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Abstract— The paper makes two contributions in the context of 
robust and scalable monitoring. First, we present a gossip 
protocol, G-GAP, which enables continuous monitoring of 
network-wide aggregates. Aggregates are computed from local 
management variables using functions such as SUM, MAX, or 
AVERAGE. The hard part is making the protocol robust against 
node failures, and we offer a solution for the case of crash 
failures that are not contiguous (i.e., where neighbors do not fail 
within short time of each other). Regarding correctness of the 
protocol under failures, we prove protocol invariants (namely, 
mass conservation) and give convergence results. We evaluate the 
protocol through simulation using real traces. The simulation 
results suggest that the tradeoff between estimation accuracy and 
protocol overhead can be controlled, and a high estimation 
accuracy (below some 5% error in most of our measurements) 
can be achieved, even in large networks and under frequent node 
failures. The second contribution of the paper is a comparative 
assessment of G-GAP against a tree-based aggregation protocol 
using simulation. Surprisingly, we find that the tree-based 
aggregation protocol consistently outperforms the gossip protocol 
for comparative overhead, both in terms of accuracy and 
robustness. 

Keywords: gossip protocol, epidemic protocol, robust 
aggregation, decentralized monitoring 

I. INTRODUCTION 
The motivation for this research is to investigate the use of 

gossip protocols for decentralized real-time monitoring. Recent 
research in gossip protocols suggests that these types of 
protocols may help engineering a new generation of monitoring 
systems that are highly scalable and fault tolerant.  

Gossip protocols, also known as epidemic protocols, can be 
characterized by asynchronous and often randomized 
communication among nodes in a network [10][3][28]. 
Originally, they have been proposed for disseminating 
information in large dynamic environments [10], and, more 
recently, they have been applied to various tasks, including 
constructing robust overlays [1][17] and estimating the 
network size [9][6].  

We are specifically interested in assessing the use of gossip 
protocols for decentralized aggregation of device data in near 

real-time. Aggregation functions, commonly used by 
management applications, include SUM, MAX and 
AVERAGE of device-level counters and other variables. 
Examples of such aggregations are the average load across all 
network links or the number of active voice calls in a given 
domain. 

Specific applications that require such information include 
network surveillance, service assurance and traffic control in 
large-scale or dynamic networks.  Admission control, for 
instance, can make use of cross-device load and QoS 
measurements to decide whether to accept or reject flows into a 
network domain.  

A gossip protocol for monitoring network-wide aggregates 
executes in the context of a decentralized management 
architecture. Figure 1 shows an example of such an 
architecture, which we propose using for this purpose. In this 
architecture, monitoring nodes with identical functionality 
organize themselves into a management overlay. The 
aggregation protocol (in this case, the gossip protocol) runs in 
the monitoring nodes, which communicate via the overlay. 
Each monitoring node collects data from one or more network 
devices. The protocol aggregates this data, in a decentralized 
fashion, to estimate the SUM, MAX, AVERAGE, etc., of the 
device variables. A management station or an application 
server can access the management overlay at any node. Node 
or link failures—on the physical network or the management 
overlay—trigger a re-organization of the management overlay, 
thereby enabling continuous operation. (Note that the protocol 
introduced in this paper can also run on a different architecture 
than outlined above, as long as that architecture includes 
monitoring nodes that execute the protocol, provides functions 
in the monitoring nodes to access local device variables, and 
maintains an overlay for monitoring nodes to communicate.) 

Recently, other approaches to decentralized aggregation, 
which are based on creating and maintaining spanning trees in 
the management overlay have been investigated by others 
[12][13][14] and also by us [4][15][16][18]. There are 
qualitative and quantitative differences between tree-based and 
gossip-based aggregation. First, gossip-based aggregation 
protocols tend to be simpler in the sense that they do not 
maintain a distributed tree in the management overlay. Second, 
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in tree-based aggregation, the result of an aggregation 
operation is available on the root node of the tree, while in 
gossip-based aggregation the result is available on all nodes. 
Third, failure handling is very different for tree-based 
aggregation than for gossip-based aggregation. If a node fails, a 
tree-based aggregation protocol needs to reconstruct the 
aggregation tree, for which there are well-understood 
techniques. In gossip protocols, node failure can produce mass 
loss (which is further explained in Section III), which causes 
systematic errors in aggregation operations. This problem of 
mass loss has not been sufficiently studied to date and thus 
needs to be addressed first when one wishes to perform a 
comparative assessment of tree-based and gossip-based 
aggregation. 

The work in this paper is based on the push-synopses 
protocol of [3], an instance of a class of distributed agreement 
protocols that have been applied to a wide range of problems in 
distributed estimation and control (cf. [23]). Our main 
contribution is a significant extension of the push-synopses 
protocol that overcomes the mass loss problem and makes the 
protocol robust against node failures. We refer to this extended 
protocol as G-GAP, for Gossip-based Generic Aggregation 
Protocol. We establish a crucial mass conservation invariant 
for G-GAP and show that the logarithmic convergence results 
of [3] can be extended to G-GAP under node failures. We 
evaluate G-GAP through simulation, focusing on the accuracy 
of the estimates produced, the tradeoff between estimation 
accuracy and protocol overhead, the relationship between 
accuracy and network size (i.e., scalability), and the 
relationship between accuracy and failure rate (i.e., robustness). 
For the sake of comparison, we run the same simulation 
scenarios with a tree-based aggregation protocol (that has a 
comparable overhead), which provides us with insight into the 
performance of tree-based vs. gossip-based monitoring. 

This paper is an improved and extended version of [19]. 
The  new additions include the proofs of the mass conservation 
invariant, a discussion and proofs of convergence properties of 
G-GAP, a completely revised and updated Section on related 
work, as well as additional simulation results that demonstrate 
the effect of mass loss on the accuracy of the protocol. 

The rest of the paper is organized as follows. Section II 
reviews related work. Section III presents our protocol, starting 
out with push-synopses [3], which is developed first into a 
synchronous robust protocol, then into an asynchronous robust 

protocol, namely G-GAP. Section IV presents results from our 
experimental evaluation. Finally Section V concludes the paper 
and presents future work. 

II. RELATED WORK 
Distributed averaging and agreement are special cases of 

the distributed aggregation problem. Many approaches to 
averaging and agreement, including several gossip algorithms, 
can be seen as instances of the following iterative update 
scheme, whereby a state vector ( ) ( ( ), ..., ( ))1s t s t s tn=  is 

iteratively updated for each node i by the equation 
( 1) ( ) ( )1i i

ij

ns t t s tj α+ = ∑ =  (cf. [23][24]). Here, ( )tijα  are the 

elements of a non-negative, generally time-dependent  matrix 
( )A t . In case ( )A t  is time-invariant, [23] shows that, under 

mild assumptions on ( )A t , any solution to the agreement 
problem based on the above scheme can be used for distributed 
averaging in time polynomial in network size. The push 
synopses protocol [3] can be seen as a generalization of the 
iterative update scheme to a range of aggregation functions 
besides average. Consensus propagation [25] uses a variant of 
the iterative update scheme for which strong relations to belief 
propagation [30] have been established. 

