
 1

Robust Monitoring of Network-wide Aggregates
through Gossiping

Fetahi Wuhib, Mads Dam, Rolf Stadler
ACCESS Linnaeus Center

KTH Royal Institute of Technology
Stockholm, Sweden

{fetahi, mfd, stadler}@kth.se

Alexander Clemm
Cisco Systems

San Jose, California, USA
alex@cisco.com

March 20, 2008

Abstract— The paper makes two contributions in the context of
robust and scalable monitoring. First, we present a gossip
protocol, G-GAP, which enables continuous monitoring of
network-wide aggregates. Aggregates are computed from local
management variables using functions such as SUM, MAX, or
AVERAGE. The hard part is making the protocol robust against
node failures, and we offer a solution for the case of crash
failures that are not contiguous (i.e., where neighbors do not fail
within short time of each other). Regarding correctness of the
protocol under failures, we prove protocol invariants (namely,
mass conservation) and give convergence results. We evaluate the
protocol through simulation using real traces. The simulation
results suggest that the tradeoff between estimation accuracy and
protocol overhead can be controlled, and a high estimation
accuracy (below some 5% error in most of our measurements)
can be achieved, even in large networks and under frequent node
failures. The second contribution of the paper is a comparative
assessment of G-GAP against a tree-based aggregation protocol
using simulation. Surprisingly, we find that the tree-based
aggregation protocol consistently outperforms the gossip protocol
for comparative overhead, both in terms of accuracy and
robustness.

Keywords: gossip protocol, epidemic protocol, robust
aggregation, decentralized monitoring

I. INTRODUCTION
The motivation for this research is to investigate the use of

gossip protocols for decentralized real-time monitoring. Recent
research in gossip protocols suggests that these types of
protocols may help engineering a new generation of monitoring
systems that are highly scalable and fault tolerant.

Gossip protocols, also known as epidemic protocols, can be
characterized by asynchronous and often randomized
communication among nodes in a network [10][3][28].
Originally, they have been proposed for disseminating
information in large dynamic environments [10], and, more
recently, they have been applied to various tasks, including
constructing robust overlays [1][17] and estimating the
network size [9][6].

We are specifically interested in assessing the use of gossip
protocols for decentralized aggregation of device data in near

real-time. Aggregation functions, commonly used by
management applications, include SUM, MAX and
AVERAGE of device-level counters and other variables.
Examples of such aggregations are the average load across all
network links or the number of active voice calls in a given
domain.

Specific applications that require such information include
network surveillance, service assurance and traffic control in
large-scale or dynamic networks. Admission control, for
instance, can make use of cross-device load and QoS
measurements to decide whether to accept or reject flows into a
network domain.

A gossip protocol for monitoring network-wide aggregates
executes in the context of a decentralized management
architecture. Figure 1 shows an example of such an
architecture, which we propose using for this purpose. In this
architecture, monitoring nodes with identical functionality
organize themselves into a management overlay. The
aggregation protocol (in this case, the gossip protocol) runs in
the monitoring nodes, which communicate via the overlay.
Each monitoring node collects data from one or more network
devices. The protocol aggregates this data, in a decentralized
fashion, to estimate the SUM, MAX, AVERAGE, etc., of the
device variables. A management station or an application
server can access the management overlay at any node. Node
or link failures—on the physical network or the management
overlay—trigger a re-organization of the management overlay,
thereby enabling continuous operation. (Note that the protocol
introduced in this paper can also run on a different architecture
than outlined above, as long as that architecture includes
monitoring nodes that execute the protocol, provides functions
in the monitoring nodes to access local device variables, and
maintains an overlay for monitoring nodes to communicate.)

Recently, other approaches to decentralized aggregation,
which are based on creating and maintaining spanning trees in
the management overlay have been investigated by others
[12][13][14] and also by us [4][15][16][18]. There are
qualitative and quantitative differences between tree-based and
gossip-based aggregation. First, gossip-based aggregation
protocols tend to be simpler in the sense that they do not
maintain a distributed tree in the management overlay. Second,

fzwuhib
Text Box
Submitted to IEEE Transactions on Network and Service Management

 2

in tree-based aggregation, the result of an aggregation
operation is available on the root node of the tree, while in
gossip-based aggregation the result is available on all nodes.
Third, failure handling is very different for tree-based
aggregation than for gossip-based aggregation. If a node fails, a
tree-based aggregation protocol needs to reconstruct the
aggregation tree, for which there are well-understood
techniques. In gossip protocols, node failure can produce mass
loss (which is further explained in Section III), which causes
systematic errors in aggregation operations. This problem of
mass loss has not been sufficiently studied to date and thus
needs to be addressed first when one wishes to perform a
comparative assessment of tree-based and gossip-based
aggregation.

The work in this paper is based on the push-synopses
protocol of [3], an instance of a class of distributed agreement
protocols that have been applied to a wide range of problems in
distributed estimation and control (cf. [23]). Our main
contribution is a significant extension of the push-synopses
protocol that overcomes the mass loss problem and makes the
protocol robust against node failures. We refer to this extended
protocol as G-GAP, for Gossip-based Generic Aggregation
Protocol. We establish a crucial mass conservation invariant
for G-GAP and show that the logarithmic convergence results
of [3] can be extended to G-GAP under node failures. We
evaluate G-GAP through simulation, focusing on the accuracy
of the estimates produced, the tradeoff between estimation
accuracy and protocol overhead, the relationship between
accuracy and network size (i.e., scalability), and the
relationship between accuracy and failure rate (i.e., robustness).
For the sake of comparison, we run the same simulation
scenarios with a tree-based aggregation protocol (that has a
comparable overhead), which provides us with insight into the
performance of tree-based vs. gossip-based monitoring.

This paper is an improved and extended version of [19].
The new additions include the proofs of the mass conservation
invariant, a discussion and proofs of convergence properties of
G-GAP, a completely revised and updated Section on related
work, as well as additional simulation results that demonstrate
the effect of mass loss on the accuracy of the protocol.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents our protocol, starting
out with push-synopses [3], which is developed first into a
synchronous robust protocol, then into an asynchronous robust

protocol, namely G-GAP. Section IV presents results from our
experimental evaluation. Finally Section V concludes the paper
and presents future work.

II. RELATED WORK
Distributed averaging and agreement are special cases of

the distributed aggregation problem. Many approaches to
averaging and agreement, including several gossip algorithms,
can be seen as instances of the following iterative update
scheme, whereby a state vector () ((), ..., ())1s t s t s tn= is

iteratively updated for each node i by the equation
(1) () ()1i i

ij

ns t t s tj α+ = ∑ = (cf. [23][24]). Here, ()tijα are the

elements of a non-negative, generally time-dependent matrix
()A t . In case ()A t is time-invariant, [23] shows that, under

mild assumptions on ()A t , any solution to the agreement
problem based on the above scheme can be used for distributed
averaging in time polynomial in network size. The push
synopses protocol [3] can be seen as a generalization of the
iterative update scheme to a range of aggregation functions
besides average. Consensus propagation [25] uses a variant of
the iterative update scheme for which strong relations to belief
propagation [30] have been established.

General convergence properties of the iterative update
scheme have been examined in [24]. Karp et al. [26] obtain a
general lower bound for averaging using gossiping on an
arbitrary graph. The (not very attractive) polynomial-time
upper bound of [23] can be improved significantly for special
cases of ()A t and for specific graph topologies. In [3] a
logarithmic upper bound is given for the push-synopses
protocol (see Section III B.) on complete graphs and under
assumption of uniform gossip. (Uniform gossip refers to a node
selecting the recipient of a message uniformly at random [27].)
Boyd et al. [7] use optimization for in-network configuration of
a time-invariant transition matrix A to minimize the
convergence time, and they obtain convergence bounds for
several graph topologies.

