
48087

1

Abstract— Recent endeavors in addressing the challenges of

the current and future Internet pursue a clean slate design

methodology. Simultaneously, it is argued that the Internet is

unlikely to be changed in one fell swoop and that its next

generation requires an evolutionary design approach. Recognizing

both positions, we claim that cleanness and evolution are not

mutually exclusive, but rather complementary and indispensable

properties for sustainable management in the future Internet.

In this paper we propose the in-network management (INM)

paradigm, which adopts a clean slate design approach to the

management of future communication networks that is brought

about by evolutionary design principles. The proposed paradigm

builds on embedded management capabilities to address the

intrinsic nature, and hence, close relationship between the

network and its management. At the same time, INM assists in

the gradual adoption of embedded self-managing processes to

progressively achieve adequate and practical degrees of INM. We

demonstrate how INM can be exploited in current and future

network management by its application to P2P networks.

Index Terms— clean slate design, evolutionary design, in-

network management, self-management, future Internet

I. INTRODUCTION

LTHOUGH management is considered an inseparable

part of communication networks, its intrinsic nature is not

reflected in current networks. Instead, a clear separation exists

where network functionality is designed and deployed before

management is superimposed as an add-on feature. This clear

mismatch has lead to a number of significant and growing

problems: the incremental adding of features and the patch-on-

a-patch approach apparent in many of today’s systems have

resulted in large complexity, nonscalability, and the need for

extensive manual involvement. Trends in how the properties of

current networks will develop indicate that management based

on conventional paradigms will eventually break down,

because the incremental adding of management features will

become impractical.

Whereas the need for structural change is broadly

acknowledged, there is large controversy about the best way to

bring about the necessary changes. Two Internet design

methodologies dominate in recent EU- and US-funded

initiatives: clean slate (e.g. Nth stratum [1] within 4WARD [2]

and 4D [3]) versus evolutionary architectural design [4].

While clean slate considers what future networks would look

like if one started from scratch, proponents of evolutionary

design argue for nondisruptive transitions over time [4]. We

believe that both views in combination constitute an essential

and immutable principle for the development of future

communication networks, and specifically, the Internet.

We claim that this view holds for future network

management in particular. Within this scope, we are unaware

of any previous methodology that suggests how the gradual

implementation of a clean slate management design can be

made practical. To this end, we propose the in-network

management (INM) paradigm, which combines the clean slate

and evolutionary design principles to achieve sustainable

management in future communication networks.

Rather than focusing on a single design approach, in-

network management provides the necessary concepts and

procedures to induce gradual changes in the way management

is done today. While defining a pure case of INM, where the

intrinsic nature of management is reflected in the network

architecture, INM allows adapting sensible and practical

degrees of embedding management functionality, in different

locations of the network. Thereby, the adoption of a clean slate

design is brought forward by an evolutionary process with a

clear, flexible, yet tangible goal.

In-network management provides concrete architectural

concepts that facilitate the embedding of management

functionalities inside the network and network elements. INM

does not shift complexity by proposing a generic solution, but

provides fundamental management capabilities that may be

combined to capture dedicated and clear base management

functionality with sensible complexity, including FCAPS

functions. While incorporating legacy management systems in

the evolutionary dimension is supported, INM shows most of

its benefits if applied to a fairly novel way of designing future

networks, specifically, in those cases where the network

management functionality is inherently designed into the future

Internet’s functions and protocols.

Dominique Dudkowski*, Marcus Brunner*, Giorgio Nunzi*, Chiara Mingardi*,

Chris Foley
†
, Miguel Ponce de Leon

†
, Catalin Meirosu

‡
, and Susanne Engberg

‡

*NEC Laboratories Europe, Network Research Division, Heidelberg, Germany

Email: {dominique.dudkowski|marcus.brunner|giorgio.nunzi|chiara.mingardi}@nw.neclab.eu
†Telecommunications Software & Systems Group, Waterford Institute of Technology, Waterford, Ireland

Email: {ccfoley|miguelpdl}@tssg.org
‡
Ericsson Research, Ericsson AB, Stockholm, Sweden

Email: {catalin.meirosu|susanne.engberg}@ericsson.com

Architectural Principles and Elements of

In-Network Management

A

48087

2

The remainder of this paper is structured as follows. After

reviewing related work in Sec. II, we introduce the paradigm

and underlying principles of in-network management in Sec.

III. The architectural elements of INM are described in detail

in Sec. IV. To show how in-network management can be

exploited and adopted we illustrate its application to Peer-to-

Peer networks in Sec. V. We conclude with a brief summary

and outlook to future work in Sec. VI.

