8

Event Handling in Clean-Slate
Future Internet Management
C. Mingardi, G. Nunzi, D. Dudkowski, and M. Brunner
NEC Laboratories Europe, Network Research Division, Heidelberg, Germany
Email: {mingardi|nunzi|dudkowski|brunner}@nw.neclab.eu
Abstract— Event handling is a fundamental management mechanism that provides means for the network to react on changes in the network conditions or performance. In the construction of a clean-slate management architecture, we therefore look at event handling as first building block. This paper proposes a fully distributed event distribution in a fully distributed environment: differently from existing works, no configuration is required in advanced, and yet nodes have guarantee that events are delivered and that certain delivery objectives are respected. The contributions of this paper are: a generic system model for event handling and an analysis of event distribution mechanisms with respect to timeliness and traffic metrics. The paper describes and discusses in detail the results based on simulations and provides guidelines for management functions of the Future Internet from our experience.

Index Terms—clean-slate, distributed network management, events, event distribution, event handling, Future Internet, in-network management
I. INTRODUCTION
T
HE notion of event is quite essential in the field of network management. An event distribution framework should be therefore one of the first applications introduced into a novel management architecture, designed with a clean-slate approach. This paper studies event handling in the context of the 4WARD
 project, which is building the so called Future Internet through a novel management paradigm.

Today’s event handling systems are based on a rigid SNMP agent/sink architecture: sinks are in specific locations of the network, most of the times a single central station is deployed to receive events an entire network patch and agents must be configured in advance with the location of the sink. We think that this rigid architecture is a legacy of traditional telecommunication networks, where design principles demands dedicated machines for managing network elements. Conversely, 4WARD principles are plug-and-play, gradual deployment and distributed management resources. Practically, it is assumed that the location of event sinks cannot be known in advance, and therefore the challenge is how to guarantee that events will be delivered and handled as reliable as today’s rigid architectures.

The aim of this paper is modeling event handling in the context of a new paradigm, In-Network Management (INM), which targets the embedding of self-management capabilities inside the network nodes. The high integration of management functions with the network components follows a clean-slate design and enables to distribute management mechanisms as deep as possible in the network itself [12].

INM proposes a novel framework to deliver and handle events with distributed components and discovery mechanisms. The main objectives are reduction of total traffic generated, distribution of correlating operations in different devices, gradual deployment of fault and performance processes. As a consequence, we expect to draw important conclusions to support INM principles of predictable timeliness and traffic consumption. Other characteristics, like correlation of different layers or different administrative domains, are considered as assimilated in current state of the art and not considered in detail.
This paper does not focus on the event correlation logic or on the specific event processing functions themselves; it rather concentrates on generic event distribution mechanisms and on the corresponding coordination and timing aspects. The main objective is to identify possible approaches, analyze trade-offs and provide an evaluation based on simulation results with respect to relevant metrics.
The remainder of this paper is organized as follows. Section II presents the current state of the art in event correlation and revises relevant distributed architectures. Based on these experiences, Section III builds a fully distributed framework for event handling. Section IV presents some numerical evaluation and draws some conclusions for our clean-slate architecture. We conclude with some final remarks.
II. Related Work

The authors of [2] propose an event generation, aggregation and distribution model in a Web-based network management system. It is based on a hierarchical aggregation framework and event listeners must be subscribed in advance.

Aggregation of information is also investigated in [3] with the goal of monitoring remote autonomous systems and detect anomalies in their behavior. Mid-level managers are introduced to compose information from different routers.
These architectures introduce a certain level of distribution, but the topology remains still fixed and high level nodes remain still the bottleneck of the system.
A dynamic architecture for event distribution and aggregation mechanisms is presented in [5]. This work considers aggregation of globally distributed events in order to take appropriate control actions in case of critical situations, based on a geographic addressing scheme and clustering principles. Here the distribution aspects are still left open, but the principles of this work can be integrated in our framework.