General convergence properties of the iterative update 
scheme have been examined in [24]. Karp et al. [26] obtain a 
general lower bound for averaging using gossiping on an 
arbitrary graph. The (not very attractive) polynomial-time 
upper bound of [23] can be improved significantly for special 
cases of ( )A t  and for specific graph topologies. In [3] a 
logarithmic upper bound is given for the push-synopses 
protocol (see Section III B.) on complete graphs and under 
assumption of uniform gossip. (Uniform gossip refers to a node 
selecting the recipient of a message uniformly at random [27].) 
Boyd et al. [7] use optimization for in-network configuration of 
a time-invariant transition matrix A to minimize the 
convergence time, and they obtain convergence bounds for 
several graph topologies.  

A number of approaches have been explored in the 
literature to deal with node and link failures. Link failures, 
addressed for instance in [23], are generally easier to deal with, 
as nodes can preserve their state and hence avoid mass loss. An 
early example of a system addressing node failures is the 
Astrolabe monitoring system [8]. There, a tree-based scheme is 
used for aggregation, while a gossip protocol disseminates 
partial aggregates among peers in the tree hierarchy. Gossiping 
is used to achieve robustness, by allowing a preselected child 
node to instantly replace a parent node, in case the latter fails. 
In this case the mass loss problem does not arise, since the 
gossiping is not used for aggregation, but only for 
dissemination of information.  

A straightforward approach to address the issue of mass 
loss is to restart the gossip protocol periodically [2]. While this 
does not prevent mass loss from occurring, it reduces the extent 
to which mass loss accumulates and thus mitigates estimation 
errors.  

 
FIGURE 1: ARCHITECTURE OF THE DECENTRALIZED MONITORING SYSTEM. 
GOSSIP PROTOCOLS RUN IN THE MANAGEMENT OVERLAY (MIDDLE LAYER) 
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Mehyar et al. [20] have recently presented a solution for 
computing the average of local values on a dynamically 
changing network graph. Convergence is proved using the 
asynchronous framework of Bertsekas and Tsitsiklis [22]. No 
analytical upper bound on convergence time is reported. There 
are similarities in the use of recovery information between the 
protocol in [20] and the one developed independently by us. 
There are also significant differences between both protocols. 
In our case, the recovery mechanism is less deeply integrated 
into the underlying protocol, i.e., push-synopses. This allows 
us to establish convergence bounds by showing that there is a 
limit to the number of rounds needed to process recovery 
information before the protocol reverts to the behavior of the 
underlying protocol. Another difference is that our solution is 
designed to work correctly for a range of aggregation 
functions, whereas the protocol of [20] has been designed 
specifically for the computation of averages, and it is unclear to 
which extent it generalizes to other aggregation functions, such 
as SUM or other general synopses.  

III. THE PROTOCOL: G-GAP 

A. Design goals and design approach 
The management architecture. G-GAP is designed for a 
management architecture shown in Figure 1, in which each 
network device participates in protocol processing, by running 
a management process, either internally or on an external, 
associated device. (A monitoring node in Figure 1 corresponds 
to a management process.) These management processes 
communicate via a network overlay for the purpose of 
monitoring a network-wide aggregate. We refer to this overlay 
also as the network graph. A node of this graph represents a 
network device together with its management process. 

Each node of the network graph has an associated non-
negative local (management) variable ( )ix t , or just ix  if the 
variable does not depend on time. The local variable can 
represent a MIB variable, e.g., a device counter. In this paper, 
we assume that the variables are aggregated using AVERAGE.  

Design goals. Our aim is to develop a distributed protocol for 
continuously computing aggregation functions in a scalable 
and robust manner. The design goals for G-GAP are as 
follows: 

• Accuracy: for a given protocol overhead, the estimation 
error should be small, and the variance of the estimation 
error across all nodes should be small.   

• Controllability: it should be possible, from a management 
station, to control the tradeoff between protocol overhead 
and accuracy of the estimation. 

• Scalability: for a fixed accuracy, the local protocol 
overhead at any node or link should in general increase 
sub-linearly with the system size. 

• Robustness: the protocol should be robust to node failures 
and should allow for nodes dynamically joining and 
leaving the network. During transient periods, the 
estimation error due to reconfiguration should be small. 

Design approach. G-GAP is based on push-synopsis, a gossip 
protocol for computing aggregates proposed by Kempe et al. 

[3]. Our main contribution is to extend the push-synopses 
protocol with a scheme to provide accurate estimates in the 
event of node failures of different types. These extensions are 
introduced in two steps; first, for the case of fully synchronized 
rounds with guaranteed, timely message delivery; then, for the 
more general, asynchronous case. While the aggregation 
function we focus on in this paper is AVERAGE, our results 
regarding protocol invariants and convergence are applicable to 
more general synopses, such as those discussed in [3]. 

B. Push-Synopses 
In the push-synopses protocol given in Figure 2, each node 

i maintains, in addition to the local management variable ix , a 
weight iw  and a sum is . The local estimate of the aggregate 

ia  on node i is computed as /i i ia s w= . Following [3] the 
protocol is given for the case of a complete (i.e. fully 
connected) network graph of n nodes. However, the protocol is 
easily adapted to general network graphs where only adjacent 
nodes are allowed to communicate directly with each other. 
This is the relevant case in practice, for scalability reasons. In 
this case , 0i jα =  if i j≠  and j is not adjacent to i.  

The protocol executes in synchronized rounds. We assume 
reliable and timely communication in the sense that a message 
sent within a given round is guaranteed to be delivered within 
that round. 

For the analysis of the push-synopses protocol we use ,r is  
to refer to the value of variable is  at the end of round r . 
Protocol correctness relies crucially on the following invariant 
which expresses “mass conservation.” 

Proposition 1 (Mass Conservation, Push-Synopses [3]) For 
all rounds 0r ≥ , 
1. ,r i ii i

s x=∑ ∑  

2. ,r ii
w n=∑  

Proof: Since the only communication between nodes is by 
message passing, it suffices to show that, if the property holds 
before the main protocol cycle is simultaneously executed at all 
nodes, then it holds after execution as well. This is 
straightforward. ?  

In [3] a logarithmic convergence result is given for the 
Push-Sum protocol, which applies to our instance of the push-

Round 0  { 
1. 

ii xs = ; 
2. 1=iw ; 
3. send ),( ii ws  to self } 

Round 1+r  { 
1. Let * *{( , )}

l l
s w  be all pairs sent to i  

during round r  
2. *

li l
s s= ∑ ; *

li l
w w= ∑  

3. choose shares 0, ≥jiα  for all nodes j   

such that ∑ =
j ji 1,α  

4. for all j  send )*,*( ,, ijiiji ws αα to each j  }  
FIGURE 2: PUSH-SYNOPSES – PSEUDO CODE FOR NODE i 
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synopses protocol as well. We define the relative error at 
round r at node i as:  

1 ,( , )
,

xs j jr ie r i
x w nj j r i

∑
= ⋅ −

∑
   

Then, we say that the protocol under consideration satisfies log 
ε -δ convergence, if for all 0ε ≥ , 0δ ≥  the probability that  
there is a round ' (log log1 log1 )r O n ε δ= + +  for which 

( , )e r i ε≤  for all 'r r≥  is at least 1 δ− .  