II. RELATED WORK

A growing number of future network research initiatives are

dealing with questions on how network management is to be

accomplished. The authors of [3] move from the consideration

that today’s management functions need to be mapped to the

logic elements of the nodes. As a consequence, they propose a

clean slate approach and introduce four separate planes:

decision, dissemination, discovery, and data. While we agree

with the initial analysis, we observe that the approach closely

resembles existing telecom architectures with dedicated

channels and machines for specific management functions.

Furthermore, such separation would have the effect of shifting

the complexity to the proposed planes. The authors also seem

to ignore the cost associated with the implementation of

separate planes. The architecture in [5] is built with similar

principles. Management operations are defined over a general

interface, which is instantiated within each protocol entity. The

architecture sounds valid, but authors do not mention the

complexity in the instantiation of functions from their general

interface. The authors of the clean-slate architecture in [6]

consider the technical challenges of function composition.

These considerations are somewhat general for any

composition framework and can certainly be considered in

INM, at least for those aspects related to composition.

The problem of mapping high-level objectives into service-

specific settings is presented as a key issue in [7]. The concept

of a pervasive knowledge plane is introduced, where artificial

intelligence and cognitive systems are enabling techniques, but

authors do not go further in defining functional elements yet.

Within the PlanetLab project, an information plane is

presented in [8], where network elements are reconfigured by

declarative programs. Self-management is instead the main

objective of the knowledge plane proposed in [9], which is

achieved through collaborative and autonomous multi-agent

systems that are embedded within network elements. The

above works testify that aspects related to knowledge and

information play an important role in management operations

and they can be considered as building elements in the

definition of a new architecture. Nevertheless, mechanisms for

knowledge distribution can follow different degrees of

embedding, and therefore also mapped into our proposal.

The management architecture in [10] proposes a model

representing a given network aspect, stating the conditions for

executing a function according to policies. The architecture

targets mainly wireless sensor networks, with a restricted set of

issues. The FOCALE architecture in [11] emphasizes the use

of information and ontological modeling to gather knowledge

about network capabilities. The system is highly autonomous,

but it is very complex and therefore difficult to understand in

case of unforeseen failures in the management system itself.

INM’s goal is rather the design of an autonomous system that

is kept simple and flexible, providing a balanced level of

autonomy and abstract interfaces to allow interactivity with the

system. The ASA architecture in [12] aims at enabling

autonomic management of resources to guarantee Service

Level Agreements (SLA). ASA’s main advantage is that it

encompasses different abstraction layers and heterogeneous

resources. However, it is characterized by large complexity,

both in the hierarchical structure of the management entities

and in the internal structure of such entities.

The Ambient Networks project [13] supports composition

of networks across business and technology boundaries. While

it provides valid mechanisms for composition, the mapping

between different control spaces is still a manual step of the

process. Madeira [14] proposes a distributed management

system with self-forming logical overlay topologies. It is

mainly targeted at wireless networks and still adopts a

hierarchical structure with middle managers. ANA [15] is

building an architecture that can demonstrate the feasibility

and properties of autonomic networking. The problem field is

quite close to the topics addressed in INM, but ANA should be

regarded as a generic architecture for autonomic devices, while

INM will leverage on a tight coupling of management

functions with the services deployed on a device, like

virtualization of resources or generic paths. Furthermore, ANA

has a strong emphasis on prototypical realization.

 In contrast to the discussed approaches, we propose a clean

slate approach to future network management that can be

gradually achieved by evolutionary processes. We further

present the necessary architectural principles, elements, and

methodology in order to do so, and demonstrate how this can

be achieved by the concrete example of a P2P system.

III. PRINCIPLES OF IN-NETWORK MANAGEMENT

INM addresses the challenges of current and future network

management by combining a clean slate design paradigm with

an evolutionary design methodology. In order to achieve this

objective, INM firstly stipulates five fundamental principles,

which capture, in our view, the essence of future management

of communication networks. The first principle addresses the

very nature of network management per se:

1. Intrinsic principle: Management is intrinsic to the

network. This principle is fundamental and captures the fact

that the network is management at the same time. As such, this

principle dictates all architectural considerations.

The following three principles are consequences from the

intrinsic principle and define the extremal clean slate

architectural design of in-network management. We note that

these principles are extremal cases that will be relaxed in our

subsequent practical considerations:

48087

3

2. Inherent principle: Management is an inherent part of

network elements, protocols, and services. This principle

captures the most extreme version of the architectural design

where management functionality is coalesced with the rest of

the network functionality. As such, management becomes an

inseparable and indistinguishable part of the network, thus

reflecting directly its intrinsic nature. In peer-to-peer networks

(cf. Sec. V), for instance, overlay management is implemented

inherently by the P2P facility and can be considered a P2P

system’s inherent management capability.

