
1569142628

1

Abstract—The upcoming peer-to-peer (P2P) and other

decentralized, co-operative storage mechanisms allow for

decentralized storage of data as well as decentralized search,

depending on the specific system. In this work, we assume these

kinds of systems to store management information into it. We

discuss some of the opportunities, requirements, and challenges

when storing network management information decentralized.

Additionally, we discuss some issue, when we assume the

management plane itself being decentralized, adding the aspect of

distributed processing. Distribution of storage and processing

resources make the use of such systems very useful, but still

require some changes from today’s known systems, which are

typically targeted to store content for end-users, for example in

file-sharing or content delivery networks (CDN).

Index Terms—Decentralized Management, Peer-to-peer

Information Management, Distributed Networking

I. INTRODUCTION

HIS paper addresses issues around network
management information storage and retrieval in

decentralized settings. We consider decentralization of both
the information storage as well as the network management
functionality. Both of which traditionally work in a very
centralized and hierarchical way in telecommunication
systems, in line with the paradigmatic TMF pyramid, where
network elements are handled by element managers, which are
in turn controlled by a network manager, and even higher
layers for service and business management. Note that many of
the discussion would apply similarly to distributed IT systems
management, but we do not further detail those.

While we are not claiming that a complete, overall change
towards a fully distributed NM system is generally necessary,
we believe that it is justified to rethink and compare alternative
structures and technologies that enable partial or even
completely distributed designs or solutions, especially if
benefits can be identified when comparing with traditional

Manuscript received August 6, 2008. This work was supported in part by

the European Union through the 4WARD project (http://www.4ward-
project.eu/) in the 7th Framework Programme. The views expressed in this
paper are solely those of the authors and do not necessarily represent the
views of their employers, the 4WARD project, or the Commission of the
European Union.

M. Brunner, is with the Network Laboratories of NEC Europe Ltd.,
Heidelberg, Germany. brunner@nw.neclab.eu

F.-U. Andersen is with Nokia-Siemens Networks, Berlin, Germany,
frank-uwe.andersen@nsn.com

network management systems and procedures. Specifically, we
assume decentralized storage, but the processing of network
management functions can be central or decentral.

Specifically, we are referring to information storage and
handling procedures currently being researched in EU FP7
ICT 4WARD [1], which are based on separating content and
locator information and one or multiple indirection steps,
resulting in the ability to store and retrieve information objects
in a more generic yet This paradigm is called the Network of
Information (NoI), and it is foreseen to provide a storage
middleware allowing to store information elements in a
decentralized way and the search and retrieval of those. It can
be seen as a generalization of various systems in the P2P,
CDN, and file sharing space. Since this particular system is
under design at the moment, we try to find out what the
requirements and challenges are, when we want to use the
system for storing network management information in it, and
retrieve that data from it.

The underlying problems can be formulated as follows:
� When we assume decentralized management functions,

they invite or even call for decentralized (or local)
storage to operate on.

� When we assume to keep network management
information within the network, it requires more
intelligent access and retrieval mechanisms

� In any network, the network management information
source is distributed across the network. Therefore, the
decentralized storage might better adapt to the
decentralized nature of the information. Specifically,
when the information might be needed locally on the
network element, or at various places in the network or
at a central station.

The expected improvements include:
� Decentralized data storage has benefits in reliability and

local access speed. We want to benefit from those
properties for network management.

The main challenges are:
� Typically, NoI systems are not targeted to network

management information. What is really needed to
make them useful for storing network management
information? We do not assume any specific
decentralized data storage system itself, but they
finding should be applicable to most of them including
the one under development in the 4ward project.

� We might need to re-formulate network management

Marcus Brunner, Frank-Uwe Andersen

Opportunities, Requirements and Challenges for
Storing Network Management Information in a

Decentralized Way

T

1569142628

2

information flows and procedures (a) to be in line with
NoI system (b) to exploit the full potential of NoI
system.

� Many of the search and retrival mechnisms in NoI
systems are built for a specific purpose, and might be
difficult to adapt to the use in network management. .

II. BACKGROUND ON DECENTRALIZED DATA STORAGE

A. Peer-to-peer and DHTs

Typically, DHTs or other Peer-to-peer paradigm-based
system do store information decentralized and find information
in a decentralized way, and can even retrieve it in a distributed
fashion (multi-source parallel download). The structure and
topology of the network as well as the routing algorithm
(especially the DHT metric) towards the information differ
between several such systems (Kademlia, CAN, Pastry, …). In
this paper, we will not suggest the use of a particular DHT;
instead we try to convey the idea of using a new, distributed
information storage concept, called the “NoI” (introduced in
the previous section and further detailed in the next section)
for the storage of network management related information.

