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Abstract— Recent endeavors in addressing the challenges of 

the current and future Internet pursue a clean slate design 

methodology. Simultaneously, it is argued that the Internet is 

unlikely to be changed in one fell swoop and that its next 

generation requires an evolutionary design approach. Recognizing 

both positions, we claim that cleanness and evolution are not 

mutually exclusive, but rather complementary and indispensable 

properties for sustainable management in the future Internet. 

In this paper we propose the in-network management (INM) 

paradigm, which adopts a clean slate design approach to the 

management of future communication networks that is brought 

about by evolutionary design principles. The proposed paradigm 

builds on embedded management capabilities to address the 

intrinsic nature, and hence, close relationship between the 

network and its management. At the same time, INM assists in 

the gradual adoption of embedded self-managing processes to 

progressively achieve adequate and practical degrees of INM. We 

demonstrate how INM can be exploited in current and future 

network management by its application to P2P networks. 

 
Index Terms— clean slate design, evolutionary design, in-

network management, self-management, future Internet 

I. INTRODUCTION 

LTHOUGH management is considered an inseparable 

part of communication networks, its intrinsic nature is not 

reflected in current networks. Instead, a clear separation exists 

where network functionality is designed and deployed before 

management is superimposed as an add-on feature. This clear 

mismatch has lead to a number of significant and growing 

problems: the incremental adding of features and the patch-on-

a-patch approach apparent in many of today’s systems have 

resulted in large complexity, nonscalability, and the need for 

extensive manual involvement. Trends in how the properties of 

current networks will develop indicate that management based 

on conventional paradigms will eventually break down, 

because the incremental adding of management features will 

become impractical. 

Whereas the need for structural change is broadly 

acknowledged, there is large controversy about the best way to 

bring about the necessary changes. Two Internet design 

methodologies dominate in recent EU- and US-funded 

initiatives: clean slate (e.g. Nth stratum [1] within 4WARD [2] 

and 4D [3]) versus evolutionary architectural design [4]. 

While clean slate considers what future networks would look 

like if one started from scratch, proponents of evolutionary 

design argue for nondisruptive transitions over time [4]. We 

believe that both views in combination constitute an essential 

and immutable principle for the development of future 

communication networks, and specifically, the Internet. 

We claim that this view holds for future network 

management in particular. Within this scope, we are unaware 

of any previous methodology that suggests how the gradual 

implementation of a clean slate management design can be 

made practical. To this end, we propose the in-network 

management (INM) paradigm, which combines the clean slate 

and evolutionary design principles to achieve sustainable 

management in future communication networks. 

Rather than focusing on a single design approach, in-

network management provides the necessary concepts and 

procedures to induce gradual changes in the way management 

is done today. While defining a pure case of INM, where the 

intrinsic nature of management is reflected in the network 

architecture, INM allows adapting sensible and practical 

degrees of embedding management functionality, in different 

locations of the network. Thereby, the adoption of a clean slate 

design is brought forward by an evolutionary process with a 

clear, flexible, yet tangible goal. 

In-network management provides concrete architectural 

concepts that facilitate the embedding of management 

functionalities inside the network and network elements. INM 

does not shift complexity by proposing a generic solution, but 

provides fundamental management capabilities that may be 

combined to capture dedicated and clear base management 

functionality with sensible complexity, including FCAPS 

functions. While incorporating legacy management systems in 

the evolutionary dimension is supported, INM shows most of 

its benefits if applied to a fairly novel way of designing future 

networks, specifically, in those cases where the network 

management functionality is inherently designed into the future 

Internet’s functions and protocols. 
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The remainder of this paper is structured as follows. After 

reviewing related work in Sec. II, we introduce the paradigm 

and underlying principles of in-network management in Sec. 

III. The architectural elements of INM are described in detail 

in Sec. IV. To show how in-network management can be 

exploited and adopted we illustrate its application to Peer-to-

Peer networks in Sec. V. We conclude with a brief summary 

and outlook to future work in Sec. VI. 

II. RELATED WORK 

A growing number of future network research initiatives are 

dealing with questions on how network management is to be 

accomplished. The authors of [3] move from the consideration 

that today’s management functions need to be mapped to the 

logic elements of the nodes. As a consequence, they propose a 

clean slate approach and introduce four separate planes: 

decision, dissemination, discovery, and data. While we agree 

with the initial analysis, we observe that the approach closely 

resembles existing telecom architectures with dedicated 

channels and machines for specific management functions. 

Furthermore, such separation would have the effect of shifting 

the complexity to the proposed planes. The authors also seem 

to ignore the cost associated with the implementation of 

separate planes. The architecture in [5] is built with similar 

principles. Management operations are defined over a general 

interface, which is instantiated within each protocol entity. The 

architecture sounds valid, but authors do not mention the 

complexity in the instantiation of functions from their general 

interface. The authors of the clean-slate architecture in [6] 

consider the technical challenges of function composition. 

