peak) interval; this will give the
most accurate simulation results for the network.

In geographically diverse networks, regional peaks in the traffi c demand matrix
may occur, such that most links in a specifi c region are near their daily maximum,
at a time of the day when the total traffi c in the network is not at its maximum.
In a global network for example, in morning offi ce hours in Europe, the European
region may be busy, while the North American region is relatively lightly loaded.
It is not very easy to detect regional peaks automatically, and one alternative
approach is to defi ne administrative capacity planning network regions (e.g.,
United States, Europe, Asia), and apply the previously described procedure per
region, to give a selected per-region traffi c matrix.

11.1 Core Network Capacity Planning 293

Once the traffi c matrix has been determined, other factors may need to be
taken into account, such as anticipated traffi c growth. Capacity planning will
typically be performed looking suffi ciently far in advance that new bandwidth
could be provisioned before network loading exceeds acceptable levels. If it takes
3 months to provision or upgrade a new core link, for example, and capacity
planning is performed monthly, then the capacity planning process would need
to try to predict at least 4 months in advance. If expected network traffi c growth
within the next 4 months was 10 percent, for example, then the current traffi c
demand matrix would need to be multiplied with a factor of at least 1.1. Service
subscription forecasts may be able to provide more granular predictions of future
demand growth, possibly predicting the increase of particular traffi c demands.

11.1.3 Determine Appropriate Overprovisioning Factors

The derived traffi c matrices described in the previous section are averages taken
over the sample interval, hence they lack information on the variation in traffi c
demands within each interval. There will invariably be bursts within the measure-
ment interval that are above the average rate; if traffi c bursts are suffi ciently large
temporary congestion may occur, causing delay, jitter, and loss, which may result
in the violation of SLA commitments even though the link is on average not 100
percent utilized. To ensure that bursts above the average do not impact the SLAs,
the actual bandwidth may need to be overprovisioned relative to the measure
average rates. Hence, a key capacity planning consideration is to determine by
how much bandwidth needs to be overprovisioned relative to the measured
average rate, in order to meet a defi ned SLA target for delay, jitter, and loss; we
defi ne this as the overprovisioning factor (OP).

The overprovisioning factor required to achieve a particular SLA target depends
on the arrival distribution of the traffi c on the link, and the link speed. Opinions
remain divided on what arrival distribution describes traffi c in IP networks. One
view is that traffi c is self-similar, which means that it is bursty on many or all
timescales (i.e., whatever time period the traffi c is measured over the variation in
the average rate of the traffi c stream is the same). An alternative view is that IP
traffi c arrivals follow a Poisson (or more generally Markovian) arrival process. For
Poisson distributed traffi c, the longer the time period over which the traffi c stream
is measured, the less variation there is in the average rate of the traffi c stream.
Conversely, the shorter the time interval over which the stream is measured, the
greater the visibility of burst or the burstiness of the traffi c stream. The differences
in the resulting measured average utilization between self-similar and Poisson
traffi c, when measured over different timescales, are shown in Figure 11.3.

For Poisson traffi c, queuing theory shows that as link speeds increase and
traffi c is more highly aggregated, queuing delays reduce for a given level of utiliza-
tion. For self-similar traffi c, however, if the traffi c is truly bursty at all timescales,
the queuing delay would not decrease with increased traffi c aggregation. However,
while views on whether IP network traffi c tends toward self-similar or Poisson are

294 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

still split, this does not fundamentally impact the capacity planning methodology
we are describing. Rather, the impact of these observations is that, for high-speed
links, the overprovisioning factor required to achieve a specifi ed SLA target would
need to be signifi cantly greater for self-similar traffi c than for Poisson traffi c.

Caveat lector: A number of studies, both theoretical and empirical, have sought
to quantify the bandwidth provisioning required to achieve a particular target
for delay, jitter, and loss, although none of these studies has yet been accepted
as defi nitive. In the rest of this section, by way of example, we use the results
attained in the study by Telkamp to illustrate the capacity planning methodol-
ogy. We chose these results because they probably represent the most widely
used guidance with respect to core network overprovisioning.

In order to investigate bandwidth provisioning requirements, a number of sets
of packet level measurements were captured from an operational IP backbone,
carrying Internet and VPN traffi c. The traces were used in simulation to determine
the bursting and queuing of traffi c at small timescales over this interval, to identify
the relationship between measures of link utilization that can be easily obtained
with capacity planning techniques (e.g., 5-minute average utilizations), and
queuing delays experienced in much smaller timeframes, in order to determine
the overprovisioning factors required to achieve various SLA targets. By using
traces of actual traffi c they avoided the need to make assumptions about the nature
of the traffi c distribution.

Self-similar traffic Poisson traffic

Hours

Seconds Seconds

Minutes Minutes

Hours

FIGURE 11.3

Self-similar versus Poisson traffi c.

11.1 Core Network Capacity Planning 295

Each set of packet measurements or “trace” contained timestamps in micro-
seconds of the arrival time for every packet on a link, over an interval of minutes.
The traces, each of different average rates, were then used in a simulation where
multiple traces were multiplexed together and the resulting trace was run through
a simulated fi xed-speed queue (e.g., at 622 Mbps), as shown in Figure 11.4.

In the example in Figure 11.4, three traces with 5-minute average rates of
126 Mbps, 206 Mbps, and 240 Mbps respectively are multiplexed together result-
ing in a trace with a 5-minute average rate of 572 Mbps, which is run through a
622 Mbps queue (i.e., at a 5-minute average utilization of 92 percent). The queue
depth was monitored during the simulation to determine how much queuing delay
was experienced. This process was then repeated, with different mixes of traffi c;
as each mix had a different average utilization, multiple data points were produced
for a specifi c interface speed.

After performing this process for multiple interface speeds, results were derived
showing the relationship between average link utilization and the probability of
queuing delay. The graph in Figure 11.5 uses the results of this study to show the
relationship between the measured 5-minute average link utilization and queuing
delay for a number of link speeds. The delay value shown is the P99.9 delay,
meaning that 999 out of 1000 packets will have a delay caused by queuing that
is lower than this value.

The x-axis in Figure 11.5 represents the 5-minute average link utilization; the
y-axis represents the P99.9 delay. The lines show fi tted functions to the simulation
results for various link speeds, from 155 Mbps to 2.5 Gbps. Note that other rela-
tionships would result if the measured utilization was averaged over longer time
periods (e.g., 10 minutes or 15 minutes), as in these cases there may be greater
variations that are hidden by averaging, and hence lower average utilizations
would be needed to achieve the same delay. The results in Figure 11.5 show that
for the same relative levels of utilization, lower delays are experienced for 1 Gbps
links than for 622 Mbps links; that is, the level of overprovisioning required to

Sampled traffic

Sampled traffic

Sampled traffic

126 Mbps

206 Mbps 572 Mbps
622 Mbps

204 Mbps
Monitor queuing delay

FIFO queue

Fixed service rate

Example: 92% utilization

FIGURE 11.4

Queuing simulation.
Source: Adapted from Traffi c Characteristics and Network Planning by Thomas Telkamp.

296 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

achieve a particular delay target reduces as link bandwidth increases, which is
indicative of Poisson traffi c.

Taking these results as an example, we can use them to determine the over-
provisioning factor that is required to achieve particular SLA objectives. For
example, if we assume that DiffServ is not deployed in the core network and want
to achieve a target P99.9 queuing delay of 2 ms on a 155 Mbps link, then from
Figure 11.5, the 5-minute average link utilization should not be higher than
approximately 70 percent or 109 Mbps (i.e., an OP of 1/0.7 = 1.42 is required),
meaning that the provisioned link bandwidth should be at least 1.42 times the
5-minute average link utilization. To achieve the same objective for a 1 Gbps link
the 5-minute average utilization should be no more than 96 percent or 960 Mbps
(i.e., OP = 1.04).

Although the study by Telkamp did not focus on voice traffi c, in similar studies
by the same authors for VoIP-only traffi c (with silence suppression) the OP factors
required to achieve the same delay targets were similar.

We can apply the same principle on a per-class basis where DiffServ is deployed.
To assure a P99.9 queuing delay of 1 ms for a class serviced with an assured for-
warding (AF) PHB providing a minimum bandwidth assurance of 622 Mbps (i.e.,

0 20 40 60 80 100

0

2

4

6

8

10

% Utilization

S
ca

le
d

P
99

.9
 d

el
ay

 (
m

s)

155 Mbps
622 Mbps
1 Gbps
2.4 Gbps

FIGURE 11.5

Queuing simulation results.
Source: Adapted from Traffi c Characteristics and Network Planning by Thomas Telkamp.

11.1 Core Network Capacity Planning 297

25 percent of a 2.5 Gbps link), the 5-minute average utilization for the class
should not be higher than approximately 85 percent or 529 Mbps. Considering
another example, to ensure a P99.9 queuing delay of 500 μs for a class serviced
with an expedited forwarding (EF) per-hop behavior (PHB) implemented with
a strict priority queue on a 2.5 Gbps link, as the scheduler servicing rate of the
strict priority queue is 2.5 Gbps, the 5-minute average utilization for the
class should not be higher than approximately 92 percent or 2.3 Gbps (i.e., OP =
1.09) of the link rate. Note that these results are for queuing delay only
and exclude the possible delay impact on EF traffi c due to the scheduler and the
interface FIFO.

The delay that has been discussed so far is per link and not end-to-end across
the core. In most cases, traffi c will traverse multiple links in the network, and
hence will potentially be subject to queuing delays multiple times. Based on the
results by Telkamp, the P99.9 delay was not additive over multiple hops; rather,
the table in Figure 11.6 shows the delay “multiplication factor” experienced over
a number of hops, relative to the delay over a single hop.

If the delay objective across the core is known, the overprovisioning factor
that needs to be maintained per link can be determined. The core delay objective
is divided by the multiplication factor from the table in Figure 11.6 to fi nd the
per-hop delay objective. This delay can then be looked up in the graphs in Figure
11.5 to fi nd the maximum utilization for a specifi c link capacity that will meet this
per-hop queuing delay objective.

Consider for example, a network comprising 155 Mbps links with a P99.9 delay
objective across the core network of 10 ms, and a maximum of 8 hops. From
Figure 11.5, the 8 hops cause a multiplication of the per-link number by 3.3, so
the per-link objective becomes 10 ms/3.3 = 3 ms. From Figure 11.6, the 3 ms line
intersects with the 155 Mbps utilization curve at 80 percent. So the conclusion is
that the 5-minute average utilization on the 155 Mbps links in the network should

Number of hops Delay multiplication factor

0.11

7.12

9.13

2.24

5.25

8.26

0.37

3.38

FIGURE 11.6

P99.9 delay multiplication factor.

298 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

not be more than approximately 80 percent or 124 Mbps (i.e., OP = 1.25) to
achieve the goal of 10 ms delay across the core.