3. Autonomous principle: Management is autonomous and

does not involve any external technical intervention. This

principle is also implied by the inherent principle and leads to

the adoption of purely self-managing mechanisms. It is pure in

the sense that any functional aspect is autonomous, including

the enforcement of high-level business goals and physical

intervention, such as the replacement of faulty devices.

4. Abstraction principle: External management operations

occur on the highest possible level of abstraction. In the

theoretical extreme case, the network may be triggered by an

external stimulus only once at the beginning of its lifetime. All

subsequent management actions and processes are concealed

and follow the autonomous principle.

Furthermore, INM defines the following principle that

addresses the evolutionary design methodology:

5. Evolution principle: The architectural design principles

2-4 are to be implemented and shall be supported by technical

developments in a way that they can be gradually adopted.

This principle is essential in that it allows the accommodation

of currently established approaches, the nondisruptive

development of management functionality, and the accelerated

adoption of higher degrees of inherence, autonomicity and

abstraction by novel technological innovations.

While the architectural principles 2-4 are theoretic in nature,

INM breaks down the evolutionary design into a three-

dimensional functional design space that allows for a gradual

adoption of these principles to various and practical degrees.

Thereby, a three-dimensional disk is formed, which is shown

in Fig. 1. In the center, INM designates the extreme case

where principles 2-4 are adopted in their pure form.

On the axis of the degree of embedding, INM provides

scope for a relaxation of the inherent principle. Management

processes can be implemented either as external, separated,

integrated, or inherent management capabilities of the

network. Integrated is weaker in that instead of

indistinguishable management functionality, it designates well

identifiable management capabilities that are modular and

visible, but still closely related to and integrated with specific

services. Separated management processes are those that are

more decoupled from the service, and include, for example,

today’s weakly distributed management approaches (e.g.

RMON). External management processes include traditional

management paradigms widely used today (e.g. SNMP).

On the axis of the degree of autonomicity, INM allows for

different degrees of autonomous management, from manual to

fully autonomous processes. Manual refers to the direct

manipulation of management parameters, such as manual

routing configurations. Automated management can be

typically found in the application of management scripts.

Autonomic and autonomous degrees include intelligence that

allows the system to govern its own behavior.

On the axis of the degree of abstraction, different levels of

management according to the TMN functional hierarchy [16]

can be adopted. This dimension leads to a reduction in the

amount of external management interactions, which is key to

the minimization of manual interaction and the sustaining of

manageability of large networked systems. Specifically, this

dimension can be understood as moving from a managed

object paradigm to one of management by objective.

An essential philosophy is that INM does not force the

adoption of the extreme case, or any specific degree on any of

the functional dimensions. Instead, different parts of the

network may adopt their specific degree of embedding,

autonomicity, and abstraction, based on practicability and

domain- or application-specific goals and requirements. At the

same time, INM proactively supports evolution in the

functional dimension in a technological aspect. If design issues

are considered at the design time of new components, then

newly introduced components may encapsulate existing

management functionality in a way that allows for a

nondisruptive transition to a purer INM system.

IV. ARCHITECTURAL ELEMENTS

The architectural elements proposed by INM are based on the

principles and functional dimensions described in Sec. III. Let

us first consider the high-level architecture of INM, shown in

Fig. 2. The figure depicts a practical case of INM that relaxes

the pure paradigm on each of the functional dimensions. In the

degree of embedding, we assume that management functions

are closely tied to the service processes, preferably in an

inherent or integrated manner (cf. Fig. 1). Consequently, INM

processes closely collaborate with the service processes in

which they are embedded. In the degree of autonomicity, we

observe that a certain set of management tasks cannot be

automated practically and therefore must remain external,

INM

degree of
embedding

degree of
abstraction

degree of
autonomicity

Fig. 1. INM evolutionary disk: degree of embedding (top), degree of

autonomicity (right), and TMN functional hierarchy (left) according to [16].

48087

4

indicated by the boundary of automation. On the left side of

this boundary, both technical management, including physical

intervention, and business management, remain. In the latter, a

high level of abstraction will likely dominate, where business

goals govern the network behavior. We next drill down the

high-level architecture into two fundamental elements:

Functional components (FCs) encapsulate network service

and management functionality within a single element. We use

the term service in a fairly broad sense, including network

services and functionality. This makes the concept of FCs

applicable to any layer of the TMN functional hierarchy. Each

functional component implements a set of FC properties,

which impose a well-defined yet flexible set of characteristics

on FCs and management structures. They are essential in the

process of assembling complex management functions from

simple ones in close interrelation with services. As such,

functional components are vital in coping with the complexity

of large-scale network management.