These considerations are somewhat general for any 

composition framework and can certainly be considered in 

INM, at least for those aspects related to composition. 

The problem of mapping high-level objectives into service-

specific settings is presented as a key issue in [7]. The concept 

of a pervasive knowledge plane is introduced, where artificial 

intelligence and cognitive systems are enabling techniques, but 

authors do not go further in defining functional elements yet. 

Within the PlanetLab project, an information plane is 

presented in [8], where network elements are reconfigured by 

declarative programs. Self-management is instead the main 

objective of the knowledge plane proposed in [9], which is 

achieved through collaborative and autonomous multi-agent 

systems that are embedded within network elements. The 

above works testify that aspects related to knowledge and 

information play an important role in management operations 

and they can be considered as building elements in the 

definition of a new architecture. Nevertheless, mechanisms for 

knowledge distribution can follow different degrees of 

embedding, and therefore also mapped into our proposal. 

The management architecture in [10] proposes a model 

representing a given network aspect, stating the conditions for 

executing a function according to policies. The architecture 

targets mainly wireless sensor networks, with a restricted set of 

issues. The FOCALE architecture in [11] emphasizes the use 

of information and ontological modeling to gather knowledge 

about network capabilities. The system is highly autonomous, 

but it is very complex and therefore difficult to understand in 

case of unforeseen failures in the management system itself. 

INM’s goal is rather the design of an autonomous system that 

is kept simple and flexible, providing a balanced level of 

autonomy and abstract interfaces to allow interactivity with the 

system. The ASA architecture in [12] aims at enabling 

autonomic management of resources to guarantee Service 

Level Agreements (SLA). ASA’s main advantage is that it 

encompasses different abstraction layers and heterogeneous 

resources. However, it is characterized by large complexity, 

both in the hierarchical structure of the management entities 

and in the internal structure of such entities. 

The Ambient Networks project [13] supports composition 

of networks across business and technology boundaries. While 

it provides valid mechanisms for composition, the mapping 

between different control spaces is still a manual step of the 

process. Madeira [14] proposes a distributed management 

system with self-forming logical overlay topologies. It is 

mainly targeted at wireless networks and still adopts a 

hierarchical structure with middle managers. ANA [15] is 

building an architecture that can demonstrate the feasibility 

and properties of autonomic networking. The problem field is 

quite close to the topics addressed in INM, but ANA should be 

regarded as a generic architecture for autonomic devices, while 

INM will leverage on a tight coupling of management 

functions with the services deployed on a device, like 

virtualization of resources or generic paths. Furthermore, ANA 

has a strong emphasis on prototypical realization. 

 In contrast to the discussed approaches, we propose a clean 

slate approach to future network management that can be 

gradually achieved by evolutionary processes. We further 

present the necessary architectural principles, elements, and 

methodology in order to do so, and demonstrate how this can 

be achieved by the concrete example of a P2P system. 

III. PRINCIPLES OF IN-NETWORK MANAGEMENT 

INM addresses the challenges of current and future network 

management by combining a clean slate design paradigm with 

an evolutionary design methodology. In order to achieve this 

objective, INM firstly stipulates five fundamental principles, 

which capture, in our view, the essence of future management 

of communication networks. The first principle addresses the 

very nature of network management per se: 

1. Intrinsic principle: Management is intrinsic to the 

network. This principle is fundamental and captures the fact 

that the network is management at the same time. As such, this 

principle dictates all architectural considerations. 

The following three principles are consequences from the 

intrinsic principle and define the extremal clean slate 

architectural design of in-network management. We note that 

these principles are extremal cases that will be relaxed in our 

subsequent practical considerations: 
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2. Inherent principle: Management is an inherent part of 

network elements, protocols, and services. This principle 

captures the most extreme version of the architectural design 

where management functionality is coalesced with the rest of 

the network functionality. As such, management becomes an 

inseparable and indistinguishable part of the network, thus 

reflecting directly its intrinsic nature. In peer-to-peer networks 

(cf. Sec. V), for instance, overlay management is implemented 

inherently by the P2P facility and can be considered a P2P 

system’s inherent management capability. 

3. Autonomous principle: Management is autonomous and 

does not involve any external technical intervention. This 

principle is also implied by the inherent principle and leads to 

the adoption of purely self-managing mechanisms. It is pure in 

the sense that any functional aspect is autonomous, including 

the enforcement of high-level business goals and physical 

intervention, such as the replacement of faulty devices. 

4. Abstraction principle: External management operations 

occur on the highest possible level of abstraction. In the 

theoretical extreme case, the network may be triggered by an 

external stimulus only once at the beginning of its lifetime. All 

subsequent management actions and processes are concealed 

and follow the autonomous principle. 