11.1.4 Simulation and Analysis

After obtaining the demand matrix, allowing for growth, and determining the
overprovisioning factors required to achieve specifi c SLA targets, the fi nal step in
the capacity planning process is to overlay the traffi c demands onto the network
topology. This requires both an understanding of the network routing model—for
example, whether an interior gateway routing protocol (IGP), such as IS–IS or
OSPF, is used or whether MPLS traffi c engineering is used—and an understanding
of the logical network topology (i.e., link metrics and routing protocol areas) in
order to understand the routing through the network that demands would take
and hence to correctly map the demands to the topology.

There are a number of commercially available tools that can perform this func-
tion. Some can also run failure case simulations, which consider the loading on
the links in network element failures; it is common to model for single element
failures, where an element could be a link, a node, or a shared risk link group
(SRLG). SRLGs can be used to group together links that might fail simultaneously;
to represent the failure of unprotected interfaces sharing a common line card or
circuits sharing a common fi ber duct, for example. The concept of SRLGs can also
be applied to more than just links, grouping links and nodes which may represent
a shared risk, in order to consider what would happen to the network loading in
the presence of the failure of a complete POP, for example.

The results of the simulation provide indications of the expected loading of
the links in the network; this could be the aggregate loading or the per-class
loading if DiffServ is deployed. The forecasted link loadings can then be compared
against the provisioned link capacity, taking the calculated overprovisioning
factors into account, to determine the future bandwidth provisioning plan required
to achieve the desired SLAs. The capacity planner can then use this information
to identify links which may be overloaded, such that SLAs will be violated, or areas
where more capacity is provisioned than is actually needed.

11.2 IP TRAFFIC ENGINEERING
Capacity planning, as discussed in the preceding section, is the process of ensur-
ing that suffi cient bandwidth is provisioned to assure that the committed core SLA
targets can be met. IP traffi c engineering is the logical process of manipulating
traffi c on an IP network to make better use of the network capacity, by making
use of capacity that would otherwise be unused, for example. Hence, traffi c engi-
neering is a tool that can be used to ensure that the available network capacity is
appropriately provisioned.

We contrast traffi c engineering to network engineering, which is the physical
process of manipulating a network to suit the traffi c load, by putting in a new link
between two POPs to support a traffi c demand between them, for example.
Clearly, network engineering and traffi c engineering are linked; however, in this
section we focus on the options for traffi c engineering in an IP network. The
outcome of the capacity planning process described in the previous section may
drive the need for traffi c engineering within a network.

In IP-based networks, traffi c engineering is often considered synonymous with
MPLS traffi c engineering in particular, which is described in Section 11.2.3;
however, there are other approaches in IP networks, including traffi c engineering
through the manipulation of IGP metrics—which is described in Section 11.2.2.

11.2.1 The Problem

In conventional IP networks IGPs such as OSPF and IS–IS forward IP packets on
the shortest cost path toward the destination IP subnet address of each IP packet.
The computation of the shortest cost path is based on a simple additive metric
(also known as weight or cost), where each link has an applied metric, and the
cost for a path is the sum of the link metrics on the path. Availability of network
resources, such as bandwidth, is not taken into account and, consequently, traffi c
can aggregate on the shortest (i.e., lowest-cost) path, potentially causing links on
the shortest path to be congested while links on alternative paths are under-
utilized. This property of conventional IP routing protocols, of traffi c aggregation
on the shortest path, can cause suboptimal use of network resources, and can
consequently impact the SLAs that can be offered, or require more network capac-
ity than is optimally required.

Consider, for example, the network in Figure 11.7, where each link is 2.5 Gbps
and each link has the same metric (assume a metric of 1). If there were a traffi c
demand of 1 Gbps from R1 to R8, and a traffi c demand of 2 Gbps from R2 to R8,
then the IGP would pick the same route for both traffi c demands (i.e., R1/R2 →
R3 → R4 → R7 → R8), because it has a metric of 4 (summing the metric of 1 for
each of the links traversed) and hence is the shortest path.

Therefore, in this example, the decision to route both traffi c demands by the
top path (R3 → R4 → R7) may result in the path being congested, with a total
offered load of 3 Gbps, while there is capacity available on the bottom path
(R3 → R5 → R6 → R7). Traffi c engineering aims to provide a solution to this
problem.

The problem of traffi c engineering can be defi ned as a mathematical optimiza-
tion problem; that is, a computational problem in which the objective is to fi nd
the best of all possible solutions. Given a fi xed network topology and a fi xed
source-to-destination traffi c demand matrix to be carried, the optimization problem
could be defi ned as determining the routing of fl ows that makes most effective
use of (either aggregate or per-class) capacity.

11.2 IP Traffi c Engineering 299

300 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

In order to solve this problem, however, it is important to defi ne what is meant
by the objective “most effective:” This could be to minimize the maximum link/
class utilization in normal network working case conditions (i.e., when there are
no network element failures). Alternatively the optimization objective could be to
minimize the maximum link/class utilization under network element failure case
conditions; typically single element (i.e., link, node, or SRLG) failure conditions
are considered.

In considering the deployment of traffi c engineering mechanisms, it is imper-
ative that the primary optimization objective is defi ned in order to understand
what benefi ts the different options for traffi c engineering can provide and where
traffi c engineering will not help, but rather more bandwidth is required. Other
optimization objectives are possible, such as minimizing propagation delay;
however, if considered these are normally secondary objectives.

If we apply the primary optimization objective of minimizing the maximum
link utilization in network working case (i.e., normal operating) conditions to the
network shown in Figure 11.7 then the solution would be to route some subset
of the traffi c over the top path (R3 → R4 → R7) and the remainder over the
bottom path (R3 → R5 → R6 → R7) such that congestion on the top path is pre-
vented. If, however, we apply the primary optimization objective of minimizing
the maximum link utilization during single network element failure case condi-
tions, then on the failure of the link between R3 and R4, for example, both traffi c
demands R1 to R8 and R2 to R8 will be rerouted onto the bottom path (R3 → R5
→ R6 → R7), which would be congested, as shown in Figure 11.8.

The fi gure illustrates that traffi c engineering cannot create capacity and that in
some topologies, and possibly dependent on the optimization objective, traffi c
engineering may not help. In network topologies that have only two paths avail-
able in normal network working case conditions, such as ring-based topologies,

R8

R2

R1

R3

R4

R5 R6

R7
1

1

1

1

1
1

1

1

= 2.5 Gbps link (metric shown
 next to link)
= Path for 1 Gbps R1 to R8 demand
= Path for 2 Gbps R2 to R8 demand

FIGURE 11.7

Traffi c engineering: the problem.

it is not possible to apply traffi c engineering with a primary optimization objective
of minimizing the maximum link utilization during network element failure case
conditions; there is no scope for sophisticated traffi c engineering decisions in
network failure case conditions; if a link on one path fails, the other path is taken.
In these cases, if congestion occurs during failure conditions then more capacity
is simply required. More meshed network topologies may allow scope for traffi c
engineering in network element failure case conditions.

The chief benefi t of traffi c engineering is one of cost saving. Traffi c engineer-
ing gives the network designer fl exibility in how to manage backbone bandwidth
to achieve proper SLAs. The more effective use of bandwidth potentially allows
higher SLA targets to be offered with the existing backbone bandwidth. Alterna-
tively, it offers the potential to achieve the existing SLA targets with less backbone
bandwidth or to delay the time until bandwidth upgrades are required. The fol-
lowing conditions can all be drivers for the deployment of traffi c engineering
mechanisms:

Network asymmetry: Asymmetrical network topologies can often lead to traffi c
being aggregated on the shortest path while other viable paths are underuti-
lized. Network designers will often try to ensure that networks are symmetrical
such that where parallel paths exist, they are of equal cost and hence the load
can be balanced across them using conventional IGPs, which support load
balancing across multiple equal cost paths. Ensuring network symmetry,
however, is not always possible due to economic or topological constraints;
traffi c engineering offers potential benefi ts in these cases.

Unexpected demands: In the presence of unexpected traffi c demands (e.g., due
to some new popular content), there may not be enough capacity on the short-

1

1

1

1

1

1

1
R8

R2

R1

R3

R4

R5 R6

R7

1

= 2.5 Gbps link (metric shown
 next to link)
= Path for 1 Gbps R1 to R8 demand
= Path for 2 Gbps R2 to R8 demand
= Failed link

FIGURE 11.8

Failure case optimization.

11.2 IP Traffi c Engineering 301

302 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

est path (or paths) to satisfy the demand. There may be capacity available on
non-shortest paths, however, and hence traffi c engineering can provide
benefi t.

Long bandwidth lead-times: There may be instances when new traffi c demands
are expected and new capacity is required to satisfy the demand, but is not
available in suitable timescales. In these cases, traffi c engineering can be used
to make use of available bandwidth on non-shortest path links.

The potential benefi t of different approaches to traffi c engineering can be
quantifi ed by using a holistic approach to capacity planning, such as described
in Section 11.1, which is able to overlay the network traffi c matrix on the
network topology, while simulating the relative network loading taking into
account different traffi c engineering schemes. A network-by-network analysis is
required to determine whether the potential TE benefi t will justify the additional
deployment and operational cost associated with the deployment of these
technologies.

Traffi c engineering can potentially be performed at layer 2 (i.e., by traffi c engi-
neering the underlying transport infrastructure) or at layer 3. In focusing on layer
3, in the following sections we consider possible approaches for IP traffi c engi-
neering, and consider traffi c engineering at layer 2 to be an inception of network
engineering when considered from a layer 3 perspective.

11.2.2 IGP Metric-Based Traffi c Engineering

The tactical and ad hoc tweaking of IGP metrics to change the routing of traffi c
and relieve congested hotspots has long been practiced in IP backbone networks.
For a long time, however, this approach was not considered viable for systematic
network-wide traffi c engineering and it was often cited that changing the link
metrics just moves the problem of congestion around the network. If we consider
the network from Figure 11.7, by changing the metric of the link from R3 to R4
from 1 to 3, as can be seen in Figure 11.9, the traffi c demands both from R1 to
R8 and from R2 to R8 are now routed over the bottom path (R3 → R5 → R6 →
R7), which is now the least cost path (cost of 5). In this case the congestion has
moved to the bottom path.

If, however, the metric of the link from R3 to R4 was changed from 1 to 2
(rather than 1 to 3), then the top path (R3 → R4 → R7) and the bottom path (R3
→ R5 → R6 → R7) would have equal path costs of 5, as shown in Figure 11.10.