B. Network of Information

The overall objective for a NoI [3] is to design a general,
information-centric network architecture, which is concerned
with information retrieval and storage. It is concerned with the
information objects themselves rather than the nodes that host
them. Information objects are directly addressed, without any
knowledge of or on what node they are actually are hosted.
The main components of a NoI are a modeling framework that
facilitates object discovery and use on the basis of their names,
and a reference model specifying the syntax and semantics of
object operations. In addition, specific networking services
and mechanisms are used within the architecture. The
architecture is based on two boundaries, a lower API towards
the network infrastructure, such as IP, and an upper level API,
which is meant to be used by future applications. In our case
we basically assume that the management functionality uses
the upper API for the storage as well as the retrieval of
management information.

DNNDNNDNNDNN

H

H H

H

H

H

H

H

H

DNNDNNDNNDNN

DNNDNNDNNDNN

DNNDNNDNNDNNDNNDNNDNNDNN

DNNDNNDNNDNN
DNNDNNDNNDNN

DNNDNNDNNDNN

Dissemination
Network

APIAPIAPIAPI

APIAPIAPIAPI

APIAPIAPIAPI

APIAPIAPIAPI

APIAPIAPIAPI

Applications

Network Transport

Incl. IP, …

Cache/Store

Search func

Dissemination alg

P
ro

b
a

b
ilis

tic
 M

g
t

F
ra

m
e

w
o

rk

Information requests

Bit transport requests

H: Host
DNN: Dissemination Network Node

API

Figure 1: NoI Overview

Most peer-to-peer systems are only used for simple non-

wildcarded searching of information rather than storing the
information itself. Also many do depend on DHTs in their
core. However, that depends on the specific application it is
used for. And it is unclear in general, what the right approach
really is, and how much data handling is required in the
decentralized storage system. The NoI system is foreseen to
provide a larger breadth of functionality including
decentralized storage, but also search and retrieval
functionality.

The NoI system under development at the moment tries to
cover a broader space, and therefore, the usage for network
management might be one use case to consider in the design of
such a novel system.

For the rest of the paper, we assume the decentralized
storage system as a blackbox with the capability to put
information in and to retrieve information from the system and
discuss on a high level the issues and requirements, when such
a system should be useful for network management
information storage.

III. THE PATH TO DECENTRALIZED, IN-NETWORK

MANAGEMENT AND RELATED WORK

Traditionally, the network management (NM) is logically
and also location-wise fairly centralized, and all the
management related information is retrieved from the network
through some management protocols. In the central location,
the management information is typically stored in a central
database. Also the network management system is in charge of
retrieving the information from the network, processing it and
storing it in the database. Another characteristic is the
hierarchy in traditional NM; every network element (NE) has a
relationship with an element manager (EM), which in turn is
connected to the overall, topmost NM system.

The first set of enhancement had been the decoupling of the
network management functionality from the retrieval and
setting processes. Most prominent work has been done by J.
Strassner [5] in the context of Directory-enabled Networking
(DEN-ng). Still, the storage is central, but accessible remotely
from any network management application, typically through
LDAP or any other protocols.

On the other hand, the way towards decentralized
management has been paved through various work on
Management by Delegation [7], the IETF Script MIB[8], and
patterns for decentralized management [6] increasing the
degree of decentralization.

Madeira [9] suggest to use the “P2P principles” for
distributed network management and follow a model-driven
approach. They do not provide details on storage procedures,
however.

As a next step, we propose to go even further into the
network with the network management functionality, not only
decentralizing the functionality. We call it In-Network
Management (INM), a different paradigm for network
management [1][2], where management functions come as
embedded capabilities of the devices. With this approach,

1569142628

3

network elements have embedded “default-on” management
capabilities, consisting of several autonomous components
which co-operatively interact with each other in the same
device and with components in neighbouring devices. Glued
together with a set of discovery and self-organizing algorithms,
the network elements form a thin “management plane”
embedded in the network itself.

The In-Network Management paradigm can be interpreted
as pushing management intelligence into the network, and, as a
consequence, making the network more intelligent: as a
consequence, objectives and costs of management operations
can be adapted according to local working conditions. The
network, which now inherently includes the management plane
as a part of itself, can execute end-to-end management
functions on its own and perform, for instance,
reconfigurations in an autonomous fashion. It reports results of
management actions to an external management system, and it
triggers alarms if intervention from outside is needed.