Furthermore, INM defines the following principle that 

addresses the evolutionary design methodology: 

5. Evolution principle: The architectural design principles 

2-4 are to be implemented and shall be supported by technical 

developments in a way that they can be gradually adopted. 

This principle is essential in that it allows the accommodation 

of currently established approaches, the nondisruptive 

development of management functionality, and the accelerated 

adoption of higher degrees of inherence, autonomicity and 

abstraction by novel technological innovations. 

While the architectural principles 2-4 are theoretic in nature, 

INM breaks down the evolutionary design into a three-

dimensional functional design space that allows for a gradual 

adoption of these principles to various and practical degrees. 

Thereby, a three-dimensional disk is formed, which is shown 

in Fig. 1. In the center, INM designates the extreme case 

where principles 2-4 are adopted in their pure form. 

 

 

On the axis of the degree of embedding, INM provides 

scope for a relaxation of the inherent principle. Management 

processes can be implemented either as external, separated, 

integrated, or inherent management capabilities of the 

network. Integrated is weaker in that instead of 

indistinguishable management functionality, it designates well 

identifiable management capabilities that are modular and 

visible, but still closely related to and integrated with specific 

services. Separated management processes are those that are 

more decoupled from the service, and include, for example, 

today’s weakly distributed management approaches (e.g. 

RMON). External management processes include traditional 

management paradigms widely used today (e.g. SNMP). 

On the axis of the degree of autonomicity, INM allows for 

different degrees of autonomous management, from manual to 

fully autonomous processes. Manual refers to the direct 

manipulation of management parameters, such as manual 

routing configurations. Automated management can be 

typically found in the application of management scripts. 

Autonomic and autonomous degrees include intelligence that 

allows the system to govern its own behavior. 

On the axis of the degree of abstraction, different levels of 

management according to the TMN functional hierarchy [16] 

can be adopted. This dimension leads to a reduction in the 

amount of external management interactions, which is key to 

the minimization of manual interaction and the sustaining of 

manageability of large networked systems. Specifically, this 

dimension can be understood as moving from a managed 

object paradigm to one of management by objective. 

An essential philosophy is that INM does not force the 

adoption of the extreme case, or any specific degree on any of 

the functional dimensions. Instead, different parts of the 

network may adopt their specific degree of embedding, 

autonomicity, and abstraction, based on practicability and 

domain- or application-specific goals and requirements. At the 

same time, INM proactively supports evolution in the 

functional dimension in a technological aspect. If design issues 

are considered at the design time of new components, then 

newly introduced components may encapsulate existing 

management functionality in a way that allows for a 

nondisruptive transition to a purer INM system. 

IV. ARCHITECTURAL ELEMENTS 

The architectural elements proposed by INM are based on the 

principles and functional dimensions described in Sec. III. Let 

us first consider the high-level architecture of INM, shown in 

Fig. 2. The figure depicts a practical case of INM that relaxes 

the pure paradigm on each of the functional dimensions. In the 

degree of embedding, we assume that management functions 

are closely tied to the service processes, preferably in an 

inherent or integrated manner (cf. Fig. 1). Consequently, INM 

processes closely collaborate with the service processes in 

which they are embedded. In the degree of autonomicity, we 

observe that a certain set of management tasks cannot be 

automated practically and therefore must remain external, 

INM

degree of
embedding

degree of
abstraction

degree of
autonomicity

 
Fig. 1.  INM evolutionary disk: degree of embedding (top), degree of 

autonomicity (right), and TMN functional hierarchy (left) according to [16]. 
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indicated by the boundary of automation. On the left side of 

this boundary, both technical management, including physical 

intervention, and business management, remain. In the latter, a 

high level of abstraction will likely dominate, where business 

goals govern the network behavior. We next drill down the 

high-level architecture into two fundamental elements: 

Functional components (FCs) encapsulate network service 

and management functionality within a single element. We use 

the term service in a fairly broad sense, including network 

services and functionality. This makes the concept of FCs 

applicable to any layer of the TMN functional hierarchy. Each 

functional component implements a set of FC properties, 

which impose a well-defined yet flexible set of characteristics 

on FCs and management structures. They are essential in the 

process of assembling complex management functions from 

simple ones in close interrelation with services. As such, 

functional components are vital in coping with the complexity 

of large-scale network management. 

Management capabilities (MCs) are fine-grained entities 

that implement specific management functionality or parts 

thereof. Individual MCs may be composed to create more 

complex management processes from simple ones, within the 

same or across multiple FCs. Depending on the degree of 

embedding, MCs may be external, separated, integrated or 

inherent with respect to a specific service process. 