A number of approaches have been explored in the
literature to deal with node and link failures. Link failures,
addressed for instance in [23], are generally easier to deal with,
as nodes can preserve their state and hence avoid mass loss. An
early example of a system addressing node failures is the
Astrolabe monitoring system [8]. There, a tree-based scheme is
used for aggregation, while a gossip protocol disseminates
partial aggregates among peers in the tree hierarchy. Gossiping
is used to achieve robustness, by allowing a preselected child
node to instantly replace a parent node, in case the latter fails.
In this case the mass loss problem does not arise, since the
gossiping is not used for aggregation, but only for
dissemination of information.

A straightforward approach to address the issue of mass
loss is to restart the gossip protocol periodically [2]. While this
does not prevent mass loss from occurring, it reduces the extent
to which mass loss accumulates and thus mitigates estimation
errors.

FIGURE 1: ARCHITECTURE OF THE DECENTRALIZED MONITORING SYSTEM.
GOSSIP PROTOCOLS RUN IN THE MANAGEMENT OVERLAY (MIDDLE LAYER)

 3

Mehyar et al. [20] have recently presented a solution for
computing the average of local values on a dynamically
changing network graph. Convergence is proved using the
asynchronous framework of Bertsekas and Tsitsiklis [22]. No
analytical upper bound on convergence time is reported. There
are similarities in the use of recovery information between the
protocol in [20] and the one developed independently by us.
There are also significant differences between both protocols.
In our case, the recovery mechanism is less deeply integrated
into the underlying protocol, i.e., push-synopses. This allows
us to establish convergence bounds by showing that there is a
limit to the number of rounds needed to process recovery
information before the protocol reverts to the behavior of the
underlying protocol. Another difference is that our solution is
designed to work correctly for a range of aggregation
functions, whereas the protocol of [20] has been designed
specifically for the computation of averages, and it is unclear to
which extent it generalizes to other aggregation functions, such
as SUM or other general synopses.

III. THE PROTOCOL: G-GAP

A. Design goals and design approach
The management architecture. G-GAP is designed for a
management architecture shown in Figure 1, in which each
network device participates in protocol processing, by running
a management process, either internally or on an external,
associated device. (A monitoring node in Figure 1 corresponds
to a management process.) These management processes
communicate via a network overlay for the purpose of
monitoring a network-wide aggregate. We refer to this overlay
also as the network graph. A node of this graph represents a
network device together with its management process.

Each node of the network graph has an associated non-
negative local (management) variable ()ix t , or just ix if the
variable does not depend on time. The local variable can
represent a MIB variable, e.g., a device counter. In this paper,
we assume that the variables are aggregated using AVERAGE.

Design goals. Our aim is to develop a distributed protocol for
continuously computing aggregation functions in a scalable
and robust manner. The design goals for G-GAP are as
follows:

• Accuracy: for a given protocol overhead, the estimation
error should be small, and the variance of the estimation
error across all nodes should be small.

• Controllability: it should be possible, from a management
station, to control the tradeoff between protocol overhead
and accuracy of the estimation.

• Scalability: for a fixed accuracy, the local protocol
overhead at any node or link should in general increase
sub-linearly with the system size.

• Robustness: the protocol should be robust to node failures
and should allow for nodes dynamically joining and
leaving the network. During transient periods, the
estimation error due to reconfiguration should be small.

Design approach. G-GAP is based on push-synopsis, a gossip
protocol for computing aggregates proposed by Kempe et al.

[3]. Our main contribution is to extend the push-synopses
protocol with a scheme to provide accurate estimates in the
event of node failures of different types. These extensions are
introduced in two steps; first, for the case of fully synchronized
rounds with guaranteed, timely message delivery; then, for the
more general, asynchronous case. While the aggregation
function we focus on in this paper is AVERAGE, our results
regarding protocol invariants and convergence are applicable to
more general synopses, such as those discussed in [3].

B. Push-Synopses
In the push-synopses protocol given in Figure 2, each node

i maintains, in addition to the local management variable ix , a
weight iw and a sum is . The local estimate of the aggregate

ia on node i is computed as /i i ia s w= . Following [3] the
protocol is given for the case of a complete (i.e. fully
connected) network graph of n nodes. However, the protocol is
easily adapted to general network graphs where only adjacent
nodes are allowed to communicate directly with each other.
This is the relevant case in practice, for scalability reasons. In
this case , 0i jα = if i j≠ and j is not adjacent to i.

The protocol executes in synchronized rounds. We assume
reliable and timely communication in the sense that a message
sent within a given round is guaranteed to be delivered within
that round.

For the analysis of the push-synopses protocol we use ,r is
to refer to the value of variable is at the end of round r .
Protocol correctness relies crucially on the following invariant
which expresses “mass conservation.”

Proposition 1 (Mass Conservation, Push-Synopses [3]) For
all rounds 0r ≥ ,
1. ,r i ii i

s x=∑ ∑

2. ,r ii
w n=∑

Proof: Since the only communication between nodes is by
message passing, it suffices to show that, if the property holds
before the main protocol cycle is simultaneously executed at all
nodes, then it holds after execution as well. This is
straightforward. ?

In [3] a logarithmic convergence result is given for the
Push-Sum protocol, which applies to our instance of the push-

Round 0 {
1.

ii xs = ;
2. 1=iw ;
3. send),(ii ws to self }

Round 1+r {
1. Let * *{(,)}

l l
s w be all pairs sent to i

during round r
2. *

li l
s s= ∑ ; *

li l
w w= ∑

3. choose shares 0, ≥jiα for all nodes j

such that ∑ =
j ji 1,α

4. for all j send)*,*(,, ijiiji ws αα to each j }
FIGURE 2: PUSH-SYNOPSES – PSEUDO CODE FOR NODE i

 4

synopses protocol as well. We define the relative error at
round r at node i as:

1 ,(,)
,

xs j jr ie r i
x w nj j r i

∑
= ⋅ −

∑

Then, we say that the protocol under consideration satisfies log
ε -δ convergence, if for all 0ε ≥ , 0δ ≥ the probability that
there is a round ' (log log1 log1)r O n ε δ= + + for which

(,)e r i ε≤ for all 'r r≥ is at least 1 δ− .

Note that the above notion of log ε -δ convergence is
formulated in the context of a synchronous model. It can be
extended in a straightforward way to a discrete-time
asynchronous model by considering time instants instead of
rounds. This will be needed in Section III C.

The following result is due to Kempe et al [3]:

Theorem 2 (Convergence, Push-Synopses [3])
On complete graphs and under the assumption of uniform
gossip, the push-synopses protocol satisfies log ε -δ
convergence. ?

In the above theorem, uniform gossip refers to selecting the
recipient of a message uniformly at random among all nodes of
the graph (cf. [27]). Specifically, for all nodes i, , 0.5i iα = and
there is exactly one node j i≠ with , 0.5i jα = . All other

elements of ()A t are 0.

The assumption of round synchronization can be lifted by
adding round identifiers to messages and by buffering, so that a
message with round number r is not overwritten by the arrival
of a message with a later round number. We call the resulting
protocol asynchronous push-synopses. Proposition 1, i.e., mass
conservation, remains valid under these changes. To prove
convergence, we assume that all messages sent during a round
are also received during that round. The following result is then
obtained as a straightforward adaptation of Theorem 2:

Corollary 3 (Convergence, Asynchronous Push-Synopses)
On complete graphs and under the assumption of uniform
gossip, the asynchronous push-synopses satisfies log ε -δ
convergence. ?

The push-synopses (and asynchronous push-synopses)
protocol is robust to message loss, provided that the underlying
transport mechanism guarantees that this is reported. In the
event of message loss, a node retransmits the lost message to
itself. The mass conservation invariant holds, if message loss is
always reported within the same round the message is sent; if
this cannot be guaranteed, then the statement of Proposition 1
must be adapted, by taking into account the “mass” of lost
messages that were sent but have - so far - not been reported
lost.