Where equal cost IGP paths exist, equal costs multipath (ECMP) algorithms are
used to balance the load across the equal cost paths. There are no standards defi n-
ing how ECMP algorithms should balance traffi c across equal cost paths, and dif-
ferent vendors may implement different algorithms. ECMP algorithms typically,
however, perform a hash function on fi elds in the header of the received IP
packets to determine which one of the paths should be used for a particular
packet. A common approach is to perform the hash function using the 5-tuple of

IP protocol, source IP address, destination IP address, source UDP/TCP port, and
destination UDP/TCP as inputs. The result of such a hash function is that load
balancing across equal cost paths would be achieved for general distributions of
IP addresses and ports. Such approaches also ensure that packets within a single
fl ow are consistently hashed to the same path, which is important to prevent
resequencing within a fl ow due to the adverse impact that packet reordering can
have on the performance of some applications.

If such an ECMP algorithm were used in the example shown in Figure 11.10,
and assuming a general distribution of addresses and ports, the 3 Gbps aggregate

= 2.5 Gbps link (metric shown
 next to link)
= Path for 1 Gbps R1 to R8 demand
= Path for 2 Gbps R2 to R8 demand

1

1

1

1

1

1

1

3 R8

R2

R1

R3

R4

R5 R6

R7

FIGURE 11.9

Changing link metrics moves congestion.

1

1

1

1

1

1
2 R8

R2

R1

R3

R4

R5 R6

R7

1

= 2.5 Gbps link (metric shown
 next to link)
= Path for 1 Gbps R1 to R8 demand
= Path for 2 Gbps R2 to R8 demand

FIGURE 11.10

Equal IGP path costs.

11.2 IP Traffi c Engineering 303

304 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

demand from R1 and R2 to R8, would be evenly distributed with approximately
1.5 Gbps on the top path and approximately 1.5 Gbps on the bottom path, and
therefore the bandwidth would be used effectively and congestion would be
avoided. Hence, the mantra that tweaking IGP metrics just moves the problem of
congestion around the network is a generalization that is not always true in prac-
tice. For some symmetrical network topologies and matrices of traffi c, ECMP
algorithms may be able to distribute the load effectively without the need for other
traffi c engineering approaches at all.

In recognition of the possible application of metric-based traffi c engineering,
there has been a signifi cant recent increase in research in the approach of system-
atic (i.e., networkwide) traffi c engineering by manipulating IGP metrics. Further,
IGP metric-based traffi c engineering has been realized in the development of
automated planning tools, which take inputs of the network logical (i.e., IGP) and
physical topology, together with the network traffi c demand matrix and derive a
more optimal set of link metrics based on a defi ned optimization goal. These
optimization goals may be to minimize the maximum utilization on aggregate, or
per class.

IGP metric-based traffi c engineering provides less granular traffi c control capa-
bilities than MPLS traffi c engineering (see Section 11.2.3). The effectiveness of
IGP metric-based traffi c engineering is dependent on the network topology, the
traffi c demand matrix, and the optimization goal. For the proposed AT&T World-
Net backbone, it has been found that weight settings performed within a few
percent of the optimal general routing is where the fl ow for each demand is opti-
mally distributed over all paths between source and destination. Optimal distribu-
tion may be defi ned by the solution to the maximum multicommodity fl ow
problem, where the total fl ow summed over all commodities is to be maximized.
Other studies conclude that in the six networks they study, metric-based TE can
be 80 to 90 percent as effi cient as the theoretical optimal general routing. Further,
they surmise that the greatest relative difference in performance between IGP
metric-based traffi c engineering and traffi c engineering via explicit routing (such
as provided by MPLS traffi c engineering) occurs in large networks with heteroge-
neous link speeds (i.e., where ECMP cannot be readily used to split traffi c between
parallel circuits with different capacities).

11.2.3 MPLS Traffi c Engineering

Unlike conventional IP routing, which uses pure destination-based forwarding,
Multiprotocol Label Switching (MPLS) traffi c engineering uses the implicit MPLS
characteristic of separation between the data plane (also known as the forwarding
plane) and the control plane to allow routing decisions to be made on criteria
other than the destination address in the IP packet header, such as available link
bandwidth. MPLS TE provides constraint-based path computation and explicit
routing capabilities at layer 3, which can be used to divert traffi c away from con-

gested parts of the network to links where bandwidth is available and hence make
more optimal use of available capacity. Label switched paths (LSPs), which are
termed “traffi c engineering tunnels” in the context of MPLS TE, are used to steer
traffi c through the network allowing links to be used which are not on the IGP
shortest path to the destination.

Note that, as well as being used to solve the traffi c engineering problem, MPLS
TE has other applications including admission control, route pinning, and MPLS
TE fast reroute. Route pinning is the ability to explicitly defi ne the exact path that
a particular traffi c fl ow may take through the network.

MPLS TE Example Tunnel Establishment
Consider the network in Figure 11.11, where every link is 2.5 Gbps and each has
the same metric (assume a metric of 1), and where a single MPLS TE tunnel of
1 Gbps is already established from LSR1 to LSR8, using the path LSR1 → LSR3 →
LSR4 → LSR7 → LSR8, because it is the shortest path (path cost = 4) with avail-
able bandwidth. In this example, it is assumed that the entire network has been
enabled for MPLS TE, and that the full bandwidth on each interface is used for
MPLS TE.

The following subsections describe an example sequence of events, which
considers the establishment of another TE tunnel, a 2 Gbps tunnel from LSR2 to
LSR8.

Event 1: Resource/Policy Information Distribution

Each router within the network fl oods information on the available bandwidth
resources for its connected links, together with administrative policy constraint
information, throughout the network by means of extensions to link-state based
IGP routing protocols such as IS–IS and OSPF.

LSR8

LSR2

LSR1

LSR3

LSR4

LSR5 LSR6

LSR7

1

1

1

1

1

1
1

1

= 2.5 Gbps link (metric shown
 next to link)
= 1 Gbps tunnel from LSR1 to LSR8

FIGURE 11.11

MPLS TE example tunnel establishment.

11.2 IP Traffi c Engineering 305

306 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

As TE tunnels are unidirectional, each TE-enabled router maintains a pool of
available (i.e., currently unused) TE bandwidth in the egress direction for each
interface that it has. Considering LSR3 for example, because the tunnel from LSR1
to LSR8 has already reserved 1 Gbps of bandwidth on the interface to LSR4, LSR3
will only advertise 1.5 Gbps worth of available bandwidth for that interface. For
all of its other interfaces, LSR3 will advertise 2.5 Gbps of available bandwidth.

Event 2: Constraint-Based Path Computation

All of the routers within the MPLS TE area will receive the information on the
available network resources, advertised via IS-IS or OSPF. With MPLS TE, tunnel
paths can be specifi ed manually, but more commonly are either dynamically cal-
culated online in a distributed fashion by the TE tunnel sources (known as tunnel
“head-ends”) themselves or determined by an offl ine centralized function (also
know as a tunnel server or path computation element) which then specifi es the
explicit tunnel path a head-end should use for a particular tunnel. With either
approach, constraint-based routing is performed using a constraint-based shortest
path fi rst (CSPF) algorithm to determine the path that a particular tunnel will take
based on a fi t between the available network bandwidth resources (and optionally
policy constraints) and the required bandwidth (and policies) for that tunnel.

This CSPF algorithm is similar to a conventional IGP shortest path fi rst (SPF)
algorithm, but also takes into account bandwidth and administrative constraints,
pruning links from the topology if they advertised insuffi cient resources (i.e., not
enough bandwidth for the tunnel), or if they violate tunnel policy constraints. The
shortest (i.e., lowest cost) path is then selected from the remaining topology.
Whether online or offl ine path calculation is used, the output is an explicit route
object (ERO) which defi nes the hop-by-hop path the tunnel should take and which
is handed over to RSVP in order to signal the tunnel label switched path (LSP).

We assume online path calculation by the tunnel head-end, in this case LSR2.
There are two possible paths from LSR2 to LSR8, either the top path (LSR2 →
LSR3 → LSR4 → LSR7 → LSR8) or the bottom path (LSR2 → LSR3 → LSR5 →
LSR6 → LSR7 → LSR8). As the tunnel from LSR2 to LSR8 is for 2 Gbps, there is
insuffi cient bandwidth currently available (1.5 Gbps only) on the links from LSR3
→ LSR4 and from LSR4 → LSR7 and hence the top path is discounted by the CSPF
algorithm. Therefore, in this example the bottom path is the only possible path
for the tunnel from LSR2 to LSR8, and output of the CSPF algorithm is an ERO
which specifi es the IP addresses of the hops on the path (i.e., LSR2 → LSR3 →
LSR5 → LSR6 → LSR7 → LSR8).

Event 3: RSVP for Tunnel Signaling

The Resource ReSerVation Protocol (RSVP), with enhancements for MPLS TE, is
used to signal the TE tunnel. RSVP is used differently in the context of MPLS TE
than it is for per-fl ow admission control. RSVP uses two signaling messages, a Path
message and a Resv message.

The Path message carries the ERO and other information including the requested
bandwidth for the tunnel, which is used for admission control. An RSVP Path
message is sent from the tunnel head-end to the tunnel tail-end, as shown in Figure
11.12, explicitly routed hop-by-hop using the ERO.

At each router that receives the Path message, an admission control decision
is made to verify that the outbound interface that will be used to forward the Path
message to the next hop defi ned by the ERO has suffi cient resources available to
accept the requested bandwidth for the tunnel. This admission control decision
may seem redundant as the CSPF algorithm has already picked a path with suffi -
cient bandwidth; however, it is required because it is possible that the head-end
router may have performed the CSPF algorithm on information which is now out
of date, for example, if another tunnel has been set up in the intervening period
since the tunnel path was calculated.

If the admission control decision is successful, the path message is forwarded
to the next hop defi ned by the ERO, until the path message reaches the tail-end
router. MPLS TE supports the concept of pre-emption and a lower priority tunnel
may be pre-empted to allow a higher priority tunnel to be set up. If the admission
control decision is unsuccessful at any hop, a PathErr message is returned to the
tunnel head-end.

Note that where RSVP is used for per-fl ow admission control, rather than for
MPLS TE tunnel signaling, the admission control decision is made in response to
the receipt of the Resv message.

If the tail-end receives the Path message, then the admission control decisions
must have been successful at each hop on the tunnel path. In response, the tail-
end router originates a reservation (Resv) message which follows the path defi ned

 2.5 Gbps link (metric shown next to link)
= 1 Gbps tunnel from LSR1 to LSR8

Path
Path

Path
P

at
h

Path

LSR8

LSR2

LSR1

LSR3

LSR4

LSR5 LSR6

LSR7

1

1

1

1

1

1

11

FIGURE 11.12

MPLS TE example tunnel establishment: Event 3a.

11.2 IP Traffi c Engineering 307

308 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

by the ERO in reverse in order to establish the LSP that defi nes the tunnel, as
shown in Figure 11.13.

At each hop on the tunnel path that receives the Resv message, the tunnel
reservation is confi rmed. In order to set up the tunnel LSP, the Resv message is
then forwarded to the upstream (i.e., closer to head-end) neighbor on the tunnel
path, together with MPLS label value that this router expects to be used for traffi c
on the tunnel received from the upstream neighbor.