Another work in the direction of distributed schemes for fault correlation appears in [10]. A publish/subscribe scheme is used to build a hierarchical graph of correlators. The distribution scheme is limited in this to a hierarchical architecture. Moreover, our proposal excludes the publish/subscribe scheme, because it assumes some stable dependencies over time. Similar considerations are valid for [11], where peer to peer communication is used to build a hierarchical tree for fault management.
On the side of techniques for event correlation, several works have been proposed, like [1] [6] [7] [8] [9]. Causal and temporal correlation models are addressed in [6] and [7]; the authors of [7] analyze the correlation of events across observation space and time in order to detect attacks against a network. To define the behavior rules and the knowledge of network patterns for an event correlator, some techniques have been proposed in [8] and [9]: the task of inferring and maintaining the model of the network alarm signals is automated through the data mining of alarms stored during the lifespan of the network.
III. Fully distributed event handling in INM
Following a clean-slate approach, the event handling framework builds on 1) a minimal set of assumptions of the network capabilities and 2) a reasonable set of best practices extracted from previous works. The minimal set of assumption is the need to transfer information from one part of the network to another one after the occurrence of an event. Best practices in event handling help to build an efficient architecture, avoiding a generic framework, like web services or similar would be. As first step, we describe the roles used in our architecture.
A. Architecture
We imagine that the network infrastructure can be deployed with plug-and-play approaches: for example edge routers of a distribution network can be mounted or replaced without manual configuration of the management parameters. Dynamic discovery is therefore an important mechanism, which is used to construct the event handling process.
An other aspect of INM is that the logic to handle events is distributed across the network and therefore a one-to-one relationship cannot be established between event generators and destinations. As a consequence a device might need to deliver different events to different destinations. The proper destinations might also change over time, according to the changing network conditions. This approach is slightly different from autonomic principles [13], where the act-decide-react loop is only local to an autonomic element.
[image: image1.emf]0

2

4

6

8

10

12

14

16

18

15 10 9 8 7 6 5 4 3

computational capability (# events)

traffic generated per event (average) (# messages)

seq

par 3

par 6

On the basis of existing techniques of fault and performance management, we identified four roles for our distributed architecture, which are presented hereafter and depicted in Fig.1.
Event generator: it generates events to be sent to another location of the network. Any component in INM inside the network has the capability of generating events. Referring to the SNMP framework, this role is similar to an agent.
Event handler: it handles events for two purposes: (i) filtering events through suppression and aggregation; (ii) correlating events through correlation engines. This role can be undertaken by any correlation engine existing today, such as [14] or [15]. In Fig. 1 two event handlers are shown: their behavior is different, representing the fact that any aggregation or correlation engine can be adopted as event handler in our architecture.
Optimizer: it receives an event to generate an action. Since normally the event would have been elaborated, we name explicitly this piece of information as “root cause”. This role can be undertaken by a healing component in today’s networks.
User Interface: it receives an event and displays it to the administrator. This element should be reached only when the network is not able to handle properly an event.
The definition of these four roles is fairly general, but sufficiently specific for our purposes. In fact, it can include any of the existing particular mechanisms of root cause analysis and event suppression and it can be used to build run-time a complete process for event handling from distributed components.
As an example scenario in which the event handling architecture can be applied we refer to an IPTV scenario. IPTV services can be represented through a high level architecture represented in Fig.2. Normally three domains are identified [16]: 1) the main video servers (the so called “head ends”, storing the video streams; 2) a content distribution network; 3) home network, comprehending home gateway, wireless and wired connections, set-top-boxes (STB) and other networked equipment. The IPTV provider is required to perform operation and maintenance over the different domains. This picture provides a service-centric description of the IPTV architecture, but it hides the complexity in operating the underlying infrastructure.
[image: image2.emf]0

20

40

60

80

100

120

140

160

180

200

15 10 9 8 7 6 5 4 3

computational capability (# events)

completion time (average) (ms)

seq

par 3

par 6

Edge routers can be constituted by WiMAX base stations or DSLAMs, reaching home premises with DSL or FTTH (fiber to the home) connections. The content distribution network is normally constituted by a Metropolitan Area Network (MAN) connected to the video servers. Additionally the content distribution network contains a hierarchical replication of the video servers (the so called “video hub offices”), to decrease end-to-end delays and traffic generated.

This scenario presents important issues for Operation And Maintenance operations, like the impact of different network layers to the final service performances, the presence of concurrent services, different transmission technologies and different locations. An event occurring in one location of the network (faulty node or peak of traffic) can have consequences in other locations of the network (congestion at an edge router or overload at the video servers). The proposed architecture allows to support event handling in a distributed fashion, able to tackle scenarios like the one just depicted. Event handlers can be distributed within the content distribution network and in the head ends, but also the presence of a local handler in the home network can be envisioned, for instance on the home gateway. Optimizers and user interface can also be located in the provider’s network. STBs in the home can be naturally event generators, since they are users of the IPTV service.
The mechanisms for event handling and delivery proposed in this paper enable INM to guarantee the performance of the network under different conditions and to react to any problems during service delivery with given objectives of timeliness and traffic consumption. In the following, we discuss how we model the behavior of event handlers.
B. Generalities in existing correlation techniques