The protocol is given in Figure 2 for the case of polling,
i.e., for the case where the variables ix are constant. It is easily
adapted to continuous monitoring, by sampling the value of ix

at each round and by adding the change in ix to is in step 2 of
Figure 2. Step 2 for round r must then be replaced by

2. *
, 1,()li r i r il

s s x x −= + −∑ , *
li l

w w= ∑

The evaluation in Section IV is performed for a protocol
modified in this way, since we consider continuous monitoring
more relevant from an application perspective.

C. Synchronous G-GAP
For crash failures (i.e., for failures where the local node

state is lost) the push-synopses protocol of Section III.B can
no longer be guaranteed to converge to the true value, since the
local variable of the failed node has been included in the
computation, and, as a consequence, the mass conservation
invariant does not hold after the failure. To restore the
invariant, the contribution of the local variable of the failed
node to the total mass of the system needs to be removed.

In this Subsection, we present a first adaptation of the push-
synopses protocol to the case of crash failures under rather
strict assumptions. Later, we show how these assumptions can
be partially lifted, at the expense of a somewhat more complex
protocol. The first adaptation, the Synchronous G-GAP
protocol, which we call SG-GAP, is shown in Figure 3.

The basic idea behind the restoration of the invariant is that
a node i distributes recovery shares , , ,()j i i j i i i irs s xβ α= − to
each neighbor j, and every node keeps track of its previously
sent messages ,1 k ls s and ,2 k ls s . This way, if node j discovers

that i has failed, it uses ,j irs , ,1 j is s and ,2 j is s to undo the

contribution of node i to the computation of the aggregate.
For reasons of brevity, we restrict the discussion here to the s
variables of the local state. The same discussion applies to the
w variables as well. Also, recall from Subsection III.B that,
when the protocol is executed on general network graphs, a
node needs to store state information for adjacent nodes, i.e., its
neighbors, only.

The protocol in Figure 3 relies on five assumptions:

1. Reliable and timely message delivery: There is a
maximum communication delay d rt t< (the round
duration) such that a message sent from a node i to a node
j at time t is delivered to j no later than dt t+ .

2. Synchronized rounds: Rounds are globally synchronized
to within some bound rt∆ . That is, all live nodes start a
round within rt∆ of each other.

3. Round atomicity: All protocol cycles are executed as
atomic statements. (Actually, it is sufficient that the send
operation in step 7 is executed as an atomic operation.)

4. Discontiguous crash failures: No two nodes fail within
two rounds of each other. When running this protocol on
a general network graph, this assumption translates to the
condition that adjacent nodes cannot fail within a period
of two rounds.

5. Connectedness: No failure will cause a node to become
disconnected.

 5

The assumption of a coarse round synchronicity allows us

to unambiguously determine the value of a variable during
each (global) round r. As a consequence, the value of is during
r can be denoted by ,r is , the value of ,1 i js s by , ,1 r i js s , etc.

Round atomicity ensures that, during each round, if some
message is sent from a node then all messages are sent. Round
atomicity with reliable delivery is slightly weaker than atomic
broadcast, as orderly delivery need not be guaranteed. On
architectures supporting physical multicasting, round atomicity
can be efficiently supported, though in general the assumption
carries a heavy synchronization overhead [21]. Together,
assumptions 1-3 imply that a round duration rt can be found
such that all messages are received during the same round they
were sent.

Node failure, then, can be detected in step 3 in Figure 3,
when the node fails to receive a message from a neighbor.
Thus, if node i realizes in round r that it has not received a
message from node k in the previous round, it concludes that
node k did not receive the message (…, 1 ks s , …) it sent to k in
round 1r − , neither did k process the message (…, 2 ks s , …)

sent in round 2r − . Hence node i must in round r in this
situation restore not only its recovery share for k but also the
contributions it sent to k in the previous two rounds.

For the statement of the mass conservation property for SG-
GAP we assume that round 0 by convention refers to the
initialization phase, and that all nodes are alive during this
round.

Proposition 4 (Mass Conservation, SG-GAP)
Let rL be the set of nodes that are alive during round
0r ≥ . At the end of each round r

1. ,, , ,2
r r ri L i L j Lr i r i js s s∈ ∈ ∉+ +∑ ∑

1 , , , ,r r r ri L L j L i Lr j i r irs x
−∈ − ∈ ∈=∑ ∑

2. ,, , ,2
r r ri L i L j Lr i r i jw s w∈ ∈ ∉+ +∑ ∑

1 , , ,r r ri L L j L r j i rrw L
−∈ − ∈ =∑

For a detailed proof of Proposition 4, see [19]. That proof
follows the same idea as the proof of Proposition 6, which is
outlined below.

The invariant property #1 can be explained as follows: the
total mass ,ri L r ix∈∑ at the end of round r is the sum of three
components:

1. Local mass: the sum the local states ,r is of each live node
i;

2. lost mass: the sum of , ,2 r i js s which were sent by
currently live nodes i to currently dead nodes j in round

1r − ;
3. recovery mass: the sum of , ,r j irs which were sent in

round 1r − from a now dead node i to a currently live
node j.

The convergence result below applies to graphs that are
complete at some round sr . Say that a node i is stable from

sr on, if i stays either live or failed throughout all rounds

sr r≥ . With this caveat Theorem 2 is easily extended to the
SG-GAP protocol.

Theorem 5 (Convergence, SG-GAP) Suppose the graph is
complete at round sr , and suppose all nodes are stable from
round sr onwards. Then, the SG-GAP protocol on a complete
graph and under the assumption of uniform gossip satisfies log
ε -δ convergence.

Proof: The result follows since one round after sr the
value of the failure-handling variables ,1 i js s , ,2 i js s , ,i jrs , etc.
will be 0, and so, by Proposition 4, the mass conservation
invariant for push-synopses is reinstated. Since no more
failures occur, the failure-handling variables will remain 0 and
the behaviour of SG-GAP will consequently reduce to that of
push-synopses, and the result follows by Theorem 2. ?

D. Asynchronous G-GAP
In this Section we relax the synchrony assumptions of SG-

GAP. The basic idea is to drop the method of determining the
mass lost due to failures, which relies on the synchronous
nature of the network, and, instead, letting a node compute
recovery shares incrementally, by explicitly acknowledging the

Round 0 {
1.

iiiiii xsssss === ,, 21 ;
2. 121 ,, === iiiii wswsw ;

3. for each { }j N i∈ − {
)0,0(),(,, =jiji rwrs

 //recovery share for node j
)0,0()1,1(,, =jiji wsss

 //share sent previous round to j
)0,0()2,2(,, =jiji wsss };

 //share sent round before last
4. send)0,0,,(ii ws to self
5. send)0,0,0,0(to all other nodes }

Round 1+r {
1. let { | L l N l= ∈ sent a message * * * *(, , ,) l l l ls w rs rw

to i during round }r .
2. *

li l L
s s

∈
= ∑ ; *

li l L
w w

∈
= ∑ ;

for all l L∈ let * *
, ,(,) (,)

l li l i lrs rw rs rw=
3. for all k L∉ {

 kikikiii rsssssss ,,, 21 +++= ;
 021 ,,, === kikiki rsssss ;

 kikikiii rwwswsww ,,, 21 +++= ;
 021 ,,, === kikiki rwwsws }
4. for all j N∈ choose shares 0, ≥jiα such that

∑ =
j ji 1,α and 0, =jiα whenever j L∉

5. for all j N∈ {)1,1()2,2(,,,, jijijiji wssswsss = ;
),()1,1(,,,, ijiijijiji wswsss αα= }

6. for all j N∈ choose shares 0, ≥jiβ such that

∑ =
j ji 1,β and , , 0i i i jβ β= = whenever j L∉

7. for all j N∈
send))1(),(,1,1(,,,,,, −− iiijiiiiijijiji wxswsss αβαβ to j }

FIGURE 3: SYNCHRONOUS G-GAP – PSEUDO CODE FOR NODE i. N IS THE

SET OF LIVE NODES AT ROUND 0.