IV. STORING MANAGEMENT INFORMATION AS INFORMATION

OBJECTS

How can the concept of information objects, consisting of
indirection (i.e. naming/addressing mapping or resolution)
provided by NoI, and storage/retrieval be used for
decentralized, in-network management? NoI allows creating
more or less persistent information objects via an API, which
are then accessible via an indirection and resolution
mechanism. For the storage part, two options are possible: The
network management or network state information is stored
either on the network nodes that produced them, and in that
case, NoI is only used to create a NoI representation of the
real object. Or, the information object is itself handed over to
NoI , which then additionally to providing the mappings takes
care of the storage task, on nodes that it determines itself. For
retrieval of the information object(s), it is also possible that a
only the search of the node where the objects are host is part of
the NoI, or that dedicated transport mechnisms is used to get
the data object to the requested place in the network.

In the preceding section, we already have suggested to
separate the data handling from the management part and
procedures. It makes sense to sub-group the types of data that
usually occur in network management. The typical network
management control loop involves data that could be seen as
separated into (at least) three groups for our purpose.
Separation of the overall NM data can help to analyze how and
where the concept of information objects can be applied in a
beneficial way.

In a broad sense, the separation of NM data can be made
into (1) control commands, which are many times just modeled
as information objects, but could get made available with other
mechnisms (not availbele in the traditional network
mangmeent protocols). (2) measurement data about what
happens on network elements. (3)s tate information, which is
fairly local, but could potentially be relevant for others (known
also as “triggers”, “notifications”, “events” or “alerts”,

depending on further classification).
If we consider that the NoI API (see preceding section)

offers two basic types of services that can be used by NM, we
can arrange them together with the NM data types in one table
in order to see which services apply to which data types, and in
which way. The first one is searching for objects according to
certain criteria. The second one is storage/retrieval of found or
known objects. There is a third one, however, and this is the
mapping or resolution of objects IDs onto physical (routable)
locations. It is part of the storage/retrieval service but worth to
be recognized as a separate service that could be considered
the future Internet’s “DNS”.
Table 1: NM data types and NoI methods

 Search /
Retrieve

Storage (object
creation)

Resolution
/ Mapping

Control
comman
ds

Determine
nodes to
control based
on certain
criteria

(certain control
procedures
might be stored
as objects as
traditionally
done)

Determine
physical
location of
one or
more target
nodes

Measure-
ment
data

Determine
nodes to
exchange
measurements
with or search
for specific
measurments
on a set of
nodes

Aggregated
measurement
data

State
informati
on

Determine
nodes to send
triggers to and
store triggering
information
within NoI
objects.

Aggregated
state
information

Regarding NM control commands, it is imaginable for

nodes that issue control commands to other nodes to use an
object ID as an address. The object ID would represent one or
more target nodes, and it is the task of the NoI system to
resolve this. There is certainly more flexibility in this approach
compared to the relatively simple domain name on IP address
mapping that DNS (or even DynDNS) can offer. The
resolution process for a NoI information can potentially be
based on many more input parameters.

A. Mechanism for Mapping of Network State with NoI

The basic idea of using NoI for INM network state information
can be summarized in the following procedural description:

1) Some state information (subtype “special condition”, i.e.
with relevance to other nodes, for example a failure of a
hardware component) is emerging at a specific network
element (NE) or link between NEs

1569142628

4

2) The affected NE (or another one nearby that detected the
failure, too) uses the NoI API (either locally on the node or
at a well-known address in the network) and calls “create
object”, selecting a meaningful name or description of the
event, for example “[link failure].[node ID].[time].[geo-
position].[network name].[affected functionality]”
Note: Since the name of the event already contains most of
the related content, it might in some cases not even be
necessary to contact the node in order to get that
information. So, in this case, NoI would indeed store this
“minimal” content that can be interpreted as network “state”

The NoI machinery is now able to answer queries from
arbitrary NEs, looking for matches to this specific state
description, NE condition etc.

3a) A network element that is interested in the particular
state of another NE would send (via the NoI upper API)
either a “retrieve object” command (if it knows the object
ID) already, or a “search” command to get a list of NEs that
match with the state / condition that the searching NE is
interested in. NoI indirection and resolution search and
return all matching entries, for example within a certain
geographic area or a managed part of the network

3b) Variation: Differently from (3a), the “interested”
network element can passively subscribe to a certain query,
and NoI would then use a “push” method to inform the
interested network elements

We can distinguish active and passive retrieval mode. Both

may be needed, but for different management applications.
The pub-sub qualifies more for a-priori-known events and
tasks, while the full search makes more sense for the
unplanned.