[image: image3.emf]0

50

100

150

200

250

300

350

010203040506070809010011012032043054074094011401340

completion type (ms)

events

seq

par 3

par 6

An important aspect of the evaluation is how a distributed system for event correlation can be modeled without reproducing the details of the correlation engine of a real system. In fact, if we reproduce the exact algorithm of a certain correlation engine, we would end up with results which can be arguably reused for other technologies of correlation. Additionally, the variables describing the system would impede the analysis of the results. We need therefore a model that captures only the general aspects of correlating systems and especially the architectural aspects involved in the system, like the mechanism to deliver events or timeliness aspects.

Despite the fact that event correlation is a well know problem in networks, a major problem is that so far no model has been proposed in this field. All the major studies are conducted with respect to specific correlation techniques and events series have been produced with home grown generators.

Starting from these considerations and with the goal of evaluating aspects only related to the architecture, we introduced a model for the network and the handlers, which we will then use in our simulations. The model aims at treating the correlation engine as a “black box”, meaning that any technology specific engine can be modeled with this black box with certain levels of fidelity.

The first aspect to be considered is the type of output we do expect from a correlation engine. In a real system, the output is normally a root cause, i.e. an elaboration of the raw series of events received from different nodes, which describes what happened in the real network. From the perspective of the process of handling events, the generation of a root cause is a successful elaboration, because the system was able to elaborate the event and feed an optimization process. As first aspect of our model, we assume that the output of the reception of an event, can be a success or a failure.

Secondly, the result of a correlation engine is not always fixed, but it depends on the conditions of the network. For example, if we consider two engines which have rules like those described in Fig.3, different outputs can be produced depending on the particular series of event received. At time t1, both the engines receive the event e1. The first engine, which has already received the event e4, is able to correlate the two events and produces a root cause. At time t2, which occurs after the expiration of the correlation window of the two engines (t2>>t1), the same event is received, but none of the engines have rules marching this situation. At time t3, the event e1 is received again, and the second engine produces a root cause, because the series of events e3 and e4 has been received already.

[image: image4.emf]0

20

40

60

80

100

120

140

160

180

200

010203040506070809010011012032043054074094011401340

completion time (ms)

events

seq

par 3

par 6

Generalizing this example, we can say that there is a certain probability that an event on an engine can produce a result. This probabilistic behavior takes in account the diversity of network condition that can occur during processing of events. For our purposes, we are not interested to know which root cause would be produced for which event, but only if a root cause would be produced. Therefore, as second aspect of our model, we assume that an engine can receive a certain set of events, and there is a certain probability of success upon reception of an event.

[image: image5.emf]δ(t)

event

Success / failure

(Root cause found?

•

List of events handled

•

Probabilities of success

Network conditions

Memory constraints

•

Processing time

•

Maximum number of events

The third element of our model is the correlation window of the engine, i.e. the time the engine has to wait before producing a result. There is no perfect value for a correlation window (like reported in [1]), but it requires to be tuned properly to balance the effects of false positives and false negatives, and to maintain real-time correlation. To take in account this aspect, we introduce a processing time
, which is the time between the reception of an event and the production of the correlation result.

The final characteristic concerns the computational capabilities; memory constraints are the major bottleneck in a distributed system. In fact, a correlation engine is stateful, in the sense that an event must be retained in memory for the entire duration of the correlation window. Our model introduces a limit in the number of events that can be handled concurrently by an engine. An event not handled for memory constraints produces an immediate failure.

We use the considerations above to build a ‘black-box” model for our study, which can be summarized like in Fig. 3. We are also aware that such a model, very general, has some limitations. For example, the output of correlation rules can be very characteristic for different types of event. Root cause analysis in the event of thunderstorm on a radio access network is different than the one in an intrusion detection system. A specific distribution of probabilities should be adopted for these different cases. Additionally the assumption of independence of success probabilities in different engines, does not take in account that most likely correlation rules would be partitioned in different engines. These should be regarded as usual limitations of any model, which provides a generalization, useful for analysis, and introduces a certain shift from real systems. Nevertheless, the important aspect is that our model allows us to reproduce the characteristics we want to study in a distributed system for INM.
C. Algorithms for event distribution
Given one or a set of devices acting as event generators, we need to deliver the events to the proper location and guarantee that the events are properly handled. The following principles apply and they are our basic assumptions:

(i) an event generator does not know in advance the proper destination of an event;
(ii) different event handlers can be used for the same event;

(iii) the associations between generators and handlers are not unique and stable over time;
(iv) the output and the timing of an event handler is constrained, but unpredictable;
Assumptions (i) and (ii) reflect the distributed nature of the management architecture, in which no central and fixed manager is present and event processing logic is distributed on different nodes of the network.