 6

mass it receives from a peer. The pseudo-code for a protocol
based on this idea, which we call Asynchronous G-GAP, is
shown in Figure 4. Message buffering and round numbering, as
in Asynchronous push-synopses, is left implicit. From an
application point of view, this asynchronous version of the
protocol is the most significant protocol described here, and,
therefore, we refer to it simply as G-GAP in the rest of this
paper. As in the case of SG-GAP, the protocol is given for
polling and for a complete network graph. The application of
the protocol in the context of general network graphs is
described in Subsection III.B.

Compared to SG-GAP, the assumption of round
synchronization is removed, as is the assumption of timely
message delivery. With these modifications, nodes have less
precise knowledge of each others’ state. For this reason, in
addition to the recovery mass already introduced in SG-GAP, a
further pair , ,(,)i j i jacks ackw is included in the messages sent
in step 7.d of Figure 4, in order to let nodes acknowledge the
receipt of messages. This pair , ,(,)i j i jacks ackw is computed as
what node i believes to be j’s recovery information on i,
typically, the pair , ,(,)j i j irs rw . However, lack of
synchronization and message transmission delays may make
these values different.

The asynchronous setting makes some changes in notation
convenient. Most importantly, we consider system events to be
serialized in a discrete time model. That is, failure events and
protocol cycle executions (both of which we call transitions)
are considered to be atomic and the time axis to be discretized
into points 0 1, ,...t t , such that, at each instant nt , exactly one of
two events occurs on some node i: either a protocol cycle is
executed at node i, or node i fails.

(Note that this protocol does not consider that failed nodes
can recover. An extension of the protocol for this case is
straightforward. The evaluation of the protocol is done by
using G-GAP with such an extension.)

In the absence of round synchrony, local variables need to
be sampled in a slightly different way than in the case of SG-
GAP. Here we apply the following convention: if, say, ,i jrs is
a local variable at node i, then , ,t i jrs refers to the value of ,i jrs
at time instant t+ that is immediately upon completion of the
corresponding event at time { }|nt t n ω∈ ∈ .

Concerning the communication model, we assume reliable
message transmission in the sense that a message generated
(i.e., sent) by the execution of a protocol cycle at node i is
regarded as “pending”, until either the destination node j fails
or the message is read by the execution of a protocol cycle at j.
We can thus define the following sets:

• , , ,pending t i jM : The set of all messages from origin i to
destination j which are pending at time t+ .

• , , ,read t i jM : The set of messages from origin i to destination
j which are read during a transition on node j at time t. If
no transition takes place on node j at time t, then

, , ,read t i jM = ∅ .

• , , ,write t i jM : The set of messages from origin i to destination
j which are generated by node i through the execution of a
protocol cycle at time t. Again, if no cycle is executed on
node i at time t, then , , ,write t i jM = ∅ .

• , , , , , , , , ,transit t i j pending t i j write t i jM M M= − : The set of messages
that are in transit, i.e., pending but not generated at time t.

We obtain the following straightforward axiom reflecting
this model:

Axiom 1 (Communication model) For all n ω∈ ,

, , , , , , , , , , , ,1 1 1
()pending t i j pending t i j write t i j read t i jn n n n

M M M M
+ + +

= ∪ −

Messages have the format (, , , , ,)s w rs rw acks ackw where all
variables are real-valued. We use the notation

{ }, , , , , ,| , ,... : (, , ,...)pending t i j pending t i js s w rs s w rs M= ∃ ∈∑

and, similarly, for other variables , , ...w rs , and indices read ,
write and transit .

(0)round {
1. ii xs = ;
2. 1=iw ;
3. iLß self;
4. for each node j)0,0(),(,, =jiji rwrs ;
5. for each node j)0,0(),(,, =jiji srwsrs ;
6. send)0,0,0,0,,(ii ws to self;
7. for all ij ≠ send)0,0,0,0,0,0(to j }

(1)round r + {
1. Let M be all messages received by

 i during round r
2. 1() ()i r rm M

s s m x x −∈
= + −∑ ; ()i m M

w w m
∈

= ∑

3. for all j , ,(,) (0,0)i j i jacks ackw =
4. ()i iL L orig M= ∪
5. for all ij L∈ {

a. , , , ,(,) (,)i j i j i j i jrs rw rs rw= +

: ()

(((), () (), ()))
m orig m j

rs m rw m acks m ackw m
=

−∑

 b. , , , , : ()
(,) (,) ((), ())i j i j i j i j m orig m j
acks ackw srs srw s m w m

=
= + ∑

}
6. for all ij L∈ if (detected_failure(j)) {

a. , ,(,) (,) (,)i i i i i j i js w s w rs rw= +
 b. , , , ,(,) (,) (0,0)i j i j i j i jrs rw srs srw= =

c. \i iL L j←
}

7. for all ij L∈ {
a. choose 0, ≥jiα such that 1, =∑ j jiα

b. choose 0, ≥jiβ such that ∑ =
j ji 1,β and 0, =iiβ

c. compute , , , , , ,(,) (), (1)i j i j i j i i i i i j i i isrs srw s x wβ α β α= − −
d. send , , , , , ,(, , , , ,)i j i i j i i j i j i j i js w srs srw acks ackwα α to j
e.),(),(,,,,,, ijijiijijijiji wrwsrsrwrs αα ++=
}

}

FIGURE 4: (ASYNCHRONOUS) G-GAP – PSEUDO CODE FOR NODE i

 7

For provably correct operation, the G-GAP protocol
requires the following assumptions to be satisfied:

1. Self messages: A message a node sends to itself will be
immediately available for reading. This assumption can be
lifted, we conjecture, by storing the message content in a
local variable or by adding sequence numbers to the
protocol .

2. Correlated failure and message signaling: Message
generation / reading (as part of a execution event) and
failure events occur in the same relative order at an origin
and a destination node. For instance, if a node i sends a
message m to node j at time t, and at some later time 't t>
node i fails, then node j can only detect the failure of i after
m is read. The assumption is needed to avoid mass loss. A
likely consequence of this in terms of implementation is
that failure signals are realized as messages and are
buffered along with (other) messages.

3. Discontiguous failures: If a failure occurs, then no other
live node can fail until the failure event has been processed
by all nodes. More precisely, if a failure event occurs at
time failt , then there is a time detctt∆ , such that all nodes
alive at time failt have processed the failure event by

fail detectt t+ ∆ . In addition, no node failures can occur
during ,fail fail detectt t t + ∆  . As discussed before, on a

general network graph, this assumption needs to hold only
locally, i.e., for each node and its immediate neighbors.

Observe that no assumptions are made on transmission
delays, node clock synchronization, or relative clock speeds.
The statement of mass conservation now needs to take into
account both received and pending messages.

Proposition 6 (Mass conservation, G-GAP) Let L be the set
of all nodes and

nt
L the set of live nodes at time nt . Then, at

all times 0nt > :
1. , ,, , , , ,t t t tn nn n n n

i L j L i L i L j Lpending t j i t i jx s rsi∈ ∈ ∈ ∈ ∉= + +∑ ∑ ∑

, , , , , , , ()
t t n nn n

i L j L pending t j i pending t j irs acks∈ ∉ −∑

2. , ,, , , , ,t t tn n nn n n
j L i L i L j Lt pending t j i t i jL w rw∈ ∈ ∈ ∉= + +∑ ∑

, , , , , , , ()
t t n nn n

i L j L pending t j i pending t j irw ackw∈ ∉ −∑

Proof: See appendix A.

Proposition 6 expresses that the total mass of the system
(i.e., the sum of local variables at all live nodes

tn
i L ix∈∑) can

be computed as the sum of the pending mass to all live nodes,
plus the sum of the recovery shares for the failed nodes at the
live nodes, plus the sum of the pending recovery shares, minus
the sum of the pending acknowledgements.