This differentiation into active and passive might apply to
the creation of objects in some sense, too, as some state can be
“routinely” (e.g. periodically) distributed or published, while
other state may become relevant in unplanned ways and times.

Information entities that are conforming to the NoI approach
consist of a binary object and a separated locator for it (i.e. the
standard case for user content). This applies to larger
information entities which correspond more to the general NoI
model, where NoI returns IDs of nodes that hold the requested
information.

According to the note to step 2 of the procedure description,
there can be a kind of minimal information entities, where the
entire information is already fully contained within the
identifier, so there is no need for contacting any other nodes
for retrieval. It might be useful to support both types,
depending on the INM use case. Alarm state could use the
minimal version (saving time for retrieval via additional
nodes), while support of software distribution via NoI would
certainly use the full indirection model.

B. Applications for distributed storage and processing of

network management information

With respect to the classical FCAPS model, we identified
how distributed storage and processing for network
management information can be applied to it’s sub-functions.
More research is necessary to analyse the individual benefits.
Fault Management
� NoI can store alarms or notifications and make them

available to potentially interested nodes. It can also help
to aggregate alarms in a meaningful way by pre-
processing them. This would however require an NoI to
allow for some active processing elements.

Configuration Management
� Maintenance: We can use NoI for a kind of “in-order-

traversal” through all registered network elements or use
range queries.

� It would make sense to let arbitrary nodes bootstrap
themselves via NoI “bootstrap objects” which provide all
necessary information while being accessible in a
straightforward manner when compared to nodes that have
already bootstrapped.

� Network Inventory: For every detected network element
(a.k.a. “node”), a corresponding information object can be
instantiated according to a specific naming / addressing
convention and an ontology.

� SW updates: This corresponds probably most directly to
the way end users will be using NoI when they download
consumer content. In our case, the payload will be
software loads (e.g. INM kernels for nodes). Using NoI
for software distribution purposes for INM is quite
straightforward. One issue might be the handling of
different versions of the same software.

Accounting/Charging/Policies:
� Local NE state includes metering or usage data for

sessions. All information needed for the generation of
charging can be collected by the local network
management function and get stored by means of NoI API
machinery. If needed, local network management
functions or other applications can get them back for the
processing. Distributed storage for accounting information
can allow collecting a large amount of data (statistics,
session times, media, and resources usage). NoI is able to
organize the information and it is possible to find it when
the user must be charged.

� Today, counters play a central role in network
management or operation and maintenance systems. It
would be desirable if their values could be retrieved and
analyzed in a more condensed form. It is possible to
represent counters and their current values as NoI
“counter objects”.

� Policies (i.e. “trigger / action” pairs) or “rules” can be
implemented as NoI objects. If they are changed, they will
be directly available to all related network elements.

Performance Management:
� Key Performance Indicator (KPI) collection can benefit

1569142628

5

from distributed KPI processing which can be facilitated
by treating intermediate results (e.g. from aggregation
measurements) as NoI “KPI objects”.

� Also KPIs can be accessed by different management
functions handling different issues in the network, but
requiring the same KPIs as information base.

� Time series of measured/monitored date is stored in
database today, but could similarly well be stored in NoI
in the future.

One of the main benefits of using NoI for INM will be to
send more or less complex queries to NoI. These must be
resolved according to a specific syntax, naming convention or
ontology. Given that all network elements are in charge of
updating the NoI objects that they created, the resolved queries
will produce meaningful output, based on the indirection and
resolution service of NoI.

V. REQUIREMENTS AND DESIGN CONSIDERATIONS TO SATISFY

NETWORK MANAGEMENT NEEDS

Based on the above observations we summarize the
requirements for an NoI system to be useful for storing
management information.

A. Events

NoI would require a push model for information elements
such that this can be used for asynchronous events (alarms,
notifications), where network management functionality needs
to react on. Typically, the network management functionality
of a node would subscribe to certain events that are relevant
for it, so the NoI mechanism might be to subscribe to changes
of information elements, or possible the creation/putting of
information elements into the system, where the NoI objects
do have a certain pattern/type/… The detection, processing
and forwarding of events poses more or less tight timing
constraints to the NoI system.

B. Receiving ranges of information

In general a typical network management application or
function receives a range of management information to be
used as input for that function like checking through the range
or aggregating the information. The range can be in different
dimensions up to thousands of NE, but traditionally there are
two ranges of high importance.