Fig. 3 shows how FCs map into the high-level architecture and 

their relation to MCs. Observe the distinction of FCs into self- 

 

 

managing FCs, which mediate between INM and service 

processes in terms of management, and dedicated management 

FCs, which contain only management-specific functionality. 

Furthermore, FCs interact with business and technical 

management and among each other in order to collaborate in 

performing management via external and internal management 

interfaces, respectively. Fig. 3 also shows how FCs embed 

management capabilities according to the inherent (wiggly 

lines) and integrated (circles) degree of embedding. 

A. Functional Components 

Functional components (FCs) are the basic elements in a 

communication network that can encompass both management 

and service functionality in one entity. An FC might represent, 

for instance, a protocol (sub)layer (e.g. a TCP/IP module or a 

MAC sublayer) or any other software module that encapsulates 

a specific service. FCs are distinguished into two types, termed 

self-managing (smFC, Fig. 4) and dedicated management FCs 

(dmFC, Fig. 5). The distinction is motivated by the fact that 

certain management functionality is specific to a service (e.g. 

an smFC dealing with routing performance), while others is 

generic and may be used by several other FCs (e.g. a dmFC 

implementing a cross-layer neighbor table). 

Let us first consider the self-managing FC, shown in Fig. 4, 

which offers its service via the service interface (e.g. the 

sending of frames in a MAC module). An smFC provides two 

additional interfaces that enable it to communicate with either 

external components or other FCs for the purpose of 

management. The internal management interface is for any 

collaboration between FCs in order to access one another’s 

MCs so distributed management objectives can be achieved 

collaboratively. The external management interface is related 

to governance and mediates between external (business and 

technical management according to Fig. 3) and internal (both 

integrated and inherent) management. 

Motivated by the separation into several distinct degrees of 

embedding, the smFC explicitly reflects this distinction in that 

the smFC’s management capabilities are arranged logically 

into three management subplanes, as shown in Fig. 4. Note that 

this does not imply any functional distinction beforehand. 

However, the rationale is to make explicit the migration of 

management functionality towards higher degrees of 

embedding and to support it. We will detail on this aspect in 

conjunction with management capabilities in Sec. IV.B. 

In Fig. 5 we show the structure of a dedicated management 

FC. The difference from smFCs is that the dmFC lacks a 

service and is limited to performing management-specific tasks 

only. Due to the fact that a dmFC’s management capabilities 

may be reused by several smFCs, this type of FC contains only 

integrated management capabilities which are published via 

the internal or external management interface. 

At this point we are able to identify the degree of separated 

management. When considering the management capabilities 

of a dmFC, they appear separated from the smFC if they are 

used by that smFC. This degree of embedding is key in 

providing a smooth migration of management functionality 

dedicated
management FC

technical management

self-managing FC

business management

Service ProcessesINM Processes

INM / service
process

interaction

internal mgmt IF

external
mgmt IF

 
Fig. 3.  INM and service processes. 

INM
processes

service
processes

business
management

physical intervention:
e.g. faulty devices

boundary of
automation

degree of autonomicity

governance: enforcement
of high-level business goals

collaboration between
embedded INM processes and services

degree of abstraction

technical
management

degree of
embedding

 
 

Fig. 2.  Traditional (left) and in-network management (right). 
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from external systems (e.g. management stations) closer to the 

relevant self-managing FC. Fig. 4 and 5 include also a view on 

the distinction between integrated and separated management 

in a UML style. In this view, integrated MCs (igMC) of an 

smFC can be considered to follow a composition relation (Fig. 

4), whereas MCs that are separated from an smFC 

(abbreviated spMCs) and contained within a dmFC match an 

aggregation relation (Fig. 5). 

In order for FCs to be combined into more complex 

management processes, they are supported by a set of key FC 

properties. These properties provide the abstraction of a well-

defined management process that has a well-known set of 

capabilities and with which well-defined interactions are 

possible. On one side, FC properties describe the mechanics of 

how FCs and their embedded management capabilities are 

integrated into more complex management processes. On the 

other side, they specify characteristics that allows the FC to be 

governed and observed by external entities. In order for a 

consistent overall management system that is composed of a 

multitude of functional components, and to guarantee that the 

overall management system is able to achieve high-level goals 

consistently, the implementation of all of the following 

properties is mandatory for each functional component: 

Self-descriptive property: Any FC describes the service 

and management functionality it provides in terms of its 

interfaces and implemented MCs (cf. Sec. IV.B). Furthermore, 

service and management descriptions may specify 

dependencies which indicate that the collaboration with other 

FCs is required. The self-descriptive property allows any 

management system to discover and access FCs and FCs to 

discover one another. For example, semantic descriptions 

could be helpful to implement the self-descriptive property. 