Assumptions (iii) and (iv) imply that an event generator should be able to contact one handler or another one (association not unique) and that a handler which guaranteed a proper handling once does not guarantee a proper handling at the next occurrence (association not stable over time).
We identified two main approaches that can be adopted in order distribute an event in the event handling framework. We refer to them as sequential approach and parallel approach.
In the sequential approach when a generator needs to deliver an event, it is allowed to select as destination only one of the available handlers in the network. Different criteria can be used to select the best handler given an event of a certain type. The more straightforward way is to select the handler for which the network delay is lowest, as one of the main requirements is to guarantee proper timeliness of the overall distribution mechanism of an event. However, other criteria could be useful: for instance, the decision could be based on past experience, taking into account the success rate previously measured in correspondence to earlier events. We assume that a handler sends back a positive or negative reply, according to the result of its processing rules. If a negative reply is received, a generator needs to select another destination for the event, following the same criterion but excluding the already traversed handlers from the selection process. A basic description of the sequential algorithm is shown in Fig. 5.
[image: image6.wmf]Content

Distribution

Network

Edge Routers

Video

Servers

Operation and

Maintenance

The

image

cann

…

The

image

cann

…

The

image

cann

…

Home Network

[image: image7.emf]generator

handler

with neural

engine

handler with static rules

service

optimizer

user interface

HEALING

ACTION

Root Cause

Event 1

Event 2

Event 1

In the worst case a generator needs to try one by one all the available handlers, if each of them gives a negative result. This might be time consuming and therefore not suitable to satisfy timeliness requirements.
The parallel approach attempts to reduce the total time required to find the proper handler. When a generator needs to deliver an event, it is allowed to select multiple destinations and send the event to more than one handler at the same time. The maximum number of destinations is a parameter of the parallel algorithm, which is shown in Fig. 6. The selection of the n destinations can be performed similarly to the sequential case. In the parallel approach, if all n replies received are negative, the generator needs to select other n destinations for the event. Clearly, the higher n, the more is probable that one of the chosen handlers can handle the event with success. However, the drawback of this approach is that the traffic generated can be very high and the network can be flooded with events.
The goal of this paper is to analyze the trade-offs between these two approaches and their applicability. The time to handle an event with success and the traffic generated are two main metrics to evaluate the performance of the two algorithms. We will also take into consideration the computational capabilities of the event handlers, which limit the number of events that a handler can process at the same time.
IV. Evaluation
In order to evaluate the proposed algorithms we developed a simulator for the event handling framework. The intent of the evaluation is to analyze the performance and the applicability of the two approaches and to point out their advantages and drawbacks. In section A we describe the simulator that has been implemented for evaluation purposes. Section B presents the results, which are further discussed in section C.
A. Simulations setup
We have implemented event distribution mechanisms using the OMNeT++ simulation system
. This simulator offers in fact a flexible discrete time engine and topology description language. The main modules for our evaluation are those describing the behavior of the two components Event Handler and Event Generator. For the purpose of our study it was not relevant to introduce Optimizer and User Interface modules, as we evaluate the event distribution process from a generator to a proper handler, and we do not focus on the actions that are taken to recover from a fault or to perform optimization.

The Event Generator module produces a series of events of different types. To take in account the effect of event storming, the generation of events is not uniformly generated during the simulation time, but is modeled as an on-off process. Active periods occur with exponential intervals; within each active period, events are generated uniformly. Active periods correspond to phenomena in the real network and are assumed as independent with each other. The events generated in each period represent the alarms created by different nodes.
When a handler must be contacted, a generator has a first selection criterion, based on estimated delays: the handlers with lower delays are chosen first. An improvement to this selection criterion could take advantage of a learning mechanism (on the line of [17]), with which a generator could estimate the probability of success of a given handler, based on previous experience. The estimated delays are built internally in the initialization phase, but on a final system this information would be provided by a discovery mechanism of the INM framework. The discovery phase is not considered in our simulations, because a specific topology discovery mechanism will be as a separated study item; for works in this field, we refer to [4]. This work should be regarded as a first experience to build this supporting functionality instead.
The Event Handler module simulates the behavior of a correlation engine. We defined filtering as an additional capability that a handler can have. The event handler processes events arriving within a certain time-window, simulating the correlation window; the result of this processing is a success (for instance, root cause found) with a probability which characterizes the handler itself and that is fixed during all the simulation. In case of success, a positive reply is sent back and event distribution is terminated. In case of failure, if the handler is configured to perform filtering/aggregation, it will generate an aggregated event out of the input events and forward it to another handler, selected with the same criterion described before. Otherwise, a negative reply is sent back and the generator will have to send the event to another destination.