Note that the above notion of log ε -δ convergence is 
formulated in the context of a synchronous model. It can be 
extended in a straightforward way to a discrete-time 
asynchronous model by considering time instants instead of 
rounds. This will be needed in Section III C. 

The following result is due to Kempe et al [3]: 

Theorem 2 (Convergence, Push-Synopses [3])  
On complete graphs and under the assumption of uniform 
gossip, the push-synopses protocol satisfies log ε -δ 
convergence.  ?  

In the above theorem, uniform gossip refers to selecting the 
recipient of a message uniformly at random among all nodes of 
the graph (cf. [27]). Specifically, for all nodes i, , 0.5i iα =  and 
there is exactly one node j i≠  with , 0.5i jα = . All other 

elements of ( )A t  are 0. 

The assumption of round synchronization can be lifted by 
adding round identifiers to messages and by buffering, so that a 
message with round number r is not overwritten by the arrival 
of a message with a later round number. We call the resulting 
protocol asynchronous push-synopses. Proposition 1, i.e., mass 
conservation, remains valid under these changes. To prove 
convergence, we assume that all messages sent during a round 
are also received during that round. The following result is then 
obtained as a straightforward adaptation of Theorem 2: 

Corollary 3 (Convergence, Asynchronous Push-Synopses) 
On complete graphs and under the assumption of uniform 
gossip, the asynchronous push-synopses satisfies log ε -δ 
convergence. ?  

The push-synopses (and asynchronous push-synopses) 
protocol is robust to message loss, provided that the underlying 
transport mechanism guarantees that this is reported. In the 
event of message loss, a node retransmits the lost message to 
itself. The mass conservation invariant holds, if message loss is 
always reported within the same round the message is sent; if 
this cannot be guaranteed, then the statement of Proposition 1 
must be adapted, by taking into account the “mass” of lost 
messages that were sent but have - so far - not been reported 
lost. 

The protocol is given in Figure 2 for the case of polling, 
i.e., for the case where the variables ix  are constant. It is easily 
adapted to continuous monitoring, by sampling the value of ix  

at each round and by adding the change in ix  to is  in step 2 of 
Figure 2. Step 2 for round r must then be replaced by 

2. *
, 1,( )li r i r il

s s x x −= + −∑ , *
li l

w w= ∑  

The evaluation in Section IV is performed for a protocol 
modified in this way, since we consider continuous monitoring 
more relevant from an application perspective.  

C. Synchronous G-GAP 
For crash failures (i.e., for failures where the local node 

state is lost)  the push-synopses protocol of Section III.B can 
no longer be guaranteed to converge to the true value, since the 
local variable of the failed node has been included in the 
computation, and, as a consequence, the mass conservation 
invariant does not hold after the failure. To restore the 
invariant, the contribution of the local variable of the failed 
node to the total mass of the system needs to be removed. 

In this Subsection, we present a first adaptation of the push-
synopses protocol to the case of crash failures under rather 
strict assumptions. Later, we show how these assumptions can 
be partially lifted, at the expense of a somewhat more complex 
protocol. The first adaptation, the Synchronous G-GAP 
protocol, which we call SG-GAP, is shown in Figure 3.  

The basic idea behind the restoration of the invariant is that 
a node i distributes recovery shares , , ,( )j i i j i i i irs s xβ α= − to 
each neighbor j, and every node keeps track of its previously 
sent messages ,1 k ls s  and ,2 k ls s . This way, if node j discovers 

that i has failed, it uses ,j irs , ,1 j is s  and ,2 j is s  to undo the 

contribution of node i to the computation of the aggregate.   
For reasons of brevity, we restrict the discussion here to the s 
variables of the local state. The same discussion applies to the 
w variables as well. Also, recall from Subsection III.B that, 
when the protocol is executed on general network graphs, a 
node needs to store state information for adjacent nodes, i.e., its 
neighbors, only. 

The protocol in Figure 3 relies on five assumptions: 

1. Reliable and timely message delivery: There is a 
maximum communication delay d rt t<  (the round 
duration) such that a message sent from a node i to a node 
j at time t is delivered to j no later than dt t+ .  

2. Synchronized rounds: Rounds are globally synchronized 
to within some bound rt∆ . That is, all live nodes start a 
round within rt∆  of each other. 

3. Round atomicity: All protocol cycles are executed as 
atomic statements. (Actually, it is sufficient that the send 
operation in step 7 is executed as an atomic operation.) 

4. Discontiguous crash failures: No two nodes fail within 
two rounds of each other. When running this protocol on 
a general network graph, this assumption translates to the 
condition that adjacent nodes cannot fail within a period 
of two rounds. 

5. Connectedness: No failure will cause a node to become 
disconnected. 
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The assumption of a coarse round synchronicity allows us 

to unambiguously determine the value of a variable during 
each (global) round r. As a consequence, the value of is  during 
r can be denoted by ,r is , the value of ,1 i js s  by , ,1 r i js s , etc. 

Round atomicity ensures that, during each round, if some 
message is sent from a node then all messages are sent. Round 
atomicity with reliable delivery is slightly weaker than atomic 
broadcast, as orderly delivery need not be guaranteed. On 
architectures supporting physical multicasting, round atomicity 
can be efficiently supported, though in general the assumption 
carries a heavy synchronization overhead [21]. Together, 
assumptions 1-3 imply that a round duration rt  can be found 
such that all messages are received during the same round they 
were sent.  

Node failure, then, can be detected in step 3 in Figure 3, 
when the node fails to receive a message from a neighbor. 
Thus, if node i realizes in round r that it has not received a 
message from node k in the previous round, it concludes that 
node k did not receive the  message (…, 1 ks s , …) it sent to k in 
round 1r − , neither did k process the message (…, 2 ks s , …) 

sent in round 2r − . Hence node i must in round r in this 
situation restore not only its recovery share for k but also the 
contributions it sent to k in the previous two rounds. 

For the statement of the mass conservation property for SG-
GAP we assume that round 0 by convention refers to the 
initialization phase, and that all nodes are alive during this 
round. 

Proposition 4 (Mass Conservation, SG-GAP) 
Let rL  be the set of nodes that are alive during round 
0r ≥ . At the end of each round r 

1. ,, , ,2
r r ri L i L j Lr i r i js s s∈ ∈ ∉+ +∑ ∑

1 , , , ,r r r ri L L j L i Lr j i r irs x
−∈ − ∈ ∈=∑ ∑  

2. ,, , ,2
r r ri L i L j Lr i r i jw s w∈ ∈ ∉+ +∑ ∑

1 , , ,r r ri L L j L r j i rrw L
−∈ − ∈ =∑  

For a detailed proof of Proposition 4, see [19]. That proof 
follows the same idea as the proof of Proposition 6, which is 
outlined below. 