In this example, penultimate hop popping (PHP) is assumed and LSR8, as the
fi nal hop on the tunnel path, advertises an implicit null label to LSR7 accordingly.
LSR7 then advertises label value 12 to LSR6, and so on, until the Resv message
reaches the tunnel head-end. This is an example of downstream on-demand label
binding with upstream label distribution, where upstream/downstream is with
reference to the direction of the fl ow packets on the LSP.

Event 4: Assignment of Traffi c to Tunnels

When the Resv message reaches the head-end, the tunnel LSP has been success-
fully established and it can be used for traffi c forwarding. There are a number of
ways to determine when traffi c should use the TE tunnel rather than the conven-
tional IGP path. The simplest is to use static routing with a static route defi ning
that traffi c to a particular destination subnet address should use the tunnel rather
than the conventional IGP route. Some vendors also support the capability to

Resv

Resv

R
es

v

Resv

LSR8

LSR2

LSR1

LSR3

LSR4

LSR5 LSR6

LSR7

v. Use label 30

iv. Use label 57
iii. Use label 4

ii. Use label 12

i. Implicit NULL

1

1
1

1

1

1

11

Resv

Resv

= 2.5 Gbps link (metric shown next to link)

= 1 Gbps tunnel from LSR1 to LSR8

= Resv message and advertised label

iii. Use label 4

FIGURE 11.13

MPLS TE example tunnel establishment: Event 3b—label advertisement.

automatically calculate IP routes to forward traffi c over MPLS TE tunnels, by adapt-
ing Dijkstra’s SPF algorithm.

Having decided to forward some traffi c onto the tunnel, the head-end router,
in this case LSR2, assigns traffi c to that tunnel by forwarding it on the tunnel LSP.
It forwards traffi c on the TE tunnel by sending it toward LSR3 with label value 30
as shown in Figure 11.14.

LSR3 receives the labeled packet, and label switches it to LSR5 swapping the
label from 30 to 57. Note that LSR3 uses only the label to determine how to forward
the packet (i.e., it does not look at the underlying IP destination address. The tun-
neled packet continues on the LSP until it reaches LSR7, which as the penultimate
hop, pops off the outer label and forwards it to LSR8, which is the tunnel tail-end.
If a label stack is not used, the tail-end router looks at the IP destination address to
determine how to forward the received packet; if a label stack is used (e.g., in the
context of BGP MPLS VPNs as per RFC 4364), the tail-end router uses the outermost
of the remaining labels to determine how to forward the received packet.

Event 5: TE Tunnel Control and Maintenance

Periodic RSVP Path/Resv messages maintain the tunnel state. Unlike tunnel setup,
Path/Resv messages used for tunnel maintenance are sent independently and
asynchronously.

LSR8

LSR2

LSR1

LSR3

LSR4

LSR5 LSR6

LSR7

i. Impose
label 30 ii. Swap label 30

label 57 iii. Swap label 57
label 4

iv. Swap label 4
label 12

v. POP off
outer label

1

1
1

1

1

1

11

= label switching behavior
at each hop on the path

ii. Swap label 30
label 57

= 2.5 Gbps link (metric shown next to link)
= 1 Gbps tunnel from LSR1 to LSR8
= 2 Gbps tunnel from LSR1 to LSR8

FIGURE 11.14

MPLS TE example tunnel establishment: Event 4—label switching.

11.2 IP Traffi c Engineering 309

310 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

The tunnel head-end can tear down a tunnel by sending a PathTear message.
If a network element (link or node) on the tunnel path should fail, the adjacent
upstream neighboring router on the tunnel path will send a PathErr message to
the head-end, which will then attempt to recalculate a new tunnel path around
the failed element. Similarly, if a tunnel is pre-empted, a PathErr message will be
sent to the head-end, which will then attempt to recalculate a new tunnel path
where bandwidth is available.

DiffServ-Aware MPLS Traffi c Engineering
MPLS TE and DiffServ can be deployed concurrently in an IP backbone, with TE
determining the path that traffi c takes on aggregate based on aggregate bandwidth
constraints, and DiffServ mechanisms being used on each link for differential
scheduling of packets on a per-class of service basis. TE and DiffServ are orthogo-
nal technologies which can be used in concert for combined benefi t: TE allows
distribution of traffi c on non-shortest paths for more effi cient use of available
bandwidth, while DiffServ allows SLA differentiation on a per-class basis. As it was
initially defi ned and has been described in the previous section, however, MPLS
TE computes tunnel paths for aggregates across all traffi c classes and hence traffi c
from different classes may use the same TE tunnels. In this form MPLS TE is aware
of only a single aggregate pool of available bandwidth per link and is unaware of
what specifi c link bandwidth resources are allocated to which queues, and hence
to which classes.

DiffServ-aware MPLS TE (DS-TE) extends the basic capabilities of TE to allow
constraint-based path computation, explicit routing, and admission control to be
performed separately for different classes of service. DS-TE provides the capability
to enforce different bandwidth constraints for different classes of traffi c through
the addition of more pools of available bandwidth on each link. These bandwidth
pools are subpools of the aggregate TE bandwidth constraint (i.e., the subpools are
a portion of the aggregate pool). This allows a bandwidth subpool to be used for a
particular class of traffi c, such that constraint-based routing and admission control
can be performed for tunnels carrying traffi c of that class, with the aggregate pool
used to enforce an aggregate constraint across all classes of traffi c. There are two
different models that defi ne how the subpool bandwidth constraints are applied:

Maximum allocation model: With the maximum allocation bandwidth constraints
model (MAM) for DiffServ-aware MPLS TE, independent subpool constraints
can be applied to each class, and an aggregate constraint can be applied across
all classes.

Russian doll model: With the Russian dolls bandwidth constraints model (RDM)
for DiffServ-aware MPLS TE, a hierarchy of constraints is defi ned, which con-
sists of an aggregate constraint (global pool), and a number of subconstraints
(subpools) where constraint 1 is a subpool of constraint 0, constraint 2 is a
subpool of constraint 1, and so on.

The choice of which bandwidth allocation model to use depends on the way
in which bandwidth allocation and pre-emption will be managed between tunnels
of different classes. It is noted that if traffi c engineering is required for only one
of the deployed traffi c classes (e.g., for EF traffi c only), then DS-TE is not required
and standard single bandwidth pool TE is suffi cient.

In support of DS-TE, extensions have been added to IS-IS and OSPF to advertise
the available subpool bandwidth per link. In addition, the TE constraint-based
routing algorithms have been enhanced for DS-TE in order to take into account
the constraint of available subpool bandwidth in computing the path of subpool
tunnels. RSVP has also been extended to indicate the constraint model and the
bandwidth pool, for which a tunnel is being signaled.

As described in Section 11.1.3, setting an upper bound on the EF class (e.g.,
VoIP) utilization per link is necessary to bound the delay for that class and there-
fore to ensure that the SLA can be met. DS-TE can be used to assure that this upper
bound is not exceeded. For example, consider the network in Figure 11.15, where
each link is 2.5 Gbps and an IGP and TE metric value of one is applied to each
link.

DS-TE could be used to ensure that traffi c is routed over the network so that,
on every link, there is never more than a defi ned percentage of the link capacity
for EF class traffi c, while there can be up to 100 percent of the link capacity for
EF and AF class traffi c in total. In this example, for illustration we assume that the
defi ned maximum percentage for EF traffi c per link is 50 percent. LSR1 is sending
an aggregate of 1 Gbps of traffi c to LSR8, and R2 is also sending an aggregate of
1 Gbps of traffi c to LSR8. In this case, both the IGP (i.e., if TE were not deployed)
and non-DiffServ aware TE would pick the same route. The IGP would pick the

LSR8

LSR2

LSR1

LSR3

LSR4

LSR5 LSR6

LSR7

1

1
1

1

1

1

11

= 2.5 Gbps link (metric shown next to link)
= 1 Gbps tunnel from LSR1 to LSR8
= 1 Gbps tunnel from LSR1 to LSR8

FIGURE 11.15

DS-TE deployment example 1.

11.2 IP Traffi c Engineering 311

312 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

top route (R1/R2 → R3 → R4 → R5 → R8) because it is the shortest path
(with a metric of 4). Assuming 1 Gbps tunnels were used from both LSR1 and
LSR2 to LSR8, TE would also pick the top route, because it is the shortest path
that has suffi cient bandwidth available (metric of 4, 2.5 Gbps bandwidth available,
2 Gbps required). The decision to route both traffi c aggregates via the top path
may not seem appropriate if we examine the composition of the aggregate traffi c
fl ows.

If each of the aggregate fl ows were composed of 250 Mbps of VoIP traffi c and
750 Mbps of standard data traffi c, then in this case the total VoIP traffi c load
on the top links would be 500 Mbps, which is within our EF class per-link
bound of 50 percent = 1 Gbps. If, however, each traffi c aggregate is comprised
of 750 Mbps of VoIP and 250 Mbps of standard data traffi c then such routing
would aggregate 1.5 Gbps of VoIP traffi c on the R3 → R4 → R5 links, thereby
exceeding our EF class bound of 50 percent. DS-TE can be used to overcome this
problem if, for example, each link is confi gured with an available aggregate band-
width pool of 2.5 Gbps, and an available VoIP class subpool bandwidth of 1.25 Gbps
(i.e., 50 percent of 2.5 Gbps). A voice over IP class subpool tunnel of 750 Mbps
is then confi gured from R1 to R8, together with a standard class aggregate pool
tunnel of 250 Mbps. Similarly, from R2 to R8 a VoIP class subpool tunnel of
750 Mbps and a standard class aggregate pool tunnel of 250 Mbps are confi gured
from R2 to R8.

The DS-TE constraint-based routing algorithm then routes the VoIP subpool
tunnels to ensure that the 1.25 Gbps bound is not exceeded on any link, and of
the tunnels from R1 and R2 to R8, one VoIP subpool tunnel would be routed via
the top path (R1/R2 → R3 → R4 → R5 → R8) and the other via the bottom path
(R1/R2 → R6 → R7 → R5 → R8). A propagation-delay constraint can also be
specifi ed for the subpool tunnels to ensure that the chosen path exhibits a prop-
agation delay that is smaller or equal to the specifi ed value. In this particular case,
there would be enough available bandwidth for both aggregate pool tunnels to
be routed via the top path (R1/R2 → R3 → R4 → R5 → R8), which is the short-
est path with available aggregate bandwidth, as shown in Figure 11.16, for
example.

Hence, DS-TE allows separate route computation and admission control for
different classes of traffi c, which enables the distribution of EF and AF class load
over all available EF and AF class capacity making optimal use of available capac-
ity. It also provides a tool for constraining the class utilization per link to a
specifi ed maximum thus ensuring that the class SLAs can be met. In order to
provide these benefi ts, however, the confi gured bandwidth for the subpools must
align to the queuing resources that are available for traffi c-engineered traffi c.