Composability property: In order to be able to create new 

services based on existing ones, FCs should be able to 

assemble for producing composite services. When different 

FCs are combined, they also bring together their internal 

management capabilities for potential interaction between each 

other. The FCs should have a standard set of interfaces so that 

they can be composed to produce composite services. The self- 

descriptive property is a prerequisite to the automation of 

composition, but might not be needed for e.g. statically or 

 
 

manually composed services and management. 

Auditability property: When machines are allowed to 

control themselves, there is a natural risk of instability. Even 

unlikely situations may still occur and cannot be completely 

accounted for beforehand. However, the stability of 

communications systems is of paramount importance and FCs 

need to be equipped with very robust management control 

loops. Furthermore, FCs need to take into account the states 

(faults and performance) of other FCs on which they rely and 

which rely on them. For that purpose, functional components 

must support, whenever necessary, the performing of 

appropriate audits. Such audits may include (1) the tracing of 

self-management tasks carried out by the FCs, (2) reasoning 

about performing particular self-management tasks (e.g. for 

diagnosis), (3) configuration integrity checks, including 

software version control and patch details, and (4) 

accountability (integrity and fulfilment of agreements). 

Governance property: Each FC is owned by one or more 

organizations or persons. Each FC can be governed by 

business service management (e.g. for service creation), 

technical administrators (e.g. for physical capacity increase or 

component exchange), or through the vendor (e.g. for software 

bug-fixes and upgrades). Plus, depending on the scenario, 

ownership and governance can be carried out by a single party 

or a number of separate parties. The INM architecture supports 

governance domains to reflect this real world organizational 

structure and for conflict resolutions. 

B. Management Capabilities 

Management capabilities are the fine-granular elements from 

which more complex management functions are constructed 

(e.g. performance monitoring, situation awareness). They can 

reside at any degrees of embedding as introduced in Sec. III, 

Fig. 1. While separated, integrated, and inherent management 

capabilities always reside inside of FCs, external management 

capabilities are located external to any FC. Specifically, 

inherent MCs are closely tied to the service which is provided 

by its encapsulating FC. Normally this capability will not be 

visible outside the FC. In Fig. 4 and 5, this type of capability is 

indicated by the wiggly line. Integrated MCs are capabilities 

that reside within an FC and have a definite relationship with 

the FC’s provided service, but which are not generic enough 

(1)(3)

(2)

(2)

external
mgmt

subplane

(4)

smFC igMC
0..1 1..1

service
interface

internal
mgmt IF

external
mgmt IF

integrated
mgmt

subplane

inherent
mgmt

subplane

integrated
MC (igMC)

inherent
MC (ihMC)

internal
MC

MC invocation

cross-plane
MC invocation

composition relation
MC cease to exist with
termination of smFC

 
Fig. 5.  Dedicated management functional component (dmFC). 

integrated MC (igMC)

MC invocation

smFC spMC
0..1 1..*

aggregation relation
MC continue to exist with

termination of smFC

(1)(3)

(2)

(2)

external
mgmt

subplane

internal
mgmt IF

external
mgmt IF

integrated
mgmt

subplane

Note on terminology
From the point of view of the dmFC,
the MCs appear integrated. However,
the integrated MCs seen from a smFC
(cf. Fig. 4) are separated from that smFC.
In this case, the aggregation relation
shown below applies.

 
Fig. 4.  Self-managing functional component (smFC). 
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for use by other FCs. Separated MCs always reside in a dmFCs 

and are generic in that they may be used by a number of other 

FCs. Finally, external MCs represent entry points for business 

and technical management as displayed to the left of the 

boundary of automation in Fig. 2. 

Management capabilities should be designed such that they 

can potentially run at any level of embedding. What level of 

embedding an MC resides in is at the discretion of a functional 

component developer. The amount of exposure they wish to 

give a capability and how service-related the capability is will 

determine the level of embedding. This approach lends itself to 

the realization of the evolution principle described in Sec. III. 

An integrated management capability can be pushed down to a 

lower level of embedding and become inherent. This also 

results in the potential to create an external library of MCs 

which could be queried and used by FC developers. 

Integrated MCs are of specific interest because they allow 

the incorporation of management functions in a flexible and 

modular way. They have a number of properties which define 

them. They have the ability to communicate with each other, 

within the same FC and also between different FCs. They have 

a self-descriptive mechanism that acts as a feeder to the self-

descriptive FC property of the FC which they reside in. 

Management capabilities must also be discoverable, which 

may be mediated via its hosting functional component. 

Besides service-specific integrated MCs, it is possibly to 

dynamically add MCs to an FC at runtime. As such, they 

provide the space for any additional network management task 

that is not provided inherently by the smFC. For example, a 

monitoring function that monitors the state of a TCP/IP 

module relevant to performance management is typically 

located within the scope of integrated MCs. In contrast to 

inherent MCs, integrated management capabilities are well-

distinguishable management structures, or (part of) network 

management functions. They possess their own interface that 

in turn can be published via an FC’s management interfaces. 