The invariant property #1 can be explained as follows: the 
total mass ,ri L r ix∈∑ at the end of round r  is the sum of three 
components: 

1. Local mass: the sum the local states ,r is  of each live node 
i; 

2. lost mass: the sum of , ,2 r i js s  which were sent by 
currently live nodes i to currently dead nodes j in round 

1r − ; 
3. recovery mass: the sum of , ,r j irs  which were sent in 

round 1r −  from a now dead node i to a currently live 
node j. 

 

The convergence result below applies to graphs that are 
complete at some round sr . Say that a node i is stable from 

sr on, if i stays either live or failed throughout all rounds 

sr r≥ . With this caveat Theorem 2 is easily extended to the 
SG-GAP protocol. 

Theorem 5 (Convergence, SG-GAP) Suppose the graph is 
complete at round sr , and suppose all nodes are stable from 
round sr  onwards. Then, the SG-GAP protocol on a complete 
graph and under the assumption of uniform gossip satisfies log 
ε -δ convergence. 

Proof: The result follows since one round after sr  the 
value of the failure-handling variables ,1 i js s , ,2 i js s , ,i jrs , etc. 
will be 0, and so, by Proposition 4, the mass conservation 
invariant for push-synopses is reinstated. Since no more 
failures occur, the failure-handling variables will remain 0 and 
the behaviour of SG-GAP will consequently reduce to that of 
push-synopses, and the result follows by Theorem 2. ?  

D. Asynchronous G-GAP 
In this Section we relax the synchrony assumptions of SG-

GAP. The basic idea is to drop the method of determining the 
mass lost due to failures, which relies on the synchronous 
nature of the network, and, instead, letting a node compute 
recovery shares incrementally, by explicitly acknowledging the 

Round 0  { 
1. 

iiiiii xsssss === ,, 21 ; 
2. 121 ,, === iiiii wswsw ; 

3. for each { }j N i∈ −  { 
)0,0(),( ,, =jiji rwrs    

   //recovery share for node j  
)0,0()1,1( ,, =jiji wsss     

   //share sent previous round to j  
)0,0()2,2( ,, =jiji wsss  };  

   //share sent round before last 
4. send )0,0,,( ii ws  to self 
5. send )0,0,0,0(  to all other nodes } 

Round 1+r  { 
1. let { |  L l N l= ∈ sent a message * * * *( , , , ) l l l ls w rs rw  

to i  during round }r . 
2. *

li l L
s s

∈
= ∑ ; *

li l L
w w

∈
= ∑ ;  

for all l L∈  let * *
, ,( , ) ( , )

l li l i lrs rw rs rw=  
3. for all k L∉ { 

   kikikiii rsssssss ,,, 21 +++= ;  
   021 ,,, === kikiki rsssss ; 

    kikikiii rwwswsww ,,, 21 +++= ;  
     021 ,,, === kikiki rwwsws } 
4. for all j N∈  choose shares 0, ≥jiα  such that 

∑ =
j ji 1,α  and 0, =jiα  whenever j L∉  

5. for all j N∈  { )1,1()2,2( ,,,, jijijiji wssswsss = ;  
),()1,1( ,,,, ijiijijiji wswsss αα= } 

6. for all j N∈  choose shares 0, ≥jiβ  such that 

∑ =
j ji 1,β  and , , 0i i i jβ β= =  whenever j L∉  

7. for all j N∈   
send ))1(),(,1,1( ,,,,,, −− iiijiiiiijijiji wxswsss αβαβ  to j  }  

FIGURE 3: SYNCHRONOUS G-GAP – PSEUDO CODE FOR NODE i. N  IS THE 

SET OF LIVE NODES AT ROUND 0. 
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mass it receives from a peer. The pseudo-code for a protocol 
based on this idea, which we call Asynchronous G-GAP, is 
shown in Figure 4. Message buffering and round numbering, as 
in Asynchronous push-synopses, is left implicit. From an 
application point of view, this asynchronous version of the 
protocol is the most significant protocol described here, and, 
therefore, we refer to it simply as G-GAP in the rest of this 
paper. As in the case of SG-GAP, the protocol is given for 
polling and for a complete network graph. The application of 
the protocol in the context of general network graphs is 
described in Subsection III.B.  

Compared to SG-GAP, the assumption of round 
synchronization is removed, as is the assumption of timely 
message delivery. With these modifications, nodes have less 
precise knowledge of each others’ state. For this reason, in 
addition to the recovery mass already introduced in SG-GAP, a 
further pair , ,( , )i j i jacks ackw  is included in the messages sent 
in step 7.d of Figure 4, in order to let nodes acknowledge the 
receipt of messages. This pair , ,( , )i j i jacks ackw  is computed as 
what node i believes to be j’s recovery information on i, 
typically, the pair , ,( , )j i j irs rw . However, lack of 
synchronization and message transmission delays may make 
these values different. 

The asynchronous setting makes some changes in notation 
convenient. Most importantly, we consider system events to be 
serialized in a discrete time model. That is, failure events and 
protocol cycle executions (both of which we call transitions) 
are considered to be atomic and the time axis to be discretized 
into points 0 1, ,...t t  , such that, at each instant nt , exactly one of 
two events occurs on some node i: either a protocol cycle is 
executed at node i, or node i fails. 

(Note that this protocol does not consider that failed nodes 
can recover. An extension of the protocol for this case is 
straightforward. The evaluation of the protocol is done by 
using G-GAP with such an extension.) 

In the absence of round synchrony, local variables need to 
be sampled in a slightly different way than in the case of SG-
GAP. Here we apply the following convention: if, say, ,i jrs  is 
a local variable at node i, then , ,t i jrs  refers to the value of ,i jrs  
at time instant t+  that is immediately upon completion of the 
corresponding event at time { }|nt t n ω∈ ∈ . 

Concerning the communication model, we assume reliable 
message transmission in the sense that a message generated 
(i.e., sent) by the execution of a protocol cycle at node i is 
regarded as “pending”, until either the destination node j fails 
or the message is read by the execution of a protocol cycle at j.  
We can thus define the following sets: 

• , , ,pending t i jM : The set of all messages from origin i to 
destination j which are pending at time t+ . 

• , , ,read t i jM : The set of messages from origin i to destination 
j which are read during a transition on node j at time t. If 
no transition takes place on node j at time t, then 

, , ,read t i jM = ∅ . 

• , , ,write t i jM : The set of messages from origin i to destination 
j which are generated by node i through the execution of a 
protocol cycle at time t. Again, if no cycle is executed on 
node i at time t, then , , ,write t i jM = ∅ . 

• , , , , , , , , ,transit t i j pending t i j write t i jM M M= − : The set of messages 
that are in transit, i.e., pending but not generated at time t. 