Management capabilities (MCs) are fine-grained entities

that implement specific management functionality or parts

thereof. Individual MCs may be composed to create more

complex management processes from simple ones, within the

same or across multiple FCs. Depending on the degree of

embedding, MCs may be external, separated, integrated or

inherent with respect to a specific service process.

Fig. 3 shows how FCs map into the high-level architecture and

their relation to MCs. Observe the distinction of FCs into self-

managing FCs, which mediate between INM and service

processes in terms of management, and dedicated management

FCs, which contain only management-specific functionality.

Furthermore, FCs interact with business and technical

management and among each other in order to collaborate in

performing management via external and internal management

interfaces, respectively. Fig. 3 also shows how FCs embed

management capabilities according to the inherent (wiggly

lines) and integrated (circles) degree of embedding.

A. Functional Components

Functional components (FCs) are the basic elements in a

communication network that can encompass both management

and service functionality in one entity. An FC might represent,

for instance, a protocol (sub)layer (e.g. a TCP/IP module or a

MAC sublayer) or any other software module that encapsulates

a specific service. FCs are distinguished into two types, termed

self-managing (smFC, Fig. 4) and dedicated management FCs

(dmFC, Fig. 5). The distinction is motivated by the fact that

certain management functionality is specific to a service (e.g.

an smFC dealing with routing performance), while others is

generic and may be used by several other FCs (e.g. a dmFC

implementing a cross-layer neighbor table).

Let us first consider the self-managing FC, shown in Fig. 4,

which offers its service via the service interface (e.g. the

sending of frames in a MAC module). An smFC provides two

additional interfaces that enable it to communicate with either

external components or other FCs for the purpose of

management. The internal management interface is for any

collaboration between FCs in order to access one another’s

MCs so distributed management objectives can be achieved

collaboratively. The external management interface is related

to governance and mediates between external (business and

technical management according to Fig. 3) and internal (both

integrated and inherent) management.

Motivated by the separation into several distinct degrees of

embedding, the smFC explicitly reflects this distinction in that

the smFC’s management capabilities are arranged logically

into three management subplanes, as shown in Fig. 4. Note that

this does not imply any functional distinction beforehand.

However, the rationale is to make explicit the migration of

management functionality towards higher degrees of

embedding and to support it. We will detail on this aspect in

conjunction with management capabilities in Sec. IV.B.

In Fig. 5 we show the structure of a dedicated management

FC. The difference from smFCs is that the dmFC lacks a

service and is limited to performing management-specific tasks

only. Due to the fact that a dmFC’s management capabilities

may be reused by several smFCs, this type of FC contains only

integrated management capabilities which are published via

the internal or external management interface.

At this point we are able to identify the degree of separated

management. When considering the management capabilities

of a dmFC, they appear separated from the smFC if they are

used by that smFC. This degree of embedding is key in

providing a smooth migration of management functionality

dedicated
management FC

technical management

self-managing FC

business management

Service ProcessesINM Processes

INM / service
process

interaction

internal mgmt IF

external
mgmt IF

Fig. 3. INM and service processes.

INM
processes

service
processes

business
management

physical intervention:
e.g. faulty devices

boundary of
automation

degree of autonomicity

governance: enforcement
of high-level business goals

collaboration between
embedded INM processes and services

degree of abstraction

technical
management

degree of
embedding

Fig. 2. Traditional (left) and in-network management (right).

48087

5

from external systems (e.g. management stations) closer to the

relevant self-managing FC. Fig. 4 and 5 include also a view on

the distinction between integrated and separated management

in a UML style. In this view, integrated MCs (igMC) of an

smFC can be considered to follow a composition relation (Fig.

4), whereas MCs that are separated from an smFC

(abbreviated spMCs) and contained within a dmFC match an

aggregation relation (Fig. 5).

In order for FCs to be combined into more complex

management processes, they are supported by a set of key FC

properties. These properties provide the abstraction of a well-

defined management process that has a well-known set of

capabilities and with which well-defined interactions are

possible. On one side, FC properties describe the mechanics of

how FCs and their embedded management capabilities are

integrated into more complex management processes. On the

other side, they specify characteristics that allows the FC to be

governed and observed by external entities. In order for a

consistent overall management system that is composed of a

multitude of functional components, and to guarantee that the

overall management system is able to achieve high-level goals

consistently, the implementation of all of the following

properties is mandatory for each functional component:

Self-descriptive property: Any FC describes the service

and management functionality it provides in terms of its

interfaces and implemented MCs (cf. Sec. IV.B). Furthermore,

service and management descriptions may specify

dependencies which indicate that the collaboration with other

FCs is required. The self-descriptive property allows any

management system to discover and access FCs and FCs to

discover one another. For example, semantic descriptions

could be helpful to implement the self-descriptive property.