Furthermore, a large part of the communication related to 

the execution of more generic management functions takes 

place at the level of individual integrated MCs within the 

integrated management plane. In Fig. 4 and 5, for instance, an 

integrated MC is invoking another integrated MC. This 

interaction could be used, for instance, by an event 

mechanisms to propagate failure information between different 

network functions. In the same figures, interaction (2) occurs 

between integrated MCs of different FCs, mediated through 

the internal management interface by each FC. 

Two additional interactions are of specific interest due to 

their mediating between the external/integrated and 

integrated/inherent management planes. In Fig. 4 and 5, 

interaction (3) designates communication between an external 

management component and an integrated MC. The integrated 

management capability is thus invoked by an external entity 

and vice versa via the FCs external management interface. 

This kind of invocation is typical for the enforcement of 

business objectives to an FC’s internal management 

functionality. Interaction (4) occurs between the integrated and 

 
 

inherent management planes, also possibly in both directions. 

In one direction, an MC could provide access to inherent 

management functionality from the integrated management 

plane. For example, a P2P preferences capability could allow 

the integrated management to access preferences of the P2P 

facility through a well-defined preferences capability interface. 

In the other direction, an MC may allow the inherent 

management plane to invoke specific functions that it cannot 

handle alone. In the P2P example, this might be a security 

capability that handles authentication in cases where the P2P 

FC cannot handle security issues by itself. 

While in this paper we focus on the architectural principles 

and elements, we emphasize the concreteness of our proposal 

in Fig. 6. In the figure, several types of management 

capabilities are placed inside the control loop that is taken 

from [17]. This example illustrates the kind of management 

capabilities that are currently developed within the scope of 

the 4WARD project [2]. In the figure, each of the capabilities 

are mapped to a set of distributed FCs. Overlap between 

capabilities indicates communication between MCs, either 

within or beyond single FCs. Furthermore, each of the 

capabilities may be realized at any degree of embedding. 

V. APPLICATION OF INM TO PEER-TO-PEER SYSTEMS 

Given the above described INM paradigm and architecture, 

one question comes to the fore how one should design for such 

a framework. This is important for two cases, (1) the design 

issues when applying the INM system to existing network or 

service management and (2) the design of a future Internet 

architecture from scratch in a clean slate manner. 

In existing systems, we cannot really add more management 

functions than there are already. But in many cases existing 

built-in (self-)management functions need to be accessed and 

adapted. Also management functions currently located in a 

central spot can be adapted to a more decentralized design and 

located closer to the network functionality. For these functions, 

INM provides the necessary flexibility to build a suitable 

management capability model and integrate each function at 

one of the degrees of embedding. 

Situation
Awareness
Capability

Aggregation
Capability

Anomaly
Handling
Capability

Resource
Analysis

Capability

P2P         
Configuration

Capability

P2P
Service

Capability

 
 

Fig. 6.  Control loop with management capabilities (based on [17]). 
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In case of the future Internet, the INM features can be much 

better exploited than for existing systems. The design approach 

in an extreme version of the future Internet is to build as much 

management functionality as possible directly and inherently 

into the future Internet functions and protocols. Based on that, 

the set of management capabilities within the functional 

components should cover the whole management space, and 

the governance should be designed at a degree of abstraction 

that deals with business level issues only. 

Since we do not have a future Internet design yet, we have 

chosen to apply INM to a P2P networking example. P2P is 

interesting because of its ubiquity in today’s Internet and 

because it has quite a number of management functions built 

into the system itself. In the following we show how the actual 

INM system would work in a P2P data management scenario 

(Fig. 7). According to this scenario, P2P systems will provide 

a uniform mechanism for accessing content organized as 

information elements, e.g. by means of structured DHTs. 

Given an identifier for an element, a P2P infrastructure will 

decide what the optimal sources are for retrieving the content. 

Different algorithms and strategies for content distribution may 

be used (depending on the specific P2P implementation) 

together with techniques for content adaptation to ensure a 

delivery that is optimally adapted to a particular user as well as 

network resources and policies. We assume that the P2P 

machinery establishes a dynamic communication overlay on 

top of the underlying network infrastructure for both internal 

management and data transfer purposes. The management 

capabilities (cf. Fig. 7), comprise the following functions: 

neighbor discovery for topology building, choosing the 

optimal delivery method, access control and enforcement, 

error management, and ICMP error reporting. 

The topology building MC allows bootstrapping and 

maintaining the relationships between parts of the P2P 

machinery. The P2P system may contain a set of functions for 

neighbor discovery and topology building based on a set of 

objectives in terms of communication strategy and neighbor 

relationships (e.g. gossiping protocols or beacons). The system 

designers could simply choose either one of the strategies and 

type of neighbor relationships that are most suitable for them. 