We obtain the following straightforward axiom reflecting 
this model: 

Axiom 1 (Communication model) For all n ω∈ , 

, , , , , , , , , , , ,1 1 1
( )pending t i j pending t i j write t i j read t i jn n n n

M M M M
+ + +

= ∪ −  

Messages have the format ( , , , , , )s w rs rw acks ackw  where all 
variables are real-valued. We use the notation 

{ }, , , , , ,| , ,... : ( , , ,...)pending t i j pending t i js s w rs s w rs M= ∃ ∈∑  

and, similarly, for other variables , , ...w rs , and indices read , 
write  and transit . 

(0)round  { 
1. ii xs = ; 
2. 1=iw  ; 
3. iLß self; 
4. for each node j  )0,0(),( ,, =jiji rwrs  ; 
5. for each node j  )0,0(),( ,, =jiji srwsrs  ; 
6. send )0,0,0,0,,( ii ws  to self; 
7. for all ij ≠  send )0,0,0,0,0,0(  to j  } 

( 1)round r +  { 
1. Let M  be all messages received by 

 i  during round r  
2. 1( ) ( )i r rm M

s s m x x −∈
= + −∑ ; ( )i m M

w w m
∈

= ∑   

3. for all j , ,( , ) (0,0)i j i jacks ackw =  
4. ( )i iL L orig M= ∪  
5. for all ij L∈  { 

a. , , , ,( , ) ( , )i j i j i j i jrs rw rs rw= +  

       
: ( )

(( ( ), ( ) ( ), ( )))
m orig m j

rs m rw m acks m ackw m
=

−∑  

 b. , , , , : ( )
( , ) ( , ) ( ( ), ( ))i j i j i j i j m orig m j
acks ackw srs srw s m w m

=
= + ∑  

} 
6. for all ij L∈  if (detected_failure(j)) { 

a. , ,( , ) ( , ) ( , )i i i i i j i js w s w rs rw= +  
 b. , , , ,( , ) ( , ) (0,0)i j i j i j i jrs rw srs srw= =   

c. \i iL L j←  
} 

7. for all ij L∈  { 
a. choose 0, ≥jiα  such that 1, =∑ j jiα  

b. choose 0, ≥jiβ  such that ∑ =
j ji 1,β  and 0, =iiβ

c. compute , , , , , ,( , ) ( ), ( 1)i j i j i j i i i i i j i i isrs srw s x wβ α β α= − −  
d. send , , , , , ,( , , , , , )i j i i j i i j i j i j i js w srs srw acks ackwα α  to j  
e. ),(),( ,,,,,, ijijiijijijiji wrwsrsrwrs αα ++=   
} 

} 
 

FIGURE 4: (ASYNCHRONOUS) G-GAP – PSEUDO CODE FOR NODE i  



 7 

For provably correct operation, the G-GAP protocol 
requires the following assumptions to be satisfied: 

1. Self messages: A message a node sends to itself will be 
immediately available for reading. This assumption can be 
lifted, we conjecture, by storing the message content in a 
local variable or by adding sequence numbers to the 
protocol . 

2. Correlated failure and message signaling: Message 
generation / reading (as part of a execution event) and 
failure events occur in the same relative order at an origin 
and a destination node. For instance, if a node i sends a 
message m to node j at time t, and at some later time 't t>  
node i fails, then node j can only detect the failure of i after 
m is read. The assumption is needed to avoid mass loss. A 
likely consequence of this in terms of implementation is 
that failure signals are realized as messages and are 
buffered along with (other) messages. 

3. Discontiguous failures: If a failure occurs, then no other 
live node can fail until the failure event has been processed 
by all nodes. More precisely, if a failure event occurs at 
time failt , then there is a time detctt∆ , such that all nodes 
alive at time failt  have processed the failure event by 

fail detectt t+ ∆ . In addition, no node failures can occur 
during ,fail fail detectt t t + ∆  . As discussed before, on a 

general network graph, this assumption needs to hold only 
locally, i.e., for each node and its immediate neighbors. 

Observe that no assumptions are made on transmission 
delays, node clock synchronization, or relative clock speeds. 
The statement of mass conservation now needs to take into 
account both received and pending messages.  

Proposition 6 (Mass conservation, G-GAP) Let L be the set 
of all nodes and 

nt
L  the set of live nodes at time nt . Then, at 

all times 0nt > :  
1. , ,, , , , ,t t t tn nn n n n

i L j L i L i L j Lpending t j i t i jx s rsi∈ ∈ ∈ ∈ ∉= + +∑ ∑ ∑

, , , , , , ,                   ( )
t t n nn n

i L j L pending t j i pending t j irs acks∈ ∉ −∑  

2. , ,, , , , ,t t tn n nn n n
j L i L i L j Lt pending t j i t i jL w rw∈ ∈ ∈ ∉= + +∑ ∑

, , , , , , ,               ( )
t t n nn n

i L j L pending t j i pending t j irw ackw∈ ∉ −∑  

Proof: See appendix A. 

Proposition 6 expresses that the total mass of the system 
(i.e., the sum of local variables at all live nodes 

tn
i L ix∈∑ ) can 

be computed as the sum of the pending mass to all live nodes, 
plus the sum of the recovery shares for the failed nodes at the 
live nodes, plus the sum of the pending recovery shares, minus 
the sum of the pending acknowledgements.  

Proposition 6 allows us to derive a convergence result only 
under timely message delivery. That is, we assume that there is 
some time d rt t≤  such that, if a message is sent at time t and 
read at time 't  then ' dt t t− ≤ . The timely delivery assumption 
has consequences in terms of the amount of asynchrony that 
can be tolerated. In particular, it must be possible to bound 
buffer sizes and hence also clock skew. This could be achieved 

in practice by periodically performing a rough synchronization 
of clocks to allow slower nodes to catch up with faster ones. 
We leave the problem of devising such a scheme to future 
work. 

 Under this assumption, if no more failures occur after 
some time t, then at time dt t+  all failure signals will have 
been read by the receiving nodes, and Proposition 6 reduces to 

, , , ,dd d
i L i j Li pending t i jt t

x s∈ ∈=∑ ∑ , 

, , , ,d dd
i j Lt pending t i jt

L w∈= ∑ . 

Moreover, since the failure-recovery variables rs, srs, acks, etc. 
can only affect the push-synopses variables s and w during 
processing of failure signals, the behavior of G-GAP after time 

dt t+  reduces to that of Asynchronous push-synopses, at least 
up to assignments to the s and w variables. Say that a node i is 
stable from time st  if i stays either live or failed at all times 

st t≥ , and let ts
r  be the round to which st  belongs. We have 

thus shown: 

Theorem 7 (Convergence, G-GAP) Suppose the graph is 
complete at time st , and suppose all nodes are stable from time 

st  onwards. Then, the G-GAP protocol on a complete graph 
and under assumption of uniform gossip satisfies log ε -δ 
convergence.?  

Recall that if G-GAP executes on a general network graph, 
the assumption of discontiguous failures relates to the 
neighborhood of a node, rather than the set of all network 
nodes. As a consequence G-GAP is robust to multiple 
concurrent failures as long as they occur in different 
neighborhoods. 