MPLS TE Deployment Models and Considerations
MPLS TE can be deployed either in an ad hoc fashion, with selective tunnels con-
fi gured tactically to move a subset of traffi c away from congested links, or system-
atically, with all backbone traffi c transported in TE tunnels.

Tactical TE Deployment

MPLS TE can be used tactically in order to offl oad traffi c from congestion hotspots;
this is an ad hoc approach, aimed at fi xing current problems and as such is gener-
ally a short-term reactive operational/engineering process. When used in this way,
rather than all traffi c being subjected to traffi c engineering, TE tunnels are deployed
to reroute a subset of the network traffi c from a congested part of the network,
to a part where there is more capacity. This can be done by explicitly defi ning
the path that a tunnel should take on a head-end router.

Consider Figure 11.17, for example; in this case there are two links of unequal
capacity providing the connectivity between two POPs: one 622 Mbps, the other
2.5 Gbps. Using IGP metrics proportional to link capacity (e.g., a link cost of 1
for the 2.5 Gbps links and a link cost of 4 for 622 Mbps link, in normal working
case conditions), the bottom path would be the lowest cost path and the top path
would remain unused.

Thus, even though there is over 3 Gbps of capacity between the POPs, this
capacity could not all be used. If, however, two TE tunnels were confi gured
between LSR 1 and LSR 2, one explicitly defi ned to use the top path and the other
the bottom path, then as MPLS TE supports unequal cost load balancing (which
normal IGP routing does not), the traffi c demand between Router 1 and Router 2
could be balanced over the tunnels in proportion to the bandwidths of those
paths, (i.e., 1/5 of the total demand using the top path and 4/5 of the total demand
on the bottom path).

LSR8

LSR2

LSR1

LSR4

LSR5 LSR6

LSR7LSR3

1

1
1

1

1

1

11

= 2.5 Gbps link (metric shown next to link)

= 750 Mbps VoiP tunnel from LSR1 to LSR8

= 250 Mbps standard tunnel from LSR1 to LSR8

= 750 Mbps VoiP tunnel from LSR2 to LSR8
= 250 Mbps standard tunnel from LSR1 to LSR8

FIGURE 11.16

DS-TE deployment example 2.

11.2 IP Traffi c Engineering 313

314 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

Systematic TE Deployment

With a systematic TE deployment, all traffi c is subjected to traffi c engineering
within the core; this is a long-term proactive engineering/planning process aimed
at cost savings. Such a systematic approach requires that a mesh of TE tunnels be
confi gured, hence one of the key considerations for a systematic MPLS TE deploy-
ment is tunnel scaling; a router incurs control plane processing overhead for each
tunnel that it has some responsibility for, either as head-end, mid-point, or tail-end
of that tunnel. The main metrics that are considered with respect to TE tunnel
scalability are the number of tunnels per head-end and the number of tunnels
traversing a tunnel mid-point. We consider the key scaling characteristics of a
number of different systematic MPLS TE deployment models:

Outer core mesh: In considering a full mesh from edge-to-edge across the core
(i.e., from distribution router to distribution router), as MPLS TE tunnels are
unidirectional, two tunnels are required between each pair of edge routers
hence n * (n − 1) tunnels are required in total where n is the number of edge
routers or head-ends. The example in Figure 11.18 shows the tunnels that
would be required from the distribution routers within one POP to form a
mesh to the distribution routers in other POPs.

4

1

1 1

POP A POP B

LSR 1

LSR 2

= 2.5 Gbps tunnel from LSR1 to LSR2

= 622 Mbps tunnel from LSR1 to LSR2

= 622 Mbps link (metric shown next
to link)

= 2.5 Gbps link (metric shown next
to link)

FIGURE 11.17

Tactical TE deployment—enables unequal cost load balancing.

If TE is required for m classes of traffi c each using DiffServ-aware TE then
m * n * (n − 1) tunnels would be required.

Inner core mesh: Creating a core mesh of tunnels (i.e., from core routers to core
routers) can make tunnel scaling independent of the number of distribution
routers (there are normally more distribution routers than core routers), as
shown in Figure 11.19, which illustrates the tunnels that would be required
from the core routers within one POP to form a mesh to the core routers in
other POPs.

Regional meshes: Another way of reducing the number of tunnels required and
therefore improving the tunnel scalability is to break the topology up into
regions of meshed routers; adjacent tunnel meshes would be connected by
routers which are part of both meshes, as shown in Figure 11.20, which shows
meshes within each of two regions. Although this reduces the number of
tunnels required, it may result in less optimal routing and less optimal use of
available capacity.

To put these options into context, TE deployments may have a full mesh
between 120 head-ends, which results in 1202 = 14,400 tunnels in total with
a maximum of 120 tunnels per head-end and a maximum of 1500 tunnels that
traverse a mid-point.

POP A POP B

POP C POP D

= Distribution Router (DR)

= Core Router (CR)

= TE tunnels

FIGURE 11.18

Outer core TE mesh.

11.2 IP Traffi c Engineering 315

316 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

POP A POP B

POP C POP D

= Distribution Router (DR)

= Core Router (CR)

= TE tunnels

FIGURE 11.19

Inner core MPLS TE mesh.

POP A

POP C

POP B

POP D

 Distribution Router (DR)

 Core Router (CR)

Region 1 Region 2

FIGURE 11.20

Regional MPLS TE meshes.

Setting Tunnel Bandwidth
Having decided on a particular MPLS TE deployment model, the next most sig-
nifi cant decision is how to set the bandwidth requested for TE tunnels. The band-
width of tunnels is a logical (i.e., control plane) constraint, rather than a physical
constraint, hence if the actual tunnel load exceeds the reserved bandwidth, con-
gestion can occur. Conversely, if a tunnel reservation is greater than the actual
tunnel load, more bandwidth may be reserved than is required, which may
lead to needless rejection of other tunnels and hence underutilization of the
network.

The same principles of overprovisioning discussed in Section 11.1.3 could be
applied to traffi c engineering deployments. The bandwidth pools on each link
should be set taking the required overprovisioning ratios into account for that
particular link speed. For example, if DiffServ is not deployed in the core network
and an OP of 1.42 is determined to be required to achieve a target P99.9 queuing
delay of 2 ms on a 155 Mbps link, then the aggregate TE bandwidth pool should
be set to 155/1.42 = 109 Mbps. Each tunnel (which represents a traffi c demand
across the network) should then be sized based on the measured average tunnel
load (or a percentile thereof, as described for the core traffi c demand matrices in
Section 11.1.2). This will ensure that the measured average aggregate load on each
link will be controlled such that the per-link overprovisioning factor is always met,
and hence the target SLAs can be achieved, even when there are potentially mul-
tiple tunnels that may traverse the link.

Tunnel resizing can be performed online, by the head-end routers themselves,
or by an offl ine system. When online tunnel resizing is used, algorithms run on
the head-end routers to automatically and dynamically resize the tunnels which
originate from them, based on some measure of the traffi c load on the tunnel over
previous measurement periods. Simple algorithms can lead to ineffi ciencies,
however. Consider, for example, an algorithm that sizes the tunnel based on the
peak of the 5-minute average tunnel loads in the previous interval; when traffi c is
ramping up during the day, the algorithm needs to take into account the traffi c
growth during the next interval, or else it will underprovision the tunnel. Conse-
quently, in the interval following the peak interval of the day, signifi cantly more
tunnel bandwidth will be reserved than is necessary, as illustrated by the example
in Figure 11.21.

Figure 11.21 plots the total traffi c load across all TE tunnels (black line) in a
network with a traffi c engineering tunnel full mesh during a single day. The cor-
responding sum of the reserved TE tunnel bandwidth is plotted in grey. The tunnel
resizing algorithm used in this case resized each tunnel every 2 hours to a multiple
of the peak of the 5-minute average load for that tunnel experienced during the
preceding 2-hour period. In order to cope with the rapid ramp up in traffi c load
before the daily peak, a high multiple needed to be used; in this case the multiple
was 1.2 times. As a consequence, the reserved tunnel bandwidth is signifi cantly
greater than the actual tunnel load during the period after the daily peak load, due

11.2 IP Traffi c Engineering 317

318 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

to the resizing lag. Hence, tunnel resizing algorithms are most effi cient when they
rely on a longer history of measurements for tunnel sizing (e.g., day, week, or
month).

11.3 RESOURCES
The nature of the networking industry and community means that some of the
sources referred to here exist only on the World Wide Web. All universal resource
locators (URLs) have been checked and were correct at the time of going to press,
but their longevity cannot be guaranteed.

Ben Ameur, W., N. Michel, E. Gourdin, and B. Liau, “Routing strategies for IP networks.”
Telektronikk, 2/3:145–158, 2001

Bonald, Thomas., Alexandre Proutiere, and James Roberts, “Statistical guarantees for stream-
ing fl ows using expedited forwarding.” INFOCOM, 2001.

Buriol, L. S., M. G. C. Resende, C. C. Ribeiro, and M. Thorup, “A memetic algorithm for
OSPF routing.” Proceedings of the 6th INFORMS Telecom, pp. 187–188, 2002.

Cao, J., W. S. Cleveland, D. Lin, and D. X. Sun, “Internet Traffi c tends toward Poisson and
Independent as the Load Increases,” in Nonlinear Estimation and Classifi cation,
Springer-Verlag, 2002.

0 5 10 15 20

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Time (hours)

To
ta

l t
ra

ffi
c

an
d

al
lo

ca
te

d
B

W
 (

no
rm

al
iz

ed
)

FIGURE 11.21

Automatic tunnel bandwidth sizing.

Charny, Anna, and Jean-Yves Le Boudec, “Delay bounds in a network with aggregate sched-
uling,” First International Workshop on Quality of Future Internet Services, Berlin,
2000.

Ericsson, M., M. Resende, and P. Pardalos, “A genetic algorithm for the weight
setting problem in OSPF routing.” J. Combinatorial Optimization, 6(3):299–333,
2002.

Fortz, B., J. Rexford, and M. Thorup, “Traffi c engineering with traditional IP routing pro-
tocols.” IEEE Communications Magazine, October 2002.

Fortz, Bernard, and Mikkel Thorup, “Internet traffi c engineering by optimizing OSPF
weights.” Proceedings IEEE INFOCOM, pp. 519–528, March 2000.

Fraleigh, Chuck, Fouad Tobagi, and Christophe Diot, “Provisioning IP backbone networks
to support latency sensitive traffi c.” Proceedings IEEE INFOCOM 2003, April 2003.

Gous, Alan, Arash Afrakhteh, and Thomas Telkamp, “Traffi c engineering through automated
optimization of routing metrics.” Presented at Terena 2004 Conference, Rhodes, June
2004.