Alternatively, an INM capability co-located with the neighbor 

discovery capability might make the decision, based on 

information received via the external management interface or 

based on measurements performed automatically through the 

interaction with TCP/IP. The neighbor discovery MC can 

access details regarding the physical connectivity between 

neighbors, such as link segment types, one-way transmission 

delays, and live data related to network monitoring. 

The monitoring and maintenance capabilities in the 

topology discovery capability do not perform the monitoring 

task itself, but rather read from the P2P system the results and 

make those accessible externally to other FC’s management 

capabilities. For example, a user might want to supervise the 

system through a management GUI or switch to a different 

P2P system. Also the management capability might export the 

 
 

monitoring results to an FC, which is run by the P2P system 

developer to get feedback on the users’ problems. 

The algorithm in the P2P machinery for choosing the best 

delivery method for an information object might be designed 

as yet another MC. We assume that the algorithm takes into 

account a set of networking characteristics, which the P2P 

system figures out by itself. However, since it is only able to 

measure between peers and does not know the network 

conditions in between, those measurements might be incorrect 

or not desired by an ISP. So an INM management capability 

integrated within this FC may interact with an ISP’s network 

management capability to receive network conditions to 

improve or ease the decision process. With integrated MCs, 

the algorithm could take advantage of information available 

through FCs in the INM architecture, including, but not limited 

to, the following: (1) identify a set of data caches relevant to 

the destination, based on the topology information of the 

network; (2) instant (or historical) values about using a certain 

destination to load the object from, but measure by other peer 

for other objects; (3) determine whether the SLA of the 

destination allows for P2P delivery at all. 

The access control and enforcement functionality allows for 

the P2P machinery to restrict the access to the objects based on 

user credentials and roles. The INM framework could provide 

the following functionality that would help in this mission: (1) 

a dissemination protocol with automated updating of the in-

network access control configuration mechanisms and (2) an 

automatic enforcement of access policies via a two-way API 

for communication between the P2P machinery and the INM 

framework that controls the network-attached devices where 

the objects reside physically. 

The troubleshooting and diagnostic capabilities embedded 

in the INM framework allow for a detailed analysis of 

network-related problems. For example, in the event where an 

information object cannot be delivered to a destination, the 
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Fig. 7.  Example: in-network management for P2P systems. 
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P2P machinery may take advantage of integrated management 

capabilities in order to determine the cause of the error and to 

decide whether this is a transient or permanent problem. As 

such, INM could determine whether a large frame loss noticed 

by the P2P machinery is the result of temporary congestion or 

of a severe failure in one of the physical links. In the above 

example, P2P would make use of the management capabilities 

made available by the network, which is concerned about path 

information. The evaluation of edge-to-edge delay is a typical 

component that could be part of INM. In combination with a 

similar service implemented at the P2P level, it may allow to 

determine whether a particular problem was localized in the 

end nodes or within the network. 

VI. CONCLUSION 

The future Internet will bring many challenges with it and its 

management will be one of the most taxing. Techniques to 

enable its management be efficient and transparent will be 

pivotal. This paper proposes five architectural principles for 

in-network management, a new paradigm for the management 

of future communication networks. Based on this set of clean 

slate principles and an evolutionary design space, we proposed 

architectural elements that act as enabling building blocks to 

embed management capabilities inside the network. We 

showed by the example of P2P-based data management how 

these architectural elements can be practically applied, in an 

evolutionary way, to real world networking scenarios. 

We believe that the proposed concepts are an essential step 

in sustaining the manageability of future networks and in the 

feasibility to gradually implement the necessary changes to 

allow for noncomplicated and scalable management. 

Moreover, the adoption of a higher degrees in the functional 

dimensions of in-network management will lead to significant 

long-term benefits in terms of capital and operational expenses 

due to the increased automation and more abstract 

specification of management processes and objectives, 

respectively. While the proposed concepts embrace a large 

spectrum of today’s complex and heterogeneous management 

systems, we can see that they will also stimulate the design of 

networks and services to support the development towards a 

clean slate approach in a controlled and rapid way. 

Future work includes the refinement of details in the 

architectural elements and their interaction and composition to 

form more complex management functions. While we have 

gained first experiences with a framework for in-network 

management and its application to bio-inspired networking 

[18], in-network support for running embedded management 

processes is to be extended along the axis of functionality and 

performance. Specifically, we are working on the detailing of a 

management capability model and the creation of a library of 

efficient management functions for being integrated into the 

management plane. Finally, we are looking at how security 

issues can be achieved more inherently based on the 

abstractions provided by in-network management. 

ACKNOWLEDGMENT 

This work is supported in part by the European Union through 

the 4WARD project (http://www.4ward-project.eu/) in the 7th 

Framework Programme. The views expressed in this paper are 

solely those of the authors and do not necessarily represent the 

views of their employers, the 4WARD project, or the 

Commission of the European Union. 