IV. EXPERIMENTAL EVALUATION 
We have evaluated G-GAP (called asynchronous G-GAP in 

Section III.D) through extensive simulations using the 
SIMPSON simulator, a discrete event simulator that allows us 
to simulate packet exchanges over large network topologies 
and packet processing on the network nodes [5]. In various 
scenarios, we measure the estimation error by G-GAP on the 
network nodes, in function of the round rates, the network size, 
and the failure rate, in order to evaluate the protocol against our 
design objectives.  

In addition to G-GAP, we run most simulation scenarios 
also with GAP [4], a tree-based aggregation protocol that gives 
an estimate of the aggregate at the root node. This allows us to 
compare the use of a gossip protocol with a protocol that is 
based on spanning trees for the purpose of monitoring network-
wide aggregates. To make the comparison fair, we measure the 
performance metrics of both protocols for a comparable 
overhead. 

A. Simulation setup and evaluation scenarios 
Evaluation metrics. The main evaluation metric is the 

estimation error of the protocols. For G-GAP, we compute the 
estimation error as the (absolute) difference between the actual 
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aggregate and the estimate of the aggregate on the nodes. For 
each simulation run, we determine the average estimation error 
over the simulation time and over all nodes. In addition, to 
indicate the dispersion of the error values, we determine the 
90th percentile of the error values. In the case of GAP, all 
measurements relate to the root node, since the estimate of the 
aggregate is available only at this node. A second evaluation 
metric is the mass loss, which measures the correctness of the 
protocol in the case of failures.   

Local variables. For all simulation runs, a local variable 
represents the number of HTTP flows that enter the network at 
a specific router, and the aggregate represents the current 
average number of these flows in the network. We simulate the 
behavior of the local variables based on packet traces captured 
at the University of Twente [11]. Specifically, we use two 
traces. 

The first trace, which we call the University of Twente 
(UT) trace, is obtained as follows. Packet traces captured at 

two measurement points were divided into 150sec segments. 
From each segment i, we sample every second the number of 
HTTP flows that were traversing the measurement point. This 
number gives the value of the local variable xt,i of node i at 
time t. Across all segments, the average value of xt,i is about 45 
flows, and the standard deviation of the change between two 
consecutive values is about 3.4. The second trace, which we 
call Randomized Periodic UT trace, is obtained by scaling the 
UT trace with a random periodic factor as follows. 

 ( )( )( )* 2int 1 cos, ,30
tx u xt i t i

π= +  

 where [0,1]u ∈  is chosen uniformly at random, and int( )y  
the integer part of y.  

The average value of x*
t,i across all segments is about 47 

and the standard deviation of the change between two 
consecutive values is about 14.  The second trace provides us 
with local variables that have higher dynamics than the first 
trace. 

Overlay topology. The overlay topologies used for our 
simulations are generated by GoCast [17], a gossip protocol 
that builds topologies with bidirectional edges and small 
diameters. The protocol allows setting the (target) connectivity 
of the overlay.  For this evaluation of G-GAP, we do not 
simulate the dynamics of GoCast. This means that the overlay 
topology does not change during a simulation run. Unless 
stated otherwise, the overlay topology used in the simulations 
has 654 nodes (this is the size of Abovenet, an ISP). It is 
generated with target connectivity of 10, which produces an 
average distance of 3.1hops and a diameter of 4hops in the 
overlay. 

Failures. We assume a failure detection service in the 
system that allows a node to detect the failure of a neighbor. 
For our simulations, we assume that the failure of a node is 
detected within 1sec.  

Other Simulation Parameters. In addition to the above, 
we run the simulations with the following parameters unless 
stated otherwise. 

• For G-GAP, the default round length is 250ms, which 
means 4 rounds/sec. For GAP, the maximum message 
rate is 4 msg/sec per overlay link. 

• For all nodes i and time t,  αt,i,j=
1/(1+# of neighbors) and 

βt,i,j=
1/# of neighbors 

• Processing overhead: 1ms/cycle 

• Network delay across overlay links: 20ms  

• The length of a simulation run is 50sec, with a warm-
up period of 25sec and a measurement period of 25 
sec. 

B. Estimation Accuracy vs. Protocol Overhead 
In this experiment, we measure the estimation accuracy of 

G-GAP and GAP in function of the protocol overhead. We run 
simulations for round rates of 1, 2, 4, 6, 8 and 10 messages per 
sec. (For G-GAP, a round rate of 1 per sec means that the 
protocol executes one round per second, i.e., one protocol cycle 
per second. For GAP a round rate of 1 per sec means a 
maximum of 1msg/sec on an overlay link). We run two 
scenarios for the evaluation of estimation accuracy. 

For the first scenario, we use the UT trace to simulate 
behavior of the local variables. Figure 6 shows the results. 
Each measurement point corresponds to one simulation run. 
The top of the bar indicates the 90th percentile of the estimation 
error.  

As expected, for both protocols, increasing the round rate 
results in the decreasing of the estimation error. Therefore, the 
round rate controls the tradeoff between estimation accuracy 
and protocol overhead. In addition, for comparable overhead 
(i.e. the same round rates), the average error in G-GAP is 
around 8 times that of GAP. 

In the second scenario, we study the influence of higher 
dynamicity of the local variables by using the Randomized 
Periodic UT trace to simulate behavior of the local variables. 

 
FIGURE 5:  ESTIMATION ERROR VS. NETWORK SIZE 
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Figure 7 shows the results. The top of the bars indicate the 90th 
percentile of the estimation error. 

The result shows that the average estimation error in both 
protocols is larger than that in the UT trace (2 times larger for 
G-GAP and 2-10 times for GAP). We explain this by fact that 
changes in the values of the local variables tend to be the larger 
for this trace than for the UT trace. We observe that the 
estimation error for GAP is smaller than the error for G-GAP: 
namely, by a ratio of 1.5 for low round rates and by a ratio of 5 
for high round rates. This ratio is smaller than that for the UT 
trace. 

More importantly, within the parameter ranges explored, 
we conclude that GAP outperforms G-GAP in terms of 
accuracy. 

C. Scalability  
In this scenario, we measure the estimation accuracy of G-

GAP and GAP in function of the network size. The round rate 
is set to 4 round/sec. We run simulations with GoCast-
generated overlays for networks of size 82,164,327,654, 1308, 
2626 and 5232 nodes.  The target connectivity of GoCast is 10, 
which results in about 80% of the nodes having a connectivity 
of 10 and the rest a connectivity of 11. We use the UT trace to 
simulate the behavior of the local variables. Topological 

properties of the overlays are presented in Table 1. 

Figure 5 shows the results. Each measurement point 
corresponds to one simulation run. The top of the bar indicates 
the 90th percentile of the estimation error.   

 We observe that for both protocols, the estimation error 
seems to be independent on the network size. In the general 
case, for synthetic traces generated by the same (random) 
process, we would expect such a result for both GAP and G-
GAP. Further, [2] shows for a polling-based gossip protocol, 
that variance of the estimates of the global average across all 
nodes is independent of the network size. Therefore, this 
simulation result is not entirely surprising. 