Composability property: In order to be able to create new

services based on existing ones, FCs should be able to

assemble for producing composite services. When different

FCs are combined, they also bring together their internal

management capabilities for potential interaction between each

other. The FCs should have a standard set of interfaces so that

they can be composed to produce composite services. The self-

descriptive property is a prerequisite to the automation of

composition, but might not be needed for e.g. statically or

manually composed services and management.

Auditability property: When machines are allowed to

control themselves, there is a natural risk of instability. Even

unlikely situations may still occur and cannot be completely

accounted for beforehand. However, the stability of

communications systems is of paramount importance and FCs

need to be equipped with very robust management control

loops. Furthermore, FCs need to take into account the states

(faults and performance) of other FCs on which they rely and

which rely on them. For that purpose, functional components

must support, whenever necessary, the performing of

appropriate audits. Such audits may include (1) the tracing of

self-management tasks carried out by the FCs, (2) reasoning

about performing particular self-management tasks (e.g. for

diagnosis), (3) configuration integrity checks, including

software version control and patch details, and (4)

accountability (integrity and fulfilment of agreements).

Governance property: Each FC is owned by one or more

organizations or persons. Each FC can be governed by

business service management (e.g. for service creation),

technical administrators (e.g. for physical capacity increase or

component exchange), or through the vendor (e.g. for software

bug-fixes and upgrades). Plus, depending on the scenario,

ownership and governance can be carried out by a single party

or a number of separate parties. The INM architecture supports

governance domains to reflect this real world organizational

structure and for conflict resolutions.

B. Management Capabilities

Management capabilities are the fine-granular elements from

which more complex management functions are constructed

(e.g. performance monitoring, situation awareness). They can

reside at any degrees of embedding as introduced in Sec. III,

Fig. 1. While separated, integrated, and inherent management

capabilities always reside inside of FCs, external management

capabilities are located external to any FC. Specifically,

inherent MCs are closely tied to the service which is provided

by its encapsulating FC. Normally this capability will not be

visible outside the FC. In Fig. 4 and 5, this type of capability is

indicated by the wiggly line. Integrated MCs are capabilities

that reside within an FC and have a definite relationship with

the FC’s provided service, but which are not generic enough

(1)(3)

(2)

(2)

external
mgmt

subplane

(4)

smFC igMC
0..1 1..1

service
interface

internal
mgmt IF

external
mgmt IF

integrated
mgmt

subplane

inherent
mgmt

subplane

integrated
MC (igMC)

inherent
MC (ihMC)

internal
MC

MC invocation

cross-plane
MC invocation

composition relation
MC cease to exist with
termination of smFC

Fig. 5. Dedicated management functional component (dmFC).

integrated MC (igMC)

MC invocation

smFC spMC
0..1 1..*

aggregation relation
MC continue to exist with

termination of smFC

(1)(3)

(2)

(2)

external
mgmt

subplane

internal
mgmt IF

external
mgmt IF

integrated
mgmt

subplane

Note on terminology
From the point of view of the dmFC,
the MCs appear integrated. However,
the integrated MCs seen from a smFC
(cf. Fig. 4) are separated from that smFC.
In this case, the aggregation relation
shown below applies.

Fig. 4. Self-managing functional component (smFC).

48087

6

for use by other FCs. Separated MCs always reside in a dmFCs

and are generic in that they may be used by a number of other

FCs. Finally, external MCs represent entry points for business

and technical management as displayed to the left of the

boundary of automation in Fig. 2.

Management capabilities should be designed such that they

can potentially run at any level of embedding. What level of

embedding an MC resides in is at the discretion of a functional

component developer. The amount of exposure they wish to

give a capability and how service-related the capability is will

determine the level of embedding. This approach lends itself to

the realization of the evolution principle described in Sec. III.

An integrated management capability can be pushed down to a

lower level of embedding and become inherent. This also

results in the potential to create an external library of MCs

which could be queried and used by FC developers.

Integrated MCs are of specific interest because they allow

the incorporation of management functions in a flexible and

modular way. They have a number of properties which define

them. They have the ability to communicate with each other,

within the same FC and also between different FCs. They have

a self-descriptive mechanism that acts as a feeder to the self-

descriptive FC property of the FC which they reside in.

Management capabilities must also be discoverable, which

may be mediated via its hosting functional component.

Besides service-specific integrated MCs, it is possibly to

dynamically add MCs to an FC at runtime. As such, they

provide the space for any additional network management task

that is not provided inherently by the smFC. For example, a

monitoring function that monitors the state of a TCP/IP

module relevant to performance management is typically

located within the scope of integrated MCs. In contrast to

inherent MCs, integrated management capabilities are well-

distinguishable management structures, or (part of) network

management functions. They possess their own interface that

in turn can be published via an FC’s management interfaces.