REFERENCES 

[1] M. Johnsson, J. Huusko, T. Frantti, F.-U. Andersen, T.-M.-T. Nguyen, 
and M. P. de Leon, “Towards a new architectural framework – the Nth 
stratum concept,” Proc. MobiMedia’08, Oulu, Finland, Jul. 2008. 

[2] N. Niebert, S. Baucke, I. El-Khayat, M. Johnsson, B. Ohlman, H. 
Abramowicz, K. Wuenstel, H. Woesner, J. Quittek, and L. M. Correia, 
“The way 4WARD to the creation of a future Internet,” Proc. 
PIMRC’08, Cannes, France, Sep. 2008. To appear. 

[3] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. 
Xie, H. Yan, J. Zhan, and H. Zhang, “ A clean slate 4D approach to 
network control and management,” ACM SIGCOMM Computer 
Communication Review, vol. 35, no. 5, pp. 41-54, Oct. 2005. 

[4] C. Dovrolis, “What would Darwin think about clean-slate 
architectures?” in ACM SIGCOMM Computer Communication Review, 
vol. 38, no. 1, pp. 29-34, Jan. 2008. 

[5] H. Ballani and P. Francis, “CONMan: Taking the complexity out of 
network management,” Proc. of the 2006 SIGCOMM Workshop on 
Internet Network Management, Pisa, Italy, Sep. 2006, pp. 47-51. 

[6] T. S. E. Ng and H. Yan, “Towards a framework for network control 
composition,” Proc. of the 2006 SIGCOMM Workshop on Internet 
Network Management, Pisa, Italy, Sep. 2006, pp. 47-51. 

[7] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A 
knowledge plane for the Internet,” Proc. SIGCOMM’03, Karlsruhe, 
Germany, Aug. 2003, pp. 3-10. 

[8] M. Wawrzoniak, L. Peterson, and T. Roscoe, “Sophia: An information 
plane for networked systems,” ACM SIGCOMM Computer 
Communication Review, vol. 34, no. 1, pp. 15-20, Jan. 2004. 

[9] T. Bullot, R. Khatoun, L. Hugues, D. Gaïti, and L. Merghem-Boulahia, 
“A situatedness-based knowledge plane for autonomic networking,” 
International Journal of Network Management, vol. 18, no. 2, pp. 171-
193, Mar. 2008. 

[10] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “MANNA: A 
management architecture for wireless sensor networks,” IEEE 
Communications Magazine, vol. 41, no. 2, pp. 116-125, Feb. 2003. 

[11] B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. Ó. 
Foghlú, and W. Donnelly, “Towards autonomic management of 
communications networks,” IEEE Communications Magazine, vol. 45, 
no. 10, pp. 112-121, Oct. 2007. 

[12] Y. Cheng, R. Farha, M. S. Kom, A. Leon-Garcia, and J. W.-K. Hong, 
“A generic architecture for autonomic service and network 
management,” Computer Communications, vol. 29, no. 18, pp. 3691-
3709, Nov. 2006. 

[13] B. Ahlgren, L. Eggert, B. Ohlman, and A. Schieder, “Ambient networks: 
Bridging heterogeneous network domains,“ Proc. PIMRC’05, vol. 2, 
Berlin, Germany, Sep. 2005, pp. 937-941. 

[14] M. Zach, D. Parker, C. Fahy, R. Carroll, E. Lehtihet, N. Georgalas, R. 
Marin, J. Serrat, and J. Nielsen, “Towards a framework for network 
management applications based on peer-to-peer paradigms,” Proc. 
NOMS’06, Vancouver, Canada, Apr. 2006. 

[15] C. Jelger, C. Tschudin, S. Schmid, and G. Leduc, “Basic abstractions 
for an autonomic network architecture,” Proc. AOC’07, Helsinki, 
Finland, Jun. 2007. 

[16] A. Pras, B.-J. van Beijnum, and R. Sprenkels, “Introduction to TMN,” 
University of Twente, Enschede, The Netherlands, CTIT Technical 
Report 99-09, Apr. 1999. 

[17] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, 
P. Nixon, f. Saffre, N. Schmidt, and F. Zambonell, “A survey on 
autonomic communications,” ACM Transactions on Autonomous and 
Adaptive Systems, vol. 1, no. 2, pp. 223-259, Dec. 2006. 

[18] C. Foley, S. Balasubramaniam, E. Power, M. P. de Leon, D. Botvich, D. 
Dudkowski, G. Nunzi and C. Mingardi, “A framework for in-network 
management in heterogeneous future communication networks,” Proc. 
MACE’08, Samos Island, Greece, Sep. 2008. To appear. 

http://www.4ward-project.eu/