Also, in this scenario, GAP clearly outperforms G-GAP in 
terms of accuracy. 

D. Robustness against node failures 
In this section, we evaluate the robustness properties of G-

GAP in three scenarios. In the first scenario, we validate the 
mass conservation property of G-GAP for the case of 
discontiguous failures, for which we proved the protocol to be 
robust. In the second scenario, we study the protocol accuracy 
under stochastic failures, where contiguous failures may occur.  
In the third scenario, we compare the estimation accuracy of G-
GAP with that of GAP by measuring the estimation error in 
function of the failure rate for a comparable protocol overhead. 

For the first scenario, we use the default topology (654 
nodes) and simulation settings as described in Section IV.A, 
and simulate the local weight changes using the UT trace. We 
generate failures as follows. Every 1.25sec, a node is selected 
at random. The node fails and recovers after 10sec. (Note that 
the generated failures are discontiguous, and therefore the 
protocol is robust by design.) 

We run the scenario with G-GAP and with G-GAP without 
failure recovery, which we call here G-GAP--. (In our 
simulation runs, G-GAP-- was realized by executing G-GAP 
and skipping detected_failure calls. See Figure 4.) During the 
simulation run, we measure the mass loss, computed as 

, , , ,t t nn n
i L j L i L pending t j ix si∈ ∈ ∈−∑ ∑ for s and, similarly, for w. 

The simulation is run for 100sec and Figure 8 shows the result. 

 
FIGURE 6: ESTIMATION ERROR VS. PROTOCOL OVERHEAD FOR UT TRACE 

 
FIGURE 7: ESTIMATION ERROR VS. PROTOCOL OVERHEAD FOR RANDOMIZED 
PERIODIC UT TRACE 

TABLE 1: TOPOLOGICAL PROPERTIES OF GOCAST-GENERATED OVERLAYS 
USED IN SIMULATIONS 

# nodes diameter avg. distance 
82 3 hops 2.1 hops 
164 4 2.4 
327 4 2.7 
654 4 3.1 
1308 5 3.4 
2616 5 3.7 
5232 6 4 
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As can be seen from the figure, G-GAP corrects the effects 
of node failures, and thus mass loss is transient (i.e., until the 
failure of the node is detected by all neighbors). For the case of 
G-GAP-- however, we observe that mass loss is not corrected 
and therefore accumulates over time. Note that mass loss can 
be positive or negative. This scenario experimentally validates 
the robustness property of our G-GAP implementation, which 
says that, as long as failures are discontiguous, the protocol 
recovers lost mass and executes correctly. 

For the second scenario, we use the same simulation 
parameters as above but vary the failure rate from 0 to 10 node 
failures/sec. Failure arrivals are generated by a Poisson 
process, and failures are uniformly distributed over all running 
nodes.  A node that failed recovers after 10sec and reappears in 
the place it had in the overlay before the failure. Note that there 
is a chance that contiguous failures can occur and that the 
chance of contiguous failures increases with growing failure 
rate.  

For both protocols (G-GAP and G-GAP--), we compute the 
drift in estimation, which is the estimation error due to mass 

loss, and the overall estimation error by the protocols. We 
obtain two curves per protocol, which are shown in Figure 9. 
Each measurement point on a curve corresponds to one 
simulation run. Each simulation run of the scenario is 150sec 
(which includes a 25sec warm-up period). 

As expected, the overall estimation error by G-GAP-- is 
much larger than that by G-GAP in case of failures. This is 
because mass is lost at a faster rate by G-GAP-- than by G-
GAP. The effect of the mass loss is directly visible in the two 
curves that show the drift. They show that the drift of G-GAP-- 
is larger than that of G-GAP and tends to increase with 
growing failure rate.  

For the third scenario, we measure the estimation accuracy 
of G-GAP and that of GAP in function of failure rate, for a 
comparable overhead by both protocols. We use the same 
simulation parameters and produce failures in the same way as 
in the above scenario.   

Figure 10 shows the result obtained. Each measurement 
point corresponds to one simulation run. The top of the bars 
indicate the 90th percentile of the estimation error.  

As can be seen from the figure, the estimation error for both 
GAP and G-GAP increases with the failure rate. We also see 
that the slope is steeper and the spread is wider for G-GAP than 
for GAP. This result is surprising for us. We would have 
expected a gossip protocol to perform better, compared to a 
tree-based protocol, under high node failure rates. 

V. DISCUSSION AND FUTURE WORK 
This paper includes two main contributions. First, we 

present a gossip protocol, G-GAP, which enables continuous 
monitoring of network-wide aggregates. The hard part has been 
making the protocol robust against node failures, and we 
solved the problem for failures that are not contiguous (i.e., 
neighbors do not fail within short time of each other). 
Regarding correctness of the protocol, we provide results on 
protocol invariants (namely, mass conservation) and 

 
FIGURE 10: ESTIMATION ERROR VS. FAILURE RATE BY GAP AND G-GAP 

 
FIGURE 8: MASS LOSS IN G-GAP-- (BOTTOM) AND G-GAP (TOP) FOR 
DISCONTIGUOUS FAILURES IN A SIMULATION RUN 

 
FIGURE 9: DRIFT AND OVERALL ESTIMATION ERROR VS. FAILURE RATE BY G-
GAP AND G-GAP-- 
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convergence. Our robustness result complements a similar 
recent result by Mehyar et al. [20].  

The simulation studies suggest that we have achieved the 
design goals for G-GAP set out in Section III.A. First, we have 
shown that the tradeoff between estimation accuracy and the 
protocol overhead can be controlled by varying the round rate. 
Second, with the real trace we used, an estimation error of 
some 5% or less can be achieved for all network sizes and 
failure scenarios we simulated. We have observed that the 
estimation accuracy of the protocol, for a given overhead, does 
not seem to depend on the network size, which makes the 
protocol scalable. Finally, we have proven and validated that 
the protocol is robust to discontiguous failures. 

The second contribution of this paper is a comparative 
assessment of G-GAP with GAP, a fairly standard tree-based 
aggregation protocol. The significance of this assessment is a 
comparison between gossip-based and tree-based monitoring. 
Our simulation results show that, within the parameter ranges 
of the simulation scenarios, the tree-based protocol consistently 
outperforms the gossip-based protocol. For comparable 
overhead, the tree-based protocol shows a smaller average 
estimation error and a smaller variance of the error than the 
gossip-based protocol, independent of network size and 
independent of frequency of failures that occur in the network. 
A more recent study by us suggest that, in a resource-
constrained environment characterized by high node mobility 
and large size, a gossip protocol potentially performs 
significantly better than a tree-based protocol [29]. While more 
work is needed to evaluate the relative advantages and 
disadvantages of tree-based vs. gossip-based monitoring, this 
paper makes a significant contribution to the discussion 
towards a new paradigm for distributed real-time monitoring.  