Proposition 6 allows us to derive a convergence result only
under timely message delivery. That is, we assume that there is
some time d rt t≤ such that, if a message is sent at time t and
read at time 't then ' dt t t− ≤ . The timely delivery assumption
has consequences in terms of the amount of asynchrony that
can be tolerated. In particular, it must be possible to bound
buffer sizes and hence also clock skew. This could be achieved

in practice by periodically performing a rough synchronization
of clocks to allow slower nodes to catch up with faster ones.
We leave the problem of devising such a scheme to future
work.

 Under this assumption, if no more failures occur after
some time t, then at time dt t+ all failure signals will have
been read by the receiving nodes, and Proposition 6 reduces to

, , , ,dd d
i L i j Li pending t i jt t

x s∈ ∈=∑ ∑ ,

, , , ,d dd
i j Lt pending t i jt

L w∈= ∑ .

Moreover, since the failure-recovery variables rs, srs, acks, etc.
can only affect the push-synopses variables s and w during
processing of failure signals, the behavior of G-GAP after time

dt t+ reduces to that of Asynchronous push-synopses, at least
up to assignments to the s and w variables. Say that a node i is
stable from time st if i stays either live or failed at all times

st t≥ , and let ts
r be the round to which st belongs. We have

thus shown:

Theorem 7 (Convergence, G-GAP) Suppose the graph is
complete at time st , and suppose all nodes are stable from time

st onwards. Then, the G-GAP protocol on a complete graph
and under assumption of uniform gossip satisfies log ε -δ
convergence.?

Recall that if G-GAP executes on a general network graph,
the assumption of discontiguous failures relates to the
neighborhood of a node, rather than the set of all network
nodes. As a consequence G-GAP is robust to multiple
concurrent failures as long as they occur in different
neighborhoods.

IV. EXPERIMENTAL EVALUATION
We have evaluated G-GAP (called asynchronous G-GAP in

Section III.D) through extensive simulations using the
SIMPSON simulator, a discrete event simulator that allows us
to simulate packet exchanges over large network topologies
and packet processing on the network nodes [5]. In various
scenarios, we measure the estimation error by G-GAP on the
network nodes, in function of the round rates, the network size,
and the failure rate, in order to evaluate the protocol against our
design objectives.

In addition to G-GAP, we run most simulation scenarios
also with GAP [4], a tree-based aggregation protocol that gives
an estimate of the aggregate at the root node. This allows us to
compare the use of a gossip protocol with a protocol that is
based on spanning trees for the purpose of monitoring network-
wide aggregates. To make the comparison fair, we measure the
performance metrics of both protocols for a comparable
overhead.

A. Simulation setup and evaluation scenarios
Evaluation metrics. The main evaluation metric is the

estimation error of the protocols. For G-GAP, we compute the
estimation error as the (absolute) difference between the actual

 8

aggregate and the estimate of the aggregate on the nodes. For
each simulation run, we determine the average estimation error
over the simulation time and over all nodes. In addition, to
indicate the dispersion of the error values, we determine the
90th percentile of the error values. In the case of GAP, all
measurements relate to the root node, since the estimate of the
aggregate is available only at this node. A second evaluation
metric is the mass loss, which measures the correctness of the
protocol in the case of failures.

Local variables. For all simulation runs, a local variable
represents the number of HTTP flows that enter the network at
a specific router, and the aggregate represents the current
average number of these flows in the network. We simulate the
behavior of the local variables based on packet traces captured
at the University of Twente [11]. Specifically, we use two
traces.

The first trace, which we call the University of Twente
(UT) trace, is obtained as follows. Packet traces captured at

two measurement points were divided into 150sec segments.
From each segment i, we sample every second the number of
HTTP flows that were traversing the measurement point. This
number gives the value of the local variable xt,i of node i at
time t. Across all segments, the average value of xt,i is about 45
flows, and the standard deviation of the change between two
consecutive values is about 3.4. The second trace, which we
call Randomized Periodic UT trace, is obtained by scaling the
UT trace with a random periodic factor as follows.

 ()()()* 2int 1 cos, ,30
tx u xt i t i

π= +

 where [0,1]u ∈ is chosen uniformly at random, and int()y
the integer part of y.

The average value of x*
t,i across all segments is about 47

and the standard deviation of the change between two
consecutive values is about 14. The second trace provides us
with local variables that have higher dynamics than the first
trace.

Overlay topology. The overlay topologies used for our
simulations are generated by GoCast [17], a gossip protocol
that builds topologies with bidirectional edges and small
diameters. The protocol allows setting the (target) connectivity
of the overlay. For this evaluation of G-GAP, we do not
simulate the dynamics of GoCast. This means that the overlay
topology does not change during a simulation run. Unless
stated otherwise, the overlay topology used in the simulations
has 654 nodes (this is the size of Abovenet, an ISP). It is
generated with target connectivity of 10, which produces an
average distance of 3.1hops and a diameter of 4hops in the
overlay.

Failures. We assume a failure detection service in the
system that allows a node to detect the failure of a neighbor.
For our simulations, we assume that the failure of a node is
detected within 1sec.

Other Simulation Parameters. In addition to the above,
we run the simulations with the following parameters unless
stated otherwise.

• For G-GAP, the default round length is 250ms, which
means 4 rounds/sec. For GAP, the maximum message
rate is 4 msg/sec per overlay link.

• For all nodes i and time t, αt,i,j=
1/(1+# of neighbors) and

βt,i,j=
1/# of neighbors

• Processing overhead: 1ms/cycle

• Network delay across overlay links: 20ms

• The length of a simulation run is 50sec, with a warm-
up period of 25sec and a measurement period of 25
sec.

B. Estimation Accuracy vs. Protocol Overhead
In this experiment, we measure the estimation accuracy of

G-GAP and GAP in function of the protocol overhead. We run
simulations for round rates of 1, 2, 4, 6, 8 and 10 messages per
sec. (For G-GAP, a round rate of 1 per sec means that the
protocol executes one round per second, i.e., one protocol cycle
per second. For GAP a round rate of 1 per sec means a
maximum of 1msg/sec on an overlay link). We run two
scenarios for the evaluation of estimation accuracy.

For the first scenario, we use the UT trace to simulate
behavior of the local variables. Figure 6 shows the results.
Each measurement point corresponds to one simulation run.
The top of the bar indicates the 90th percentile of the estimation
error.

As expected, for both protocols, increasing the round rate
results in the decreasing of the estimation error. Therefore, the
round rate controls the tradeoff between estimation accuracy
and protocol overhead. In addition, for comparable overhead
(i.e. the same round rates), the average error in G-GAP is
around 8 times that of GAP.

In the second scenario, we study the influence of higher
dynamicity of the local variables by using the Randomized
Periodic UT trace to simulate behavior of the local variables.

FIGURE 5: ESTIMATION ERROR VS. NETWORK SIZE

 9

Figure 7 shows the results. The top of the bars indicate the 90th
percentile of the estimation error.

The result shows that the average estimation error in both
protocols is larger than that in the UT trace (2 times larger for
G-GAP and 2-10 times for GAP). We explain this by fact that
changes in the values of the local variables tend to be the larger
for this trace than for the UT trace. We observe that the
estimation error for GAP is smaller than the error for G-GAP:
namely, by a ratio of 1.5 for low round rates and by a ratio of 5
for high round rates. This ratio is smaller than that for the UT
trace.

More importantly, within the parameter ranges explored,
we conclude that GAP outperforms G-GAP in terms of
accuracy.

C. Scalability
In this scenario, we measure the estimation accuracy of G-

GAP and GAP in function of the network size. The round rate
is set to 4 round/sec. We run simulations with GoCast-
generated overlays for networks of size 82,164,327,654, 1308,
2626 and 5232 nodes. The target connectivity of GoCast is 10,
which results in about 80% of the nodes having a connectivity
of 10 and the rest a connectivity of 11. We use the UT trace to
simulate the behavior of the local variables. Topological

properties of the overlays are presented in Table 1.