Halabi, Sam, Internet Routing Architectures. Cisco Press, 2000.
Lorenz, D., A. Ordi, D. Raz, and Y. Shavitt, “How good can IP routing be?” DIMACS Techni-

cal Report, 2001-17, May 2001.
Maghbouleh, Arman, “Metric-based traffi c engineering: Panacea or snake oil? A Real-World

Study.” Cariden, NANOG 27, February 2003.
Medina, A., N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, “Traffi c matrix estimation:

existing techniques and new directions,” Proceedings ACM SIGCOM, Pittsburgh, August
2002.

Paxson V., and S. Floyd, “Wide-area traffi c: The failure of Poisson modeling.” IEEE/ACM
Transactions on Networking, 3(3):226–244, 1994.

RFC 1142, “OSI IS–IS Intra-Domain Routing Protocol,” Oran, D. (ed.), February 1999
(republication of ISO DP 10589).

RFC 2205, “Resource ReSerVation Protocol (RSVP)—Version 1: Functional Specifi cation,”
Braden, R. (ed.), September 1997.

RFC 2328, “OSPF Version 2,” Moy, J., April 1998.
RFC 3036, “LDP Specifi cation,” Andersson, L., et al., January 2001.
RFC 3209, “RSVP-TE: Extensions to RSVP for LSP Tunnels,” Awduche, D., et al., December

2001.
RFC 3630, “Traffi c Engineering (TE) Extensions to OSPF Version 2,” Katz, D., K. Kompella,

and D. Yeung, September 2003.
RFC 3784, “Intermediate System to Intermediate System (IS–IS) Extensions for Traffi c

Engineering (TE),” Smit, H., and T. Li, June 2004.
RFC 3785, “Use of IGP Metric as a Second TE Metric,” Le Faucheur et al., May 2004.
RFC 3906, “Calculating Interior Gateway Protocol (IGP) Routes Over Traffi c Engineering

Tunnels,” Shen, N., and H. Smit, October 2004.
RFC 4124, “Protocol Extensions for Support of DiffServ-Aware MPLS Traffi c Engineering.”

Le Faucheur, F. (ed.), June 2005.
RFC 4125, “Maximum Allocation Bandwidth Constraints Model for DiffServ-Aware MPLS

Traffi c Engineering,” Le Faucheur, F., and W. Lai, June 2005.
RFC 4127, “Russian Dolls Bandwidth Constraints Model for DiffServ-Aware MPLS Traffi c

Engineering,” Le Faucheur, F. (ed.), June 2005.
RFC 4271, “A Border Gateway Protocol 4 (BGP-4),” Rekhter, Y., T. Li, and S. Hares (eds.),

January 2006.

11.3 Resources 319

320 CHAPTER 11 Traffi c Engineering in IP and MPLS Networks

RFC 4364, “BGP/MPLS IP Virtual Private Networks (VPNs),” Rosen, E., and Y. Rekhter,
February 2006.

RFC 5101, “Specifi cation of the IP Information Export (IPFIX) Protocol for the Exchange
of IP Traffi c Flow Information,” Claise, B. (ed.), January 2008.

Sahinoglu, Z., and S. Tekinay, “On Multimedia Networks: Self-similar Traffi c and Network
Performance.” IEEE Communications Magazine, 48–52, January 1999.

Tebaldi, C., and M. West, “Bayesian inference on network traffi c using link count data.” J.
Amer. Statist. Assoc., 93(442):557–576, 1998.

Thomas Telkamp, “Best practices for determining the traffi c matrix in IP networks V 2.0.”
NANOG 35, Los Angeles, October 2005; available at www.nanog.org/mtg-0510/telkamp.
html

Thomas Telkamp, “Traffi c characteristics and network planning.” NANOG 26, October
2002; available at www.nanog.org/mtg-0210/telkamp.html

Vardi, Y., “Network Tomography: Estimating source-destination traffi c intensities from llink
data.” J. Am. Statist. Assoc., 91:365–377, 1996.

Zhang, Y., M. Roughan, N. Duffeld, and A. Greenberg, “Fast, accurate computation of large-
scale IP traffi c matrices from link loads.” ACM SIGMETRICS, pp. 206–217, San Diego,
June 2003.

Zhang, Z.-L., V. Ribeiro, S.Moon, and C. Diot, “Small-time scaling behaviors of Internet
backbone traffi c: An empirical study.” Proceedings IEEE Infocom, San Francisco, March
2003.

Index
A
Abstraction, 197
Acknowledgment message (ACK),

114–115
Actual Route Attempt, 138–139
Adaptive differential pulse code

modulation, 165
Admission control, 42, 45, 72, 145–146,

258, 271–272
Adspec, 76–77, 81
Algorithms

leaky-bucket, 21–22
shortest path fi rst, 127
token-bucket, 22–23

Alternate path routing, 138
Anti-replay, 175
Application programming interface (API),

80
Archetype, 250
ARPANET, 1
Assured forwarding per hop behavior,

53–56, 68–69, 235
Asynchronous transfer mode (ATM), 9

IntServ vs., 78
PNNI Protocol, 149–150
provisioning circuits, 257
QoS, 56–57

Attributes, 126–131
Authentication, 173
Authentication header (AH), 174–175
Available bit rate, 56

B
Backus-Naur form (BNF), 95
Bandwidth, 156
Bandwidth channel, 19
Base bandwidth rate, 124
Behavior aggregates, 28, 235, 255
Best-effort packets, 55
Best-effort service, 3, 26, 42, 51, 65, 256
Boolean expression, 229

Note: Page numbers followed by italic f denote fi gures; those followed by t denote tables

Border Gateway Protocol (BGP), 291
Bundle message, 112, 112f
Business-critical applications, 219
Business-driven device management,

204
Business rules, 185, 247

C
Call, 125
Call blocking, 133–134, 137
Call fl ows, 125
Capabilities, 212, 235–237
Capability mapping, 228–229
Capacity planning, 287, 298

demand estimation, 291–293
effectiveness of, 288
overprovisioning factors, 293–298
processes used in, 287–288
simulation and analysis, 298
traffi c demand matrices, 289–293

Circuit routing, 123
Class-selector per-hop behavior, 235
C-Nums, 100, 104, 106
Code points, 262
Coder-decoders, 165
Coloring packets, 67–69
Command-line interface (CLI), 230–231
Common information model, 188
Common Open Policy Service (COPS),

272
Condition complexity, 229
Confi guration

business rules for, 204–206
SLA changes and, 213

Confi guration management, 197–198
Congestion

avoidance techniques for, 161
dropping packets for, 70
equation-based congestion control,

57–58
IP network, 265

322 Index

Congestion (cont’d)
IPv6 notifi cation, 262–263
management of, 70, 161
transient, 256

Congestion management, 215
Constant bit rate, 56
Constrained shortest path routing, 128
Constrained widest path routing, 128–129
Constraint-based routing, 9
Constraint-based shortest path fi rst

algorithms, 306–307
Constraints, 212
Controlled link sharing, 257
Controlled load service, 26, 42, 73–74,

79
Core link usage statistics, 291
Core network capacity planning, 287,

298
demand estimation, 291–293
effectiveness of, 288
overprovisioning factors, 293–298
processes used in, 287–288
simulation and analysis, 298
traffi c demand matrices, 289–293

Core traffi c demand matrix, 289
Corporate networks, 5
Cos/EXP, 33
Crankback, 150

D
Data, shared, 208–210
Data encryption standard, 173
Datagram model, 1, 256
Datagram routing, 7
Deep packet inspection, 217
Delay, 126, 153, 156

per-link, 297
voice over IP, 163

Delay-adaptive applications, 40
Delay bound, 122
Delay jitter bound, 122
Delay rates, 31
Delay variability, 38–39
Demand estimation, 291–293
Denial-of-service (DoS) attack, 175
DEN-ng, 186, 190, 193, 208

archetype, 250
capabilities, 212, 236–237

constraints, 212
design approach for, 209f
DiffServ implementation using, 236–245
information model, 211f, 237–245
policy model, 212
QoS model, 202f, 283
services, 203

Differentiated quality of service, 184
Differentiated Services Code Point (DSCP),

28, 63, 67–68, 155, 158–159, 197,
229, 234, 269

DiffServ (Differentiated Services), 5–6,
28–32, 51–52, 158–160, 269

architecture of, 159–160, 270f
behavior aggregates, 255
capacity planning using, 288
coloring packets in, 67–69
DEN-ng used for implementation of,

236–245
functional model, 69–70
IntServ vs., 79–80, 160, 227, 260, 269,

271
IPv6 and, 260–261
MPLS traffi c engineering, 310–312
per-hop behavior, 234

assured forwarding, 53–56, 68–69,
235

expedited forwarding, 52, 235
policies, 67
reasons for using, 70–71
resource allocation, 259
scalability issues, 71
schematic diagram of, 270f
success of, 53
traffi c conditioning, 224

Dimensioning, 143
Distributed Management Task Force, 188,

213
Distributed systems, 199–200
Dropping packets, 70, 224–225
Dynamically controlled routing, 141
Dynamic nonhierarchical routing, 150

E
Element Management Layer, 231
E-LSP, 32
Encapsulated security payload, 175–177
Encryption, 173

Index 323

Epoch, 112
Equal costs multipath algorithms, 302
Equation-based congestion control, 57–58
Erlang-B loss formula, 135
Error handling, in RSVP, 85–88
Error rates, 31
Error Spec Object, 104, 104f, 106
ETSI TISPAN, 266
Expedited forwarding per-hop behavior,

52, 69, 235, 259
Explicit congestion notifi cation, 28
Explicit routing, 7, 16–17

F
Failure case optimization, 201f
Fiber-switch capable, 18–19
FilterSpec Object, 107, 108t, 109f
Finite state machine (FSM), 194, 225,

248
Fixed-fi lter fl ow descriptor, 95–96
Fixed random early detection (FRED), 24
Flow(s), 42, 255, 261. See also Traffi c fl ow

call, 125
IPv6, 261–262
merging, 91–93
in RSVP, 84–85
token bucket conceptualization of, 72,

73f
Flow labeling, 262
FlowSpecs, 42–45
Forwarding classes, 6
Forwarding equivalence classes (FEC),

13–14, 16
Frame Relay, 9

G
Gateways, 163, 166
Generalized MPLS (GMPLS), 17–20, 79
Grade of service, 122
Guaranteed service, 26, 41, 74–76, 79

H
H.323, 165–166, 166f
Hashing algorithm, 173
Heterogeneous service, 134–137
High-bandwidth calls, 137
Holding areas, 63–64
Hop-by-hop routing, 16

Hop Object, 97, 101–103, 102f
H.323 traffi c, 217

I
IGP metric-based traffi c engineering,

302–304
Information models

DEN-ng, 211f, 212, 237–245
Distributed Management Task Force,

213
functions and tasks for, 209–210
IETF, 188f, 189, 213
importance of, 210–212
shared, 207–215
uses of, 193