Furthermore, a large part of the communication related to

the execution of more generic management functions takes

place at the level of individual integrated MCs within the

integrated management plane. In Fig. 4 and 5, for instance, an

integrated MC is invoking another integrated MC. This

interaction could be used, for instance, by an event

mechanisms to propagate failure information between different

network functions. In the same figures, interaction (2) occurs

between integrated MCs of different FCs, mediated through

the internal management interface by each FC.

Two additional interactions are of specific interest due to

their mediating between the external/integrated and

integrated/inherent management planes. In Fig. 4 and 5,

interaction (3) designates communication between an external

management component and an integrated MC. The integrated

management capability is thus invoked by an external entity

and vice versa via the FCs external management interface.

This kind of invocation is typical for the enforcement of

business objectives to an FC’s internal management

functionality. Interaction (4) occurs between the integrated and

inherent management planes, also possibly in both directions.

In one direction, an MC could provide access to inherent

management functionality from the integrated management

plane. For example, a P2P preferences capability could allow

the integrated management to access preferences of the P2P

facility through a well-defined preferences capability interface.

In the other direction, an MC may allow the inherent

management plane to invoke specific functions that it cannot

handle alone. In the P2P example, this might be a security

capability that handles authentication in cases where the P2P

FC cannot handle security issues by itself.

While in this paper we focus on the architectural principles

and elements, we emphasize the concreteness of our proposal

in Fig. 6. In the figure, several types of management

capabilities are placed inside the control loop that is taken

from [17]. This example illustrates the kind of management

capabilities that are currently developed within the scope of

the 4WARD project [2]. In the figure, each of the capabilities

are mapped to a set of distributed FCs. Overlap between

capabilities indicates communication between MCs, either

within or beyond single FCs. Furthermore, each of the

capabilities may be realized at any degree of embedding.

V. APPLICATION OF INM TO PEER-TO-PEER SYSTEMS

Given the above described INM paradigm and architecture,

one question comes to the fore how one should design for such

a framework. This is important for two cases, (1) the design

issues when applying the INM system to existing network or

service management and (2) the design of a future Internet

architecture from scratch in a clean slate manner.

In existing systems, we cannot really add more management

functions than there are already. But in many cases existing

built-in (self-)management functions need to be accessed and

adapted. Also management functions currently located in a

central spot can be adapted to a more decentralized design and

located closer to the network functionality. For these functions,

INM provides the necessary flexibility to build a suitable

management capability model and integrate each function at

one of the degrees of embedding.

Situation
Awareness
Capability

Aggregation
Capability

Anomaly
Handling
Capability

Resource
Analysis

Capability

P2P
Configuration

Capability

P2P
Service

Capability

Fig. 6. Control loop with management capabilities (based on [17]).

48087

7

In case of the future Internet, the INM features can be much

better exploited than for existing systems. The design approach

in an extreme version of the future Internet is to build as much

management functionality as possible directly and inherently

into the future Internet functions and protocols. Based on that,

the set of management capabilities within the functional

components should cover the whole management space, and

the governance should be designed at a degree of abstraction

that deals with business level issues only.

Since we do not have a future Internet design yet, we have

chosen to apply INM to a P2P networking example. P2P is

interesting because of its ubiquity in today’s Internet and

because it has quite a number of management functions built

into the system itself. In the following we show how the actual

INM system would work in a P2P data management scenario

(Fig. 7). According to this scenario, P2P systems will provide

a uniform mechanism for accessing content organized as

information elements, e.g. by means of structured DHTs.

Given an identifier for an element, a P2P infrastructure will

decide what the optimal sources are for retrieving the content.

Different algorithms and strategies for content distribution may

be used (depending on the specific P2P implementation)

together with techniques for content adaptation to ensure a

delivery that is optimally adapted to a particular user as well as

network resources and policies. We assume that the P2P

machinery establishes a dynamic communication overlay on

top of the underlying network infrastructure for both internal

management and data transfer purposes. The management

capabilities (cf. Fig. 7), comprise the following functions:

neighbor discovery for topology building, choosing the

optimal delivery method, access control and enforcement,

error management, and ICMP error reporting.

The topology building MC allows bootstrapping and

maintaining the relationships between parts of the P2P

machinery. The P2P system may contain a set of functions for

neighbor discovery and topology building based on a set of

objectives in terms of communication strategy and neighbor

relationships (e.g. gossiping protocols or beacons). The system

designers could simply choose either one of the strategies and

type of neighbor relationships that are most suitable for them.