First, the management functions are getting the same
information elements from a range of managed nodes, where
the range of nodes might be constrained (e.g., “Return the
average bandwidth usage of each node from a certain
geographic region”).

Second, the range is from a time frame / time series, such as
unresolved DNS requests over the last day with a granularity
of 5 minutes.

A third but less important feature are conditional or
qualified queries, because those can be implemented within the
management functionality itself. However, an NoI with this
functionality might be a more effective in gathering the
information from different nodes. (e.g.: Return all the nodes

having a interfaces with usage larger than 90%). The “range
feature” is probably tightly linked with the internal
mechanisms of the NoI machinery. It is important that the NoI
mapping / resolution / retrieval functions are supporting
“searches”, including wild cards and multiple matches. This
shows that the adoption of a simple DHT scheme based lookup
is not sufficient for development of NoI.

C. Controlled access to management information

Depending on the persons, stakeholders, or network
management functions asking for management information,
results of the query might be different. This is a matter of
scoping and is typically the case for different administrator
levels, or internal versus external visible information. NoI is
supposed to offer this controlled access, but it is unclear at the
moment how that can be achieved, but the mechanisms needs
to take those requirements into account.

D. Active NoI Objects for Aggregating Queries

Due to the hierarchical nature of the traditional NM
approaches, the collection and further processing of numerous,
frequent events or measurements is a significant task, also
referred to as aggregation. It may be supported by NoI in the
form of active NoI objects, i.e. objects that can be
programmed in some way to solve network management
specific sub-tasks. In case there is support for this,
management information could be aggregated on the fly
passing through the NoI object, or certain management
functions could be implemented as active NoI objects.

E. Security Management

When NoI is used for storing user and account information,
the security issues (such as confidentiality) required, are
higher, compared to end user data; at least a strict separation
must be enforced in the NoI system.

VI. CONCLUSION

Based on our experience with traditional network
management and the novel approaches towards more
decentralized network management (for example followed by
the 4WARD project [1][2]), we studied the impact of also
using decentralized storage systems such as the Network of
Information approach, which is currently designed also in the
4WARD project. We can say that specifically decentralized
management functions would benefit from also decentralized
management information storage, but also the cases, where
several central management applications require the same or
similar information the decentralized storage can be useful.

As soon as first versions of the 4WARD NoI is developed,
first tests can be made and see whether a particular NoI is able
to provide enough useful storage mechanisms for storing
network management information. Also a real use case should
be implemented as proof of concept of such a system.

So far we also have not further detailed the issues around
naming and addressing of NoI objects with management
information. Or what type of management information naming

1569142628

6

might be useful in the context of NoI.

REFERENCES

[1] The FP7 4WARD Project website, http://www.4ward-project.eu
[2] Christopher Foley, Sasitharan Balasubramaniam, Eamonn Power,

Miguel Ponce de Leon, Dmitri Botvich, Dominique Dudkowski, Giorgio
Nunzi, and Chiara Mingardi, A Framework for In-Network Management
in Heterogeneous Future Communication Networks, MACE 2008,
Samos Island, Greece, September 22-26, 2008

[3] C. Dannewitz, K. Pentikousis, R. Rembarz, É. Renault, O. Strandberg,
J. Ubillos, “Scenarios and Research Issues for a NoI", MobiMedia 2008,
Oulu, Finland, 7-9th of July 2008

[4] J. Schoenwaelder, “Protocol-Independent Data Modeling: Lessons
Learned from the SMIng Project”, IEEE Communication Magazin, vol.
46, no. 5, May 2008.

[5] J. Strassner, Directory Enabled Networks. Indianapolis: Macmillan
Technical Publishing, 1999

[6] C. Adam and R. Stadler, "Patterns for Routing and Self-Stabilization",
9th IEEE/IFIP NOMS, Seoul, Korea, Apr. 2004.

[7] Y. Yemini, G. Goldszmidt, and S. Yemini “Network Management by
Delegation”, Proceedings, IM’1991.

[8] D. Levi, J. Schoenwaelder, Definitions of Managed Objects for the
Delegation of Management Scripts, RFC 3165.

[9] Carroll, R., Fahy, C., Lehtihet, E., van der Meer, S., Georgalas, N., &
Cleary, D. 2006, "Applying the P2P paradigm to management of large-
scale distributed networks using a Model Driven Approach", in
Proceeding of the 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), Vancouver, Canada.