Our simulation results show that the dynamics of the local 
variables influences the estimation accuracy in G-GAP. Not 
surprisingly, local variables with high dynamics lead to a lower 
accuracy and vice versa.    

Our experience shows that the choice of the overlay 
topology significantly affects the performance of G-GAP, e.g., 
the estimation accuracy of the protocol. Generally speaking, a 
lower diameter and a higher connectivity of the overlay 
topology lead to a better performance. On the other hand, 
increasing the connectivity increases the load on the 
management nodes for a given round rate. Taking all this into 
account, we chose an overlay protocol that produces a uniform 
connectivity and, for our scenarios, we found out that a 
connectivity of 10 is an appropriate choice for real-time 
monitoring purposes.  

All simulation results given in this paper are for 
AVERAGE as the aggregation function. We expect the 
performance of G-GAP to be affected by the particular choice 
of the aggregation function. Specifically, in scenarios with 
contiguous failures, we expect the estimation error to be 
different, and we plan to investigate this issue further. For 
instance, in the case of SUM, we expect the estimation error to 
be larger, while we expect it to be smaller for MIN and MAX. 

We should like to understand the convergence properties of 
gossiping better. This is, however, outside the scope of the 

present paper. As we have shown, the convergence analysis for 
G-GAP reduce to that of push-synopses quite simply, as we 
can establish bounds after which, in stable state, the behavior 
of G-GAP and push-synopses is identical. This strongly 
suggests that improved understanding of convergence 
properties of the underlying failure-sensitive protocols can 
translate to corresponding bounds for their robust versions 
without too much effort. 

G-GAP, as presented in this paper, is robust against 
discontiguous node failures. Our simulations have shown that 
in the case of frequent contiguous failures where 20% of the 
nodes are down, mass loss and hence estimation errors can 
accumulate. Therefore, in a real system, the protocol would 
have to be restarted in such cases. We see the possibility of 
further improving the robustness of G-GAP and plan more 
work in this direction. 
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Appendix A: Proof of Proposition 6 

Proposition 6 (Mass conservation, G-GAP) 
Let L be the set of all nodes and

t
L the set of live nodes at time 

t . At all times 0t ≥ :  

1. 
, , , , ,, ,

, , , , , ,,
              ( )

t t t t

t t

i pending t j i t i ji L j L i L i L j L

pending t j i pending t j ii L j L

x s rs

rs acks

∈ ∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑ ∑
∑

 

2. 
, , , , ,, ,

, , , , , ,,
        ( )

t t t

t t

t pending t j i t i jj L i L i L j L

pending t j i pending t j ii L j L

L w rw

rw ackw

∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑
∑

 

 
Proof (sketch). We prove only 6.1 here. The proof of 6.2 is 
almost identical.  
For a given (finite or infinite) run of the protocol, let 

1 2
, , ...fail fail  be the times of failure events during the run. 

We prove that 6.1 holds at all time instants up to and not 
including 1fail  (lemma 8), and that if 6.1 holds at time 

1nfail −  then it holds at all times 1[ , 1]n nt fail fail +∈ −  (lemma 
10). Note that we may assume 1 0fail > . The result then 
follows by induction. 
 
Lemma 8 (Base case) For all times 1[0, 1]t fail∈ − , 

, , ,,t t
i pending t j ii L j L i L

x s
∈ ∈ ∈

=∑ ∑  

Proof. If 1[0, 1]t fail∈ −  then tL L= . For 0t = , by the 

protocol, 
0 0

,0, , ,0, ,,
( )pending j i pending i i ij L i L i L i L

s s x
∈ ∈ ∈ ∈

= =∑ ∑ ∑ . 

Assume the statement holds for 1t fail<  and we show it holds 
also for 1t + . So assume that a cycle is executed on node a at 
time 1t + . Then, 

, 1, ,, pending t j ij i L
s +∈∑  

, , , , 1, , , 1, ,,

, , , , 1, , , 1,,

, , , , 1, , 1,,

(by axiom 1)

(by the protocol)

(by the defin

pending t j i read t j a write t a jj i L j L j L

pending t j i read t j a a j t aj i L j L j L

pending t j i read t j a t aj i L j L

s s s

s s s

s s s

α

+ +∈ ∈ ∈

+ +∈ ∈ ∈

+ +∈ ∈

= − +

= − +

= − +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

, , ,,

ition of )

(by the protocol)

pending t j i ij i L i L
s x

α

∈ ∈
= =∑ ∑

 

QED. 
 
Note that Proposition 6 reduces to lemma 8 for time instants 
prior to 1fail . 
 

Lemma 9 (Recovery information) For any node a and any 
time 0t ≥ , 

, , ,

, , , , , , , ,\ \
( )

t

t t

pending t j a aj L

t j a pending t a j pending t a jj L a j L a

s x

rs rs acks

∈

∈ ∈

−

= + −

∑
∑ ∑

. 

Proof. We first show that, for any two live nodes a and b at 
any time t  where both nodes are alive, 

, , , , , , , ,

, , , , , , , ,

( )

                      ( )
t a b t a a t a a pending t b a

t b a pending t a b pending t a b

s x s

rs rs acks

β α − + =

+ −
 (1) 

The proof is a case analysis on which node a, b, or some 
{ , }c a b∉  performs a transition at the time and uses axiom 1 

and the protocol. The details are left out. Then, (1) is summed 
over all live b to obtain the result. QED  
 
Lemma 10 (Induction step) Assume that node z L∈  fails at 
time

n
fail . If  

, , , , ,, ,

, , , , , ,,
             ( )

t t t t

t t

i pending t j i t i ji L j L i L i L j L

pending t j i pending t j ii L j L

x s rs

rs acks

∈ ∈ ∈ ∈ ∉

∈ ∉

= + +

−

∑ ∑ ∑
∑

 (2) 

holds at time 1
n

t fail= − , then (2) holds for all times 

1
:

n n
t fail t fail

+
≤ < .  

Proof. The proof is by induction on n. By discontiguous 
failures and correlated failure and message signaling, the 
failure at time

1n
fail

−
, if it exists, will have been fully 

processed at time
n

fail . If
1n

fail
−

 does not exist we substitute 0 
for it in the argument to follow. Thus, by (2) and the induction 

hypothesis, 
1

1 1
, , ,, nfail failn n

i pending fail j ii L j i L
x s

−
− −

∈ ∈
=∑ ∑ . We first 

show that (2) holds at time
n

fail . The goal is to show 

1
, , , , ,,
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n nfail fail fail failn n n n

n nfailn
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∈
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By definition,
1fail failn n

i i zi L i L
x x x

−∈ ∈
= −∑ ∑  and 
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1 1
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Therefore 
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ii L
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(by lemma 9)
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1
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as desired. For the induction step assume that (*) holds at 
some time 

1
: 1

n n
t fail t fail

+
≤ < − . We show it also holds at 

time 1t + . Let 
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And assume that the round is executed on a at 1t + . Then 
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(since, if a learnt about the failure of z, then 
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as was to be proved. 

 

 