Alternatively, an INM capability co-located with the neighbor

discovery capability might make the decision, based on

information received via the external management interface or

based on measurements performed automatically through the

interaction with TCP/IP. The neighbor discovery MC can

access details regarding the physical connectivity between

neighbors, such as link segment types, one-way transmission

delays, and live data related to network monitoring.

The monitoring and maintenance capabilities in the

topology discovery capability do not perform the monitoring

task itself, but rather read from the P2P system the results and

make those accessible externally to other FC’s management

capabilities. For example, a user might want to supervise the

system through a management GUI or switch to a different

P2P system. Also the management capability might export the

monitoring results to an FC, which is run by the P2P system

developer to get feedback on the users’ problems.

The algorithm in the P2P machinery for choosing the best

delivery method for an information object might be designed

as yet another MC. We assume that the algorithm takes into

account a set of networking characteristics, which the P2P

system figures out by itself. However, since it is only able to

measure between peers and does not know the network

conditions in between, those measurements might be incorrect

or not desired by an ISP. So an INM management capability

integrated within this FC may interact with an ISP’s network

management capability to receive network conditions to

improve or ease the decision process. With integrated MCs,

the algorithm could take advantage of information available

through FCs in the INM architecture, including, but not limited

to, the following: (1) identify a set of data caches relevant to

the destination, based on the topology information of the

network; (2) instant (or historical) values about using a certain

destination to load the object from, but measure by other peer

for other objects; (3) determine whether the SLA of the

destination allows for P2P delivery at all.

The access control and enforcement functionality allows for

the P2P machinery to restrict the access to the objects based on

user credentials and roles. The INM framework could provide

the following functionality that would help in this mission: (1)

a dissemination protocol with automated updating of the in-

network access control configuration mechanisms and (2) an

automatic enforcement of access policies via a two-way API

for communication between the P2P machinery and the INM

framework that controls the network-attached devices where

the objects reside physically.

The troubleshooting and diagnostic capabilities embedded

in the INM framework allow for a detailed analysis of

network-related problems. For example, in the event where an

information object cannot be delivered to a destination, the

(1)(3)

(2)

(2)

(4)

service
interface

internal
mgmt IF

external
mgmt IF

(1)(3)

(2)

(2)

(4)

service
interface

internal
mgmt IF

external
mgmt IF

access
control

topology
building

delivery
method

error
handling

con-
gestion
control

ICMP
error

P2P
smFC

TCP/IP
smFC

external
mgmt IF

Fig. 7. Example: in-network management for P2P systems.

48087

8

P2P machinery may take advantage of integrated management

capabilities in order to determine the cause of the error and to

decide whether this is a transient or permanent problem. As

such, INM could determine whether a large frame loss noticed

by the P2P machinery is the result of temporary congestion or

of a severe failure in one of the physical links. In the above

example, P2P would make use of the management capabilities

made available by the network, which is concerned about path

information. The evaluation of edge-to-edge delay is a typical

component that could be part of INM. In combination with a

similar service implemented at the P2P level, it may allow to

determine whether a particular problem was localized in the

end nodes or within the network.

VI. CONCLUSION

The future Internet will bring many challenges with it and its

management will be one of the most taxing. Techniques to

enable its management be efficient and transparent will be

pivotal. This paper proposes five architectural principles for

in-network management, a new paradigm for the management

of future communication networks. Based on this set of clean

slate principles and an evolutionary design space, we proposed

architectural elements that act as enabling building blocks to

embed management capabilities inside the network. We

showed by the example of P2P-based data management how

these architectural elements can be practically applied, in an

evolutionary way, to real world networking scenarios.

We believe that the proposed concepts are an essential step

in sustaining the manageability of future networks and in the

feasibility to gradually implement the necessary changes to

allow for noncomplicated and scalable management.

Moreover, the adoption of a higher degrees in the functional

dimensions of in-network management will lead to significant

long-term benefits in terms of capital and operational expenses

due to the increased automation and more abstract

specification of management processes and objectives,

respectively. While the proposed concepts embrace a large

spectrum of today’s complex and heterogeneous management

systems, we can see that they will also stimulate the design of

networks and services to support the development towards a

clean slate approach in a controlled and rapid way.

Future work includes the refinement of details in the

architectural elements and their interaction and composition to

form more complex management functions. While we have

gained first experiences with a framework for in-network

management and its application to bio-inspired networking

[18], in-network support for running embedded management

processes is to be extended along the axis of functionality and

performance. Specifically, we are working on the detailing of a

management capability model and the creation of a library of

efficient management functions for being integrated into the

management plane. Finally, we are looking at how security

issues can be achieved more inherently based on the

abstractions provided by in-network management.