Figure 5 shows the results. Each measurement point
corresponds to one simulation run. The top of the bar indicates
the 90th percentile of the estimation error.

 We observe that for both protocols, the estimation error
seems to be independent on the network size. In the general
case, for synthetic traces generated by the same (random)
process, we would expect such a result for both GAP and G-
GAP. Further, [2] shows for a polling-based gossip protocol,
that variance of the estimates of the global average across all
nodes is independent of the network size. Therefore, this
simulation result is not entirely surprising.

Also, in this scenario, GAP clearly outperforms G-GAP in
terms of accuracy.

D. Robustness against node failures
In this section, we evaluate the robustness properties of G-

GAP in three scenarios. In the first scenario, we validate the
mass conservation property of G-GAP for the case of
discontiguous failures, for which we proved the protocol to be
robust. In the second scenario, we study the protocol accuracy
under stochastic failures, where contiguous failures may occur.
In the third scenario, we compare the estimation accuracy of G-
GAP with that of GAP by measuring the estimation error in
function of the failure rate for a comparable protocol overhead.

For the first scenario, we use the default topology (654
nodes) and simulation settings as described in Section IV.A,
and simulate the local weight changes using the UT trace. We
generate failures as follows. Every 1.25sec, a node is selected
at random. The node fails and recovers after 10sec. (Note that
the generated failures are discontiguous, and therefore the
protocol is robust by design.)

We run the scenario with G-GAP and with G-GAP without
failure recovery, which we call here G-GAP--. (In our
simulation runs, G-GAP-- was realized by executing G-GAP
and skipping detected_failure calls. See Figure 4.) During the
simulation run, we measure the mass loss, computed as

, , , ,t t nn n
i L j L i L pending t j ix si∈ ∈ ∈−∑ ∑ for s and, similarly, for w.

The simulation is run for 100sec and Figure 8 shows the result.

FIGURE 6: ESTIMATION ERROR VS. PROTOCOL OVERHEAD FOR UT TRACE

FIGURE 7: ESTIMATION ERROR VS. PROTOCOL OVERHEAD FOR RANDOMIZED
PERIODIC UT TRACE

TABLE 1: TOPOLOGICAL PROPERTIES OF GOCAST-GENERATED OVERLAYS
USED IN SIMULATIONS

nodes diameter avg. distance
82 3 hops 2.1 hops
164 4 2.4
327 4 2.7
654 4 3.1
1308 5 3.4
2616 5 3.7
5232 6 4

 10

As can be seen from the figure, G-GAP corrects the effects
of node failures, and thus mass loss is transient (i.e., until the
failure of the node is detected by all neighbors). For the case of
G-GAP-- however, we observe that mass loss is not corrected
and therefore accumulates over time. Note that mass loss can
be positive or negative. This scenario experimentally validates
the robustness property of our G-GAP implementation, which
says that, as long as failures are discontiguous, the protocol
recovers lost mass and executes correctly.

For the second scenario, we use the same simulation
parameters as above but vary the failure rate from 0 to 10 node
failures/sec. Failure arrivals are generated by a Poisson
process, and failures are uniformly distributed over all running
nodes. A node that failed recovers after 10sec and reappears in
the place it had in the overlay before the failure. Note that there
is a chance that contiguous failures can occur and that the
chance of contiguous failures increases with growing failure
rate.

For both protocols (G-GAP and G-GAP--), we compute the
drift in estimation, which is the estimation error due to mass

loss, and the overall estimation error by the protocols. We
obtain two curves per protocol, which are shown in Figure 9.
Each measurement point on a curve corresponds to one
simulation run. Each simulation run of the scenario is 150sec
(which includes a 25sec warm-up period).

As expected, the overall estimation error by G-GAP-- is
much larger than that by G-GAP in case of failures. This is
because mass is lost at a faster rate by G-GAP-- than by G-
GAP. The effect of the mass loss is directly visible in the two
curves that show the drift. They show that the drift of G-GAP--
is larger than that of G-GAP and tends to increase with
growing failure rate.

For the third scenario, we measure the estimation accuracy
of G-GAP and that of GAP in function of failure rate, for a
comparable overhead by both protocols. We use the same
simulation parameters and produce failures in the same way as
in the above scenario.

Figure 10 shows the result obtained. Each measurement
point corresponds to one simulation run. The top of the bars
indicate the 90th percentile of the estimation error.

As can be seen from the figure, the estimation error for both
GAP and G-GAP increases with the failure rate. We also see
that the slope is steeper and the spread is wider for G-GAP than
for GAP. This result is surprising for us. We would have
expected a gossip protocol to perform better, compared to a
tree-based protocol, under high node failure rates.

V. DISCUSSION AND FUTURE WORK
This paper includes two main contributions. First, we

present a gossip protocol, G-GAP, which enables continuous
monitoring of network-wide aggregates. The hard part has been
making the protocol robust against node failures, and we
solved the problem for failures that are not contiguous (i.e.,
neighbors do not fail within short time of each other).
Regarding correctness of the protocol, we provide results on
protocol invariants (namely, mass conservation) and

FIGURE 10: ESTIMATION ERROR VS. FAILURE RATE BY GAP AND G-GAP

FIGURE 8: MASS LOSS IN G-GAP-- (BOTTOM) AND G-GAP (TOP) FOR
DISCONTIGUOUS FAILURES IN A SIMULATION RUN

FIGURE 9: DRIFT AND OVERALL ESTIMATION ERROR VS. FAILURE RATE BY G-
GAP AND G-GAP--

 11

convergence. Our robustness result complements a similar
recent result by Mehyar et al. [20].

The simulation studies suggest that we have achieved the
design goals for G-GAP set out in Section III.A. First, we have
shown that the tradeoff between estimation accuracy and the
protocol overhead can be controlled by varying the round rate.
Second, with the real trace we used, an estimation error of
some 5% or less can be achieved for all network sizes and
failure scenarios we simulated. We have observed that the
estimation accuracy of the protocol, for a given overhead, does
not seem to depend on the network size, which makes the
protocol scalable. Finally, we have proven and validated that
the protocol is robust to discontiguous failures.

The second contribution of this paper is a comparative
assessment of G-GAP with GAP, a fairly standard tree-based
aggregation protocol. The significance of this assessment is a
comparison between gossip-based and tree-based monitoring.
Our simulation results show that, within the parameter ranges
of the simulation scenarios, the tree-based protocol consistently
outperforms the gossip-based protocol. For comparable
overhead, the tree-based protocol shows a smaller average
estimation error and a smaller variance of the error than the
gossip-based protocol, independent of network size and
independent of frequency of failures that occur in the network.
A more recent study by us suggest that, in a resource-
constrained environment characterized by high node mobility
and large size, a gossip protocol potentially performs
significantly better than a tree-based protocol [29]. While more
work is needed to evaluate the relative advantages and
disadvantages of tree-based vs. gossip-based monitoring, this
paper makes a significant contribution to the discussion
towards a new paradigm for distributed real-time monitoring.

Our simulation results show that the dynamics of the local
variables influences the estimation accuracy in G-GAP. Not
surprisingly, local variables with high dynamics lead to a lower
accuracy and vice versa.

Our experience shows that the choice of the overlay
topology significantly affects the performance of G-GAP, e.g.,
the estimation accuracy of the protocol. Generally speaking, a
lower diameter and a higher connectivity of the overlay
topology lead to a better performance. On the other hand,
increasing the connectivity increases the load on the
management nodes for a given round rate. Taking all this into
account, we chose an overlay protocol that produces a uniform
connectivity and, for our scenarios, we found out that a
connectivity of 10 is an appropriate choice for real-time
monitoring purposes.

All simulation results given in this paper are for
AVERAGE as the aggregation function. We expect the
performance of G-GAP to be affected by the particular choice
of the aggregation function. Specifically, in scenarios with
contiguous failures, we expect the estimation error to be
different, and we plan to investigate this issue further. For
instance, in the case of SUM, we expect the estimation error to
be larger, while we expect it to be smaller for MIN and MAX.