Integrated Services (IntServ), 4–5, 26, 41,
155, 267–269

admission control, 72, 258
ATM vs., 78
bandwidth limitations, 78
benefi ts of, 71
controlled load service, 26, 73–74, 79
DiffServ vs., 79–80, 160, 227, 260,

269–271
disadvantages of, 78–79
functions of, 258
guaranteed service, 26, 41, 74–76, 79
history of, 257
implementation of, 268
mechanism of action, 157–158
packet classifi cation, 258
packet scheduling, 258
real-time data traffi c focus of, 78
reasons for using, 78–79
reporting capabilities, 76–78
RSVP and, 50–51, 71, 157–158, 258
service classes, 41–42
service type, 79
traffi c fl ows, 72–73

Integrity check value, 173
Interdomain resource management, 29
Internet Assigned Numbers Authority

(IANA), 68, 177
Internet backbones, 266
Internet Engineering Task Force (IETF), 4,

13, 18, 27, 67, 80, 187–188, 188f,
189, 213

Internet key exchange, 173

324 Index

Internet Protocol (IP), 153–154
QoS implementation, 160–162
raw, RSVP on, 110–111
voice over. See Voice over IP

Internet Protocol Flow Information eXport
(IPFIX), 290–291

Internet Security Association, and key
management protocol, 172, 174

Internetwork Operating System, 208
Intra-domain QoS routing, 126
Intradomain resource management, 29
Inwards Holding Area, 63
IP-based routers, 14
IP Multimedia Subsystem, 266
IP networks, 265–267

congested, 265
IntServ, 267–269
unloaded, 266

IPSec
advantages of, 180
authentication, 173
authentication header, 174–175
encapsulated security payload, 175–177
encryption, 173
key exchange, 173–174
mechanism of action, 179–180
MPLS-VPN vs., 180–181
protocol suite, 172
security associations, 175, 177–179
services offered by, 172
VPNs created by, 180

IPv6, 255–256
DiffServ and, 260–261
explicit congestion notifi cation in,

262–263
fl ows, 261–262

J
Jitter, 74, 122, 126, 153, 156
Jittering, 103

K
Key, 173–174, 189
Key exchange, 173–174
k-shortest paths algorithm, 141

L
Label Distribution Protocol (LDP), 17
Label path control, 17

Label switched paths (LSPs), 8, 14, 291,
305

Label switching routers (LSRs), 8, 14, 16,
18

Lambda switch capable, 18
Latent semantic analysis, 149
Layer 2, 18–19
Layer 2 switch capable, 157
Leaky-bucket algorithm, 21–22
Least-hop-minimum delay path, 128
Least-hop-widest path, 128
Length-type-value constructs, 100
Lightweight Directory Access Protocol

(LDAP), 207
Link layer protocol, 15
Link Management Protocol, 19
Link state information, 132
L-LSP, 32
Location server, 168
Logical interface handle, 103

M
Management

business-driven device, 204
congestion, 215
network. See Network management
policy-based network. See Policy-based

network management
Management protocols, 212
Maximum allocation model, 310
Maximum available capacity routing,

with periodic update and
crankback, 148

Maximum available capacity routing, with
periodic update and no crankback,
148

Maximum transmission unit, 73
Message(s), 95–100

Acknowledgment, 114–115
Bundle, 112, 112f
bundling of, 118
fl ow of, 81–84
header of, 99–100
malformed, 104, 106
Path, 81–84, 88, 95, 112, 113f, 307
PathErr, 85–87, 97–98
PathTear, 97
Resv, 47, 81–84, 95–96, 112, 114f,

307–308

Index 325

ResvConf, 99, 99f
ResvErr, 86–88, 97–98
ResvTear, 97–98
Source Message ID List Object, 117f
Srefresh, 115f, 116
types, 100

Message Ack Object, 113, 114f
Message authentication, 173
Message Identifi er Object, 113, 113f
Message Neck Objects, 115
Metering, 224
Mice and elephants phenomena, 136
Multiprotocol Label Switching (MPLS), 2,

13–17, 158, 219
bits in header, 158
GMPLS vs., 18
label switching, 8, 14
label switch paths, 19–20, 291
link layer protocol, 15
networking capabilities of, 14
packets, 15–16
purpose of, 8
QoS mechanisms, 32–33
RSVP and RSVP-TE in, 79
“shim” headers, 15–16
traffi c engineering, 304–305

deployment models and
considerations, 312–316

DiffServ-aware, 310–312
example tunnel establishment,

305–310
systematic deployment, 314–316
tactical deployment, 313
tunnel bandwidth, 317–318

Multicast, 47–48
Multicast resource sharing, 93–94

N
Nesting, 19
Network, 3

asymmetry of, 301
behavior of, 199–200
complexity of, 218–219
congestion of. See Congestion
overprovisioning of, 215–216
performance measures, 155–157

Network administrator, 205
Network devices

classifi cation of, 217–218

interfaces, 199, 230–232
subinterfaces, 199

Network engineers, 197–199, 283
Network management

focus of, 191
issues and challenges for, 207–212
lack of a consistent product model,

207–208
policy-based. See Policy-based network

management
Network servers, 167–168
NGOSS, 190, 214, 249
Null service, 79

O
Oakley Protocol, 174
Object-oriented information model, 186
Objects, 100–110
Open Shortest Path First (OSPF), 10,

14–15, 17, 148–149
Operational support systems (OSS), 186

diffi culties associated with building of,
186

management applications, 186, 187f
Ordered aggregate, 28
Outwards Holding Area, 63
Overlay model, 9–10, 14
Overprovisioning, 215–216, 293–298

P
Packet(s)

classifying of, 43, 49, 69, 258
coloring, 67–69
dropping, 70, 224–225
loss of, 122, 156–157
queues, 63–64
routing of, 63–64
scheduling of, 43, 49, 258
transport mode, 178f
tunnel mode, 178f
ToS fi eld of, 155

Packet delay, 156
Packet switch capable, 18
Packet-switched networks, 35
Packet voice network, 163–165
Path caching, 138, 141
PathErr message, 85–87, 95, 97–98
Path message, 47, 81–84, 88, 112, 113f,

269, 307

326 Index

PathTear message, 97
Peer group, 150
Penultimate hop popping, 308
Per-fl ow resource reservation, 4
Performance assurance, 1
Performance optimization, 7–10
Per-hop behavior (PHB), 28, 67, 158,

234
assured forwarding, 53–56, 68–69,

235
class-selector, 235
default, 234
expedited forwarding, 52, 69, 235,

259
implementation of, 160
node support, 71
scheduling class, 28

Per-link delay, 297
Playback buffer, 38
Playback point, 37, 40
Playback time, 36
P-Media-Authorization-Token, 281
Poisson arrival process, 293
Policing, 225

admission control vs., 45
traffi c, 21–26

Policy, 67, 192, 223–224
architecture of, 272f
device limitations, 229
DiffServ for applications using shared

network, 233–234
DiffServ approach, 234–245
proactive approaches, 225–227
programming models, 229–230
reactive approaches, 225–227
role of, 227–230
static approaches to, 224–225
usage examples, 232–253

Policy-based network management
(PBNM), 183, 192, 193–194,
220–221

abstraction, 197
advantages of, 195
benefi ts of, 198, 206
business rules, 185
complexity in, 200–204
conceptualization of, 196–197
confi guration management, 197–198

diffi culties associated with, 184
engineers needed to confi gure network,

197–199
motivation for, 196–197
processes defi ned by, 198–199
programming devices, 200–204
security, 216–217
services provided to users, 195–196
software, 199–200
solutions, 185–189, 191–192,

216–217
time-critical functions, 219

Policy continuum, 206, 206f, 223,
249f

Policy core information model, 188
Policy decision point, 272, 273f
Policy enforcement point, 271–272,

273f
Policy Object, 110
Policy rule, 192
Policy subject, 228
Policy target, 228
Precondition, 275
Preliminary Path Caching, 138
Previous hop, 101
Prioritizing of traffi c, 64, 66
Priority queuing, 217
Prisoner’s dilemma, 71
Privacy, 153
Private Network–Network Interface

(PNNI) Protocol, 149–150
Propagation delay, 156
Provisioning, 30
Proxy server, 167–168
Pulse code modulation, 165

Q
QoS mechanisms, 20–26

MPLS-based, 32–33
queue management and scheduling,

24–26
traffi c shaping and policing algorithms,

21–23
Quality of service (QoS), 2, 121–122, 154,

183–184, 256–259
ATM, 56–57
attributes of, 126–131
charging for, 266

Index 327

complexity of implementing, 196
DEN-ng, 201–203
differentiated, 184
guarantee, 151
IntServ, 26
IP implementation of, 160–162
Layer 2, 157
as “managed unfairness,” 196
performance optimization and, 7
purpose of, 65
requesting, 251–253
routing. See Routing
services offered by, 196
signaling protocols, 161
support, 41

Queue
packet, 63–64
scheduling, 24–26

Queue management, 24–26
Queuing, 224, 296

R
Random early detection (RED), 24
Rate-adaptive applications, 40
Real-time applications, 35

adaptability of, 40
admission control, 42, 45
example of, 36–39
fl owspecs, 42–45
mechanisms, 42–43
packet classifying and scheduling, 43,

49
QoS for, 257
requirements, 36–41
scalability issues, 49–50
taxonomy of, 39–40
tolerant vs. intolerant, 40

Real-time network routing, 124
Real-Time Protocol (RTP), 169
Real-time services, 257
Redirect server, 168
Request, 125
Resource(s), 216, 218
Resource allocation, 2–3

DiffServ, 5–6
IntServ, 4–5

Resource assurance, 2
Resource guarantees, 122

Resource management cells, 57
Resource reservation, 4–5, 43, 154,

257–258
RSVP. See RSVP
SIP integration with, 273–278

Resource sharing, 93–94
ResvConf message, 99, 99f
ResvErr message, 86–88, 97–98
Resv message, 47, 81–84, 95–96, 112,

114f, 269, 307–308
ResvTear message, 83–84, 97–98
RIO, 53, 55
Routing, 122

circuit, 123
classifi cation, 122–125
computation, 131–132
dynamic call routing, in the telephone

network, 133–134
general observations about, 125–126
goal of, 132
heterogeneous service, 134–137
intra-domain, 126
least-hop-minimum delay path, 128
least-hop-widest path, 128
notation for, 129t
packet-switched branch of, 124f
protocols for, 148–150
real-time network, 124
request, 125
schemes for, 123–124
shortest path, 127–131
shortest-widest path, 128
source-based, 150–151

call admission control, 145–146
dynamic traffi c, 146–148
homogeneous traffi c case,