ACKNOWLEDGMENT

This work is supported in part by the European Union through

the 4WARD project (http://www.4ward-project.eu/) in the 7th

Framework Programme. The views expressed in this paper are

solely those of the authors and do not necessarily represent the

views of their employers, the 4WARD project, or the

Commission of the European Union.

REFERENCES

[1] M. Johnsson, J. Huusko, T. Frantti, F.-U. Andersen, T.-M.-T. Nguyen,
and M. P. de Leon, “Towards a new architectural framework – the Nth
stratum concept,” Proc. MobiMedia’08, Oulu, Finland, Jul. 2008.

[2] N. Niebert, S. Baucke, I. El-Khayat, M. Johnsson, B. Ohlman, H.
Abramowicz, K. Wuenstel, H. Woesner, J. Quittek, and L. M. Correia,
“The way 4WARD to the creation of a future Internet,” Proc.
PIMRC’08, Cannes, France, Sep. 2008. To appear.

[3] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G.
Xie, H. Yan, J. Zhan, and H. Zhang, “ A clean slate 4D approach to
network control and management,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 5, pp. 41-54, Oct. 2005.

[4] C. Dovrolis, “What would Darwin think about clean-slate
architectures?” in ACM SIGCOMM Computer Communication Review,
vol. 38, no. 1, pp. 29-34, Jan. 2008.

[5] H. Ballani and P. Francis, “CONMan: Taking the complexity out of
network management,” Proc. of the 2006 SIGCOMM Workshop on
Internet Network Management, Pisa, Italy, Sep. 2006, pp. 47-51.

[6] T. S. E. Ng and H. Yan, “Towards a framework for network control
composition,” Proc. of the 2006 SIGCOMM Workshop on Internet
Network Management, Pisa, Italy, Sep. 2006, pp. 47-51.

[7] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A
knowledge plane for the Internet,” Proc. SIGCOMM’03, Karlsruhe,
Germany, Aug. 2003, pp. 3-10.

[8] M. Wawrzoniak, L. Peterson, and T. Roscoe, “Sophia: An information
plane for networked systems,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 1, pp. 15-20, Jan. 2004.

[9] T. Bullot, R. Khatoun, L. Hugues, D. Gaïti, and L. Merghem-Boulahia,
“A situatedness-based knowledge plane for autonomic networking,”
International Journal of Network Management, vol. 18, no. 2, pp. 171-
193, Mar. 2008.

[10] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “MANNA: A
management architecture for wireless sensor networks,” IEEE
Communications Magazine, vol. 41, no. 2, pp. 116-125, Feb. 2003.

[11] B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. Ó.
Foghlú, and W. Donnelly, “Towards autonomic management of
communications networks,” IEEE Communications Magazine, vol. 45,
no. 10, pp. 112-121, Oct. 2007.

[12] Y. Cheng, R. Farha, M. S. Kom, A. Leon-Garcia, and J. W.-K. Hong,
“A generic architecture for autonomic service and network
management,” Computer Communications, vol. 29, no. 18, pp. 3691-
3709, Nov. 2006.

[13] B. Ahlgren, L. Eggert, B. Ohlman, and A. Schieder, “Ambient networks:
Bridging heterogeneous network domains,“ Proc. PIMRC’05, vol. 2,
Berlin, Germany, Sep. 2005, pp. 937-941.

[14] M. Zach, D. Parker, C. Fahy, R. Carroll, E. Lehtihet, N. Georgalas, R.
Marin, J. Serrat, and J. Nielsen, “Towards a framework for network
management applications based on peer-to-peer paradigms,” Proc.
NOMS’06, Vancouver, Canada, Apr. 2006.

[15] C. Jelger, C. Tschudin, S. Schmid, and G. Leduc, “Basic abstractions
for an autonomic network architecture,” Proc. AOC’07, Helsinki,
Finland, Jun. 2007.

[16] A. Pras, B.-J. van Beijnum, and R. Sprenkels, “Introduction to TMN,”
University of Twente, Enschede, The Netherlands, CTIT Technical
Report 99-09, Apr. 1999.

[17] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,
P. Nixon, f. Saffre, N. Schmidt, and F. Zambonell, “A survey on
autonomic communications,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 1, no. 2, pp. 223-259, Dec. 2006.

[18] C. Foley, S. Balasubramaniam, E. Power, M. P. de Leon, D. Botvich, D.
Dudkowski, G. Nunzi and C. Mingardi, “A framework for in-network
management in heterogeneous future communication networks,” Proc.
MACE’08, Samos Island, Greece, Sep. 2008. To appear.

http://www.4ward-project.eu/