We should like to understand the convergence properties of
gossiping better. This is, however, outside the scope of the

present paper. As we have shown, the convergence analysis for
G-GAP reduce to that of push-synopses quite simply, as we
can establish bounds after which, in stable state, the behavior
of G-GAP and push-synopses is identical. This strongly
suggests that improved understanding of convergence
properties of the underlying failure-sensitive protocols can
translate to corresponding bounds for their robust versions
without too much effort.

G-GAP, as presented in this paper, is robust against
discontiguous node failures. Our simulations have shown that
in the case of frequent contiguous failures where 20% of the
nodes are down, mass loss and hence estimation errors can
accumulate. Therefore, in a real system, the protocol would
have to be restarted in such cases. We see the possibility of
further improving the robustness of G-GAP and plan more
work in this direction.

Acknowledgements. This work has been supported by a grant
from Cisco Systems, a personal grant from the Swedish
Research Council, the EC IST-EMANICS Network of
Excellence (#26854), and the ACCESS Linnaeus Center.

VI. BIBLIOGRAPHY
[1] D. Ernst, A. Hamel, and T. Austin, “Cyclone: a broadcast-free dynamic

instruction scheduler with selective replay,” In Proc. of the 30th Annual
international Symposium on Computer Architecture (ISCA’03), San
Diego, California, June 7–14, 2003.

[2] M. Jelasity, A. Montresor and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Transactions on Computer Systems,
vol. 23, Issue 3, pp. 219-252, August 2005.

[3] D. Kempe, A. Dobra and J. Gehrke, “Gossip-Based Computation of
Aggregate Information,” In Proc. of the 44th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’03), Cambridge, MA,
USA, October 11-14, 2003.

[4] M. Dam and R. Stadler, “A generic protocol for network state
aggregation,” In Proc. Radiovetenskap och Kommunikation (RVK’05),
Linköping, Sweden, June 14-16, 2005.

[5] K. S. Lim and R. Stadler, “SIMPSON — a SIMple Pattern Simulator
fOr Networks,” http://www.s3.kth.se/lcn/software/simpson.htm, August
2006.

[6] A. Ghodsi, S. El-Ansary, S. Krishnamurthy, and S. Haridi, “A Self-
stabilizing Network Size Estimation Gossip Algorithm for Peer-to-Peer
Systems,” SICS Technical Report T2005:16, 2005.

[7] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, “Randomized Gossip
Algorithms,” IEEE/ACM Transactions on Networking, vol. 14, issue SI,
pp. 2508-2530, June 2006.

[8] R. van Renesse, K. Birman, and W. Vogels, “Astrolabe: A Robust and
Scalable Technology for Distributed System Monitoring,” ACM
Transactions on Computer Systems, vol 21, issue 2, pp.164-206, May
2003.

[9] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, A. Demers,
“Decentralized Schemes for Size Estimation in Large and Dynamic
Groups,” In Proc. of the 4th IEEE International Symposium on Network
Computing and Applications (NCA’05), Cambridge, MA, USA, July 27-
29, 2005.

[10] A. Demers, D. Green, C. Hauser, W. Irish, J. Larson, “Epidemic
algorithms for replicated database maintenance,” In Proc. the 6th Annual
ACM Symposium on Principles of Distributed Computing, Vancouver,
British Columbia, Canada, August 10 - 12, 1987

[11] University of Twente - Traffic Measurement Data Repository,
http://m2c-a.cs.utwente.nl/repository/, August 2006.

[12] A. Deligiannakis, Y. Kotidis and N. Roussopoulos, “Hierarchical in-
Network Data Aggregation with Quality Guarantees,”, In Proc. 9th

 12

International Conference on Extending Database Technology
(EDBT’04), Heraklion – Crete, Greece, March 14-18, 2004.

[13] S. Madden and M. Franklin and J. Hellerstein and W. Hong, “TAG: a
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” Fifth
Symposium on Operating Systems Design and Implementation
(USENIX - OSDI '02), Boston, MA, USA, December 9-12, 2002.

[14] M. A. Sharaf, J. Beaver, A. Labrinidis and P. K. Chrysanthis,
“Balancing energy efficiency and quality of aggregate data in sensor
networks,” The International Journal on Very Large Data Bases, vol. 13,
issue 4, pp. 384-403, December 2004.

[15] K.S. Lim and R. Stadler, “Real-time Views of Network Traffic Using
Decentralized Management,” 9th IFIP/IEEE International Symposium on
Integrated Network Management (IM’2005), Nice, France, May 16-19,
2005.

[16] F. Wuhib, A. Clemm, M. Dam and R. Stadler, “Decentralized
Computation of Threshold Crossing Alerts,” 16th IFIP/IEEE Distributed
Systems Operations and Management (DSOM’05), Barcelona, Spain,
October 24-26, 2005.

[17] C. Tang, and C. Ward, “GoCast: Gossip-Enhanced Overlay Multicast for
Fast and Dependable Group Communication,” In Proc. International
Conference on Dependable Systems and Networks (DSN'05),
Yokohama, Japan, June 28 - July 1,2005.

[18] A. G. Prieto and R.Stadler “Adaptive Distributed Monitoring with
Accuracy Objectives,” to appear In Proc. ACM SIGCOMM workshop
on Internet Network Management (INM’06), Pisa, Italy, September 11,
2006.

[19] F. Wuhib, M. Dam, R. Stadler, A. Clemm, “Robust Monitoring of
Network-wide Aggregates through Gossiping,”, Proc. Integrated
Management (IM) 2007, pp. 226-235. Long version available as KTH
Technical Report [TRITA-EE 2006:043], http://www.ee.kth.se/php
/index.php?action=publications, September 2006.

[20] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, R. Murray,
“Asynchronous Distributed Averaging on Communication Networks,”
IEEE/ACM Transactions on Networking, August 2007.

[21] F. Cristian, R. de Beijer, S. Mishra, “A performance comparison of
asynchronous atomic broadcast protocols,” Distrib. Syst. Engng. 1, pp.
177-201, 1994.

[22] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Prentice Hall, 1989.

[23] A. Olshevsky and J.N. Tsitsiklis, “Convergence rates in distributed
consensus averaging,” Proc. of the 45th IEEE Conference on Decision
and Control (CDC’06), December 2006.

[24] J. N. Tsitsiklis, “Problems in Decentralized Decision Making and
Computation,” Ph.D. Dissertation, Dept. of Electrical Enginering and
Computer Science, Mass. Institute of Technology, Cambridge, MA,
1984.

[25] C. C. Moallemi and B. Van Roy, “Consensus Propagation,” IEEE
Transactions on Information Theory, Vol. 52, No. 11, pp. 4753-4766,
2006.

[26] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized
rumor spreading,” In Proc. of the 41st Annual Symposium on
Foundations of Computer Science (FOCS’06), Washington DC, USA,
November 12 - 14, 2000.

[27] D. Kempe, J. Kleinberg, "Protocols and Impossibility Results for
Gossip-Based Communication Mechanisms," In Proc. The 43rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS'02), pp.
471, Ottawa, Ontario, Canada, November 17-22, 2002.

[28] K. Birman, “The promise, and limitations, of gossip protocols, “ACM
SIGOPS Operating Systems Review archive, Volume 41 , Issue 5,
October 2007.

[29] F. Wuhib and R. Stadler, “Adaptive Real-time Monitoring in Mobile
Wireless Networks, KTH Technical Report TRITA-EE_2008:005, Jan
2008.

[30] Yedidia, J.S.; Freeman, W.T.; Weiss, Y., "Understanding Belief
Propagation and Its Generalizations", Exploring Artificial Intelligence in
the New Millennium, Chap. 8, pp. 239-269, Morgan Kaufman Publishers
Inc., January 2003.