142–143
results of, 142–148
routing computation, 138–141
routing schemes, 141–142
service class performance, 143–145

taxonomy of, 124f
transport network routing, 123
updates, 131
widest path, 127–131

Routing link state update interval, 139
Routing update interval, 144
Rspec, 43, 82

328 Index

RSVP (Resource Reservation Protocol),
27–28, 63, 80–119, 157, 257–258

adaptation to network changes, 88–91
adoption of, 51
Adspec, 76–77, 81
aggregation mechanisms, 27
API, 80
characteristics of, 46
egress, 81–84
error codes and values, 105t–106t
error handling in, 85–88
Error Spec Object, 104, 104f, 106
FilterSpec Object, 107, 108t, 109f
fl ows, 84–85

aggregation of, 118–119
merging, 91–93

function of, 27
guaranteed service parameters used by,

75
Hop Object, 97, 101–103, 102f
ingress, 81–84
IntServ using, 50–51, 71, 157–158,

258
Message Ack Object, 113, 114f
messages

Acknowledgment, 114–115
Bundle, 112, 112f
bundling of, 118
exchanging of, 270f
fl ow of, 81–84
formal defi nitions of, 95–100
header of, 99–100
malformed, 104, 106
Path, 81–84, 88, 95, 112, 113f, 307
PathErr, 85–87, 97–98
PathTear, 97
Resv, 47, 81–84, 95–96, 112, 114f,

307–308
ResvConf, 99, 99f
ResvErr, 86–88, 97–98
ResvTear, 97–98
Source Message ID List Object, 117f
Srefresh, 115f, 116
types, 100

multicast, 47–48
multicast resource sharing, 93–94
objects, 100–110
operating principles of, 268–269

Policy Object, 110
reasons for using, 80–81
receiver-oriented nature of, 46
refresh, 103–104

reduction, 111–118
rerouting in, 90
RSVP-TE, 79
scalability of, 158
Scope Object, 106–107, 107f
Session Object, 101, 102f
sessions, 84–85

multicast, 94
soft state, 46
standardization of, 4
Style Object, 107f, 107–108
styles used by, 93
Time Values Object, 103, 103f
TE tunnel signaling, 306–308
transport protocol, 110–111
Tspec, 43, 81, 85
unidirectional nature of, 268

Russian dolls bandwidth constraints model,
310

S
Scalability, 49–50, 71, 158, 226
Scope Object, 106–107, 107f
Security associations, 175, 177–179
Security parameter index, 175
Sender TSpec, 85
Serialization delay, 156
Service

ATM, 56
controlled load, 26, 73–74
guaranteed, 26, 41, 74–76
IntServ, 41–42

Service class reservation, 136
Service differentiation, 2
Service level agreements, 6, 213
Service management, 65–66
Service reservation, 145
Session Initiation Protocol (SIP), 167–168
Session Object, 101, 102f
Sessions, 84–85

multicast, 94
Shaping, 224
Shaping, traffi c, 21–26
Shared-explicit fl ow descriptor, 95–96

Index 329

Shared network, 233–234
Shared resources, 218
“Shim” header, 15–16
Shortest path fi rst algorithm, 306
Shortest path routing, 127–131
Shortest-widest path, 128
Signaling, 43, 225, 251–253
Simple Network Management Protocol

(SNMP), 230
SIP integration

with policy control, 278–281
with resource reservation, 273–278

Soft state, 46, 89, 91
Source-based QoS routing

call admission control, 145–146
dynamic traffi c, 146–148
homogeneous traffi c case, 142–143
results of, 142–148
routing computation, 138–141
routing schemes, 141–142
service class performance, 143–145

Source Description Protocol (SDP),
277–279

Source Message ID List Object, 117f
Split points, 94
Srefresh message, 115f, 116
Style Object, 107f, 107–108
Switching delay, 156
System Network Architecture (SNA),

218–219

T
Taxonomy of applications, 39–40
TCP, 3, 57–58
TeleManagement Forum’s shared

information and data model,
190–191

Time-critical functions, 219
Time division multiplex (TDM) capable, 18
Time Values Object, 103, 103f
Token bucket, 72, 73f, 75

algorithm, 22–23
Toll bypass, 171
Traffi c

H.323, 217
handling of, 219
intelligent handling of, 219
Poisson, 294, 294f

reclassifi cation of, 70
SNA, 218–219
unexpected demands, 301–302

Traffi c conditioning, 69, 159, 224, 233f
Traffi c demand matrices, 289–293
Traffi c engineering (TE), 7–10, 298–299,

301–318
benefi t of, 301
IGP metric-based, 302–304
MPLS, 304–305

deployment models and
considerations, 312–316

DiffServ-aware, 310–312
example tunnel establishment,

305–310
systematic deployment, 314–316
tactical deployment, 313
tunnel bandwidth, 317–318

problem conceptualization, 299–303
reasons for deploying, 301–302

Traffi c fl ow, 72–73
RSVP, 84–85

aggregation of, 118–119
merging, 91–93

token bucket conceptualization of, 72,
73f

Traffi c policing
admission control vs., 72
algorithms for, 21–26
indications for, 70

Traffi c prioritizing, 64, 66
Traffi c shaping algorithms, 21–26
Transaction Language-1 (TL1), 212
Transient congestion, 256
Transmission delay, 156
Transport mode security association,

177–178
Transport network routing, 123
Transport protocol for RSVP, 110–111
Tspec, 43, 81, 85
Tunnel mode security association,

177–178
Type of service (ToS), 155, 158

U
Unifi ed Modeling Language (UML), 192
Universal resource locators, 168
Unspecifi ed bit rate, 56

330 Index

Updated Path Ordering, 138–140, 142
Updates, 131
User agent (UA), 167
User-agent client, 167
User Datagram Protocol (UDP), 111

V
Variable bit rate, 56
Virtual path identifi er/virtual channel

identifi er (VPI/VCI), 15
Virtual private networks (VPNs), 8, 14

key exchange, 174
MPLS-VPN, 180–181

Voice agents, 163
Voice coding, 164–165
Voice over IP (VoIP), 162–171

components of, 163–165

delay, 163
H.323, 165–166, 166f
mechanism of action, 168–169
packet voice network, 163–165
requirements of, 162–163
services using, 169–171
session initiation protocol, 167–168
toll bypass using, 171
voice and data network merging in,

170–171

W
Weighted fair queuing (WFQ), 42
Widest path routing, 127–131
Wildcard-fi lter fl ow descriptor, 95–96
Weighted random early detection (WRED),

24, 53, 55

	Front cover
	Network Quality of Service
	Copyright page
	Table of contents
	Preface
	Contributing Authors
	CHAPTER 1: Network QoS: The Big Picture
	1.1 RESOURCE ALLOCATION
	1.2 PERFORMANCE OPTIMIZATION
	1.3 SUMMARY
	1.4 RESOURCES

	CHAPTER 2: Traffic Engineering and QoS Optimization Technology
	2.1 MULTIPROTOCOL LABEL SWITCHING
	2.2 GENERALIZED MULTIPROTOCOL LABEL SWITCHING
	2.3 QOS MECHANISMS
	2.4 INTEGRATED SERVICES
	2.5 RESOURCE RESERVATION PROTOCOL
	2.6 DIFFERENTIATED SERVICES
	2.7 MPLS-BASED QOS MECHANISMS
	2.8 FURTHER READING

	CHAPTER 3: Quality of Service
	3.1 APPLICATION REQUIREMENTS
	3.2 INTEGRATED SERVICES AND RSVP
	3.3 DIFFERENTIATED SERVICES—EF AND AF
	3.4 EQUATION-BASED CONGESTION CONTROL
	3.5 SUMMARY
	3.6 FURTHER READING

	CHAPTER 4: IP Service Management
	4.1 CHOOSING HOW TO MANAGE SERVICES
	4.2 DIFFERENTIATED SERVICES
	4.3 INTEGRATED SERVICES
	4.4 RESERVING RESOURCES USING RSVP
	4.5 FURTHER READING

	CHAPTER 5: Quality of Service Routing
	5.1 BACKGROUND
	5.2 QOS ATTRIBUTES
	5.3 ADAPTING SHORTEST PATH AND WIDEST PATH ROUTING: A BASIC FRAMEWORK
	5.4 UPDATE FREQUENCY, INFORMATION INACCURACY, AND IMPACT ON ROUTING
	5.5 LESSONS FROM DYNAMIC CALL ROUTING IN THE TELEPHONE NETWORK
	5.6 HETEROGENEOUS SERVICE, SINGLE-LINK CASE
	5.7 A GENERAL FRAMEWORK FOR SOURCE-BASED QOS ROUTING WITH PATH CACHING
	5.8 ROUTING PROTOCOLS FOR QOS ROUTING
	5.9 SUMMARY

	CHAPTER 6: Quality of Service in IP-Based Services
	6.1 QUALITY OF SERVICE
	6.2 VOICE OVER IP
	6.3 OPERATING VOICE OVER IP
	6.4 IP SECURITY
	6.5 SUMMARY
	6.6 FURTHER READING

	CHAPTER 7: The Foundation of Policy Management
	7.1 INTRODUCTION—A RETROSPECTIVE
	7.2 WHERE WE ARE TODAY
	7.3 DEFINITION OF POLICY MANAGEMENT
	7.4 INTRODUCTION AND MOTIVATION FOR POLICY MANAGEMENT
	7.5 THE NEED FOR A NEW SHARED INFORMATION MODEL
	7.6 THE BENEFITS OF PBNM
	7.7 SUMMARY
	7.8 RESOURCES

	CHAPTER 8: QoS Policy Usage Examples in Policy-Based Network Management
	8.1 INTRODUCTION
	8.2 POLICY APPROACHES
	8.3 QOS POLICY USAGE EXAMPLES
	8.4 RESOURCES

	CHAPTER 9: IPv6 Quality of Service
	9.1 QOS BASICS
	9.2 DIFFERENTIATED SERVICES AND IPV6
	9.3 IPV6 FLOWS
	9.4 EXPLICIT CONGESTION NOTIFICATION IN IPV6
	9.5 SUMMARY

	CHAPTER 10: QoS in IP Networks Using SIP
	10.1 QUALITY OF SERVICE IN IP NETWORKS
	10.2 MECHANISMS FOR QOS
	10.3 POLICY-BASED ADMISSION CONTROL
	10.4 SIP INTEGRATION WITH RESOURCE RESERVATION: THE PRECONDITIONS FRAMEWORK
	10.5 SIP INTEGRATION WITH POLICY CONTROL: MEDIA AND QOS AUTHORIZATION
	10.6 SUMMARY
	10.7 RESOURCES

	CHAPTER 11: Core Capacity Planning and Traffic Engineering in IP and MPLS Networks
	11.1 CORE NETWORK CAPACITY PLANNING
	11.2 IP TRAFFIC ENGINEERING
	11.3 RESOURCES

	Index