 13

Appendix A: Proof of Proposition 6

Proposition 6 (Mass conservation, G-GAP)
Let L be the set of all nodes and

t
L the set of live nodes at time

t . At all times 0t ≥ :

1.
, , , , ,, ,

, , , , , ,,
 ()

t t t t

t t

i pending t j i t i ji L j L i L i L j L

pending t j i pending t j ii L j L

x s rs

rs acks

∈ ∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑ ∑
∑

2.
, , , , ,, ,

, , , , , ,,
 ()

t t t

t t

t pending t j i t i jj L i L i L j L

pending t j i pending t j ii L j L

L w rw

rw ackw

∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑
∑

Proof (sketch). We prove only 6.1 here. The proof of 6.2 is
almost identical.
For a given (finite or infinite) run of the protocol, let

1 2
, , ...fail fail be the times of failure events during the run.

We prove that 6.1 holds at all time instants up to and not
including 1fail (lemma 8), and that if 6.1 holds at time

1nfail − then it holds at all times 1[, 1]n nt fail fail +∈ − (lemma
10). Note that we may assume 1 0fail > . The result then
follows by induction.

Lemma 8 (Base case) For all times 1[0, 1]t fail∈ − ,

, , ,,t t
i pending t j ii L j L i L

x s
∈ ∈ ∈

=∑ ∑

Proof. If 1[0, 1]t fail∈ − then tL L= . For 0t = , by the

protocol,
0 0

,0, , ,0, ,,
()pending j i pending i i ij L i L i L i L

s s x
∈ ∈ ∈ ∈

= =∑ ∑ ∑ .

Assume the statement holds for 1t fail< and we show it holds
also for 1t + . So assume that a cycle is executed on node a at
time 1t + . Then,

, 1, ,, pending t j ij i L
s +∈∑

, , , , 1, , , 1, ,,

, , , , 1, , , 1,,

, , , , 1, , 1,,

(by axiom 1)

(by the protocol)

(by the defin

pending t j i read t j a write t a jj i L j L j L

pending t j i read t j a a j t aj i L j L j L

pending t j i read t j a t aj i L j L

s s s

s s s

s s s

α

+ +∈ ∈ ∈

+ +∈ ∈ ∈

+ +∈ ∈

= − +

= − +

= − +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

, , ,,

ition of)

(by the protocol)

pending t j i ij i L i L
s x

α

∈ ∈
= =∑ ∑

QED.

Note that Proposition 6 reduces to lemma 8 for time instants
prior to 1fail .

Lemma 9 (Recovery information) For any node a and any
time 0t ≥ ,

, , ,

, , , , , , , ,\ \
()

t

t t

pending t j a aj L

t j a pending t a j pending t a jj L a j L a

s x

rs rs acks

∈

∈ ∈

−

= + −

∑
∑ ∑

.

Proof. We first show that, for any two live nodes a and b at
any time t where both nodes are alive,

, , , , , , , ,

, , , , , , , ,

()

 ()
t a b t a a t a a pending t b a

t b a pending t a b pending t a b

s x s

rs rs acks

β α − + =

+ −
 (1)

The proof is a case analysis on which node a, b, or some
{ , }c a b∉ performs a transition at the time and uses axiom 1

and the protocol. The details are left out. Then, (1) is summed
over all live b to obtain the result. QED

Lemma 10 (Induction step) Assume that node z L∈ fails at
time

n
fail . If

, , , , ,, ,

, , , , , ,,
 ()

t t t t

t t

i pending t j i t i ji L j L i L i L j L

pending t j i pending t j ii L j L

x s rs

rs acks

∈ ∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑ ∑
∑

 (2)

holds at time 1
n

t fail= − , then (2) holds for all times

1
:

n n
t fail t fail

+
≤ < .

Proof. The proof is by induction on n. By discontiguous
failures and correlated failure and message signaling, the
failure at time

1n
fail

−
, if it exists, will have been fully

processed at time
n

fail . If
1n

fail
−

 does not exist we substitute 0
for it in the argument to follow. Thus, by (2) and the induction

hypothesis,
1

1 1
, , ,, nfail failn n

i pending fail j ii L j i L
x s

−
− −

∈ ∈
=∑ ∑ . We first

show that (2) holds at time
n

fail . The goal is to show

1
, , , , ,,

, , , , , , ()

n nfail fail fail failn n n n

n nfailn

i pending fail j i fail i zi L j L i L i L

pending fail z i pending fail z ii L

x s rs

rs acks

−∈ ∈ ∈ ∈

∈

= + +

−

∑ ∑ ∑
∑

By definition,
1fail failn n

i i zi L i L
x x x

−∈ ∈
= −∑ ∑ and

1

1 1

, , ,,

, 1, , , 1, ,,

nfail failn n

n nfail failn n

pending fail j ij L i L

pending fail j i pending fail i zj i L i L

s

s s

−

− −

∈ ∈

− −∈ ∈

=

−

∑
∑ ∑

Therefore

failn
ii L

x
∈∑

1 1
, , , , 1, ,, n nfail fail failn n n

pending fail j i pending fail i z zj L i L i L
s s x

− −
−∈ ∈ ∈

= + −∑ ∑

1 1

1

, , , 1, ,, \

, 1, , , 1, ,\
()

(by lemma 9)

n nfail fail failn n n

n nfailn

pending fail j i fail j zj L i L j L z

pending fail z j pending fail z jj L z

s rs

rs acks

− −

−

−∈ ∈ ∈

− −∈

= +

+ −

∑ ∑
∑

 14

1
, , , , ,,

, , , , , , ()

n nfail fail failn n n

n nfailn

pending fail j i fail j zj L i L j L

pending fail z j pending fail z jj L

s rs

rs acks

−∈ ∈ ∈

∈

= + +

−

∑ ∑
∑

as desired. For the induction step assume that (*) holds at
some time

1
: 1

n n
t fail t fail

+
≤ < − . We show it also holds at

time 1t + . Let

, , ,, , ,,

, , , , , ,,
 ()

t
pending t j ij L i L

t t

t t

t t i ji L j L

pending t j i pending t j ii L j L

sM rs

rs acks

∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑
∑

And assume that the round is executed on a at 1t + . Then

1

1 , , , , 1, ,,

, 1, , , 1, ,\

, , , , , ,

, 1, , , 1, ,

 ()

 ()

(since only 's messa

t

fail tn

t

t

t pending t j i read t j aj L i L j L

a j t a t j z t a zj L j L a

pending t z j pending t j ij L

read t z j read t j ij L

M s s

s rs rs

rs acks

rs acks

z

α
−

+ +∈ ∈ ∈

+ +∈ ∈

∈

+ +∈

= − +

+ + +

− −

−

∑ ∑
∑ ∑
∑
∑

, , , , 1, ,,

, 1, , , , , ,\

, , , , , ,

ge is in the network)

 ()

t

t

t

pending t j i read t j aj L i L j L

read t j a t j z t a zj L j L a

pending t z j pending t j ij L

s s

s rs rs

rs acks

+∈ ∈ ∈

+∈ ∈

∈

= − +

+ + +

−

∑ ∑
∑ ∑
∑

(since, if a learnt about the failure of z, then

1
, 1, , 1, ,

failn
a j t a read t j aj L j L

s sα
−

+ +∈ ∈
= +∑ ∑

, , , 1, , , 1, ,t a z read t z a read t z a
rs rs acks

+ +
+ − and 1, , 0t a zrs + = , and

if a did not learn about the failure of z then

1
, 1, , 1, ,

failn
a j t a read t j aj L j L

s sα
−

+ +∈ ∈
=∑ ∑ and

1, , , , , 1, , , 1, ,t a z t a z read t z a read t z a
rs rs rs acks

+ + +
= + −)

, , , , ,,

, , , , , ,
 ()

t t

t

t

pending t j i t j zj L i L j L

pending t z j pending t j ij L

ii L

s rs

rs acks

x

∈ ∈ ∈

∈

∈

= + +

−

=

∑ ∑
∑
∑

as was to be proved.