Additionally, the limitation in computational capabilities of a handler is considered as the number of events that it can process concurrently. If more events are received, the handler replies negatively and does not process exceeding events.

After processing an event, a handler inserts its identifier in the reply or in the forwarded event. Therefore, an event contains the identifiers of the handlers it has been gone through and loops are avoided.

The simulator can run in two different modes, namely in sequential mode and in parallel mode. When in parallel mode, a parameter can be set, which specifies the maximum number of destinations an event can be sent to at the same time. Also, other configurable parameters are the computational capability of each handler, their probability of success for each event type and the total number of events generated for each phenomenon and the number of phenomena. For space restrictions, we present here only a limited set of results.
B. Results

In order to obtain a first evaluation of the proposed algorithms, we set up a reference topology, in which the distribution of event handlers fits with the example introduced in section III.A and based on the IPTV infrastructure of Fig. 2. We instantiated 6 event handlers, distributed with the following criterion: 3 of them are located at the location of the IPTV video servers; the other 3 are closer to the user equipment, located in distribution network, i.e. edge routers and home gateway devices. The latter are characterized by low network delays between each other and high delays towards the handlers on the server side.
We ran simulations with two different set of values for the probability of success of the event handlers:

1. All handlers are characterized by the same probability of success, which is set to 0.5 in average between all possible event types. We will refer to this as homogeneous scenario.

2. The handlers closer to the user are characterized by low probability of success, 0.3 in average, whereas the other handlers are capable of achieving a high probability of success, 0.6. This non homogeneous scenario should reflect the fact that handlers on the server side are more powerful, meaning that they have a more complete set of correlation rules (service domains have more complete knowledge of the network than inner nodes).

In the simulations 10 generators, representing user equipment like STBs, generate events and distribute them to the handlers according to the described algorithm.

The handlers closer to the user side have also been configured with the capability of filtering events. In the following, we present our results, both for the sequential and the parallel approach. We will discuss them afterwards in a separated section.
1) Completion time and traffic generated

As first results, we looked at two main metrics:

1. Completion time: the time it takes from the moment an event is generated, to the moment a positive reply is received. A positive reply implies the fact that the event has been handled with success by the network. This is an important metric, as most events are related to real time applications and therefore have high timeliness requirements.

2. Traffic generated: the number of messages per event generated until the event is handled or until all handlers have been tried out.

Table I shows average results both in the homogeneous and non homogeneous scenarios. Results are shown for the sequential case and for the parallel case. In the parallel case, we varied the maximum number of destinations an event can be sent to at the same time, from 2 to 6.
Fig. 7 and Fig. 8 show the distribution of the completion times for one simulation run, in the homogeneous and non homogeneous scenario respectively. In both scenarios it can be noticed that in the sequential case times are more distributed towards high values, whereas they shift towards lower values in the parallel cases. Nevertheless, the second histogram shows an increase of high values in the non homogeneous case, in accordance to the low probabilities of success introduced.
2) Computation capability

Another parameter that has been taken into account is the computational capability of the event handlers. We assume that there is a limit in the number of events that a handler is capable of processing at the same time. We evaluated the performance of the system in relation to different computational capabilities of the handlers.

Fig. 9 shows the average completion time according to decreasing computational capabilities. Whereas the sequential trend is rather stable, the parallel approach is more affected by decreasing computational capabilities. This is because in the parallel approach the network is flooded with events and handlers are easily saturated. However, when the computational capability reaches very low levels, all approaches are affected, resulting in a high increase in the average completion time.

Fig. 10 shows a comparison of the traffic generated in the different approaches, with decreasing computational capability. When the computational capability gets very low traffic decreases in the parallel approach, because saturated handlers do not further forward events, so reducing the overall number of messages sent. However, the consequence of this saturation is that the success rate of the system gets lower and this affects in particular the results in the parallel case. Table II shows the numeric values corresponding to the lowest computational capabilities and highlights that the percentage of successfully handled events gets lower.
3) Discussion

When looking at the numeric results about completion time and traffic consumption, it is clear that a trade-off exists between the two metrics. The completion time with a parallel approach results much lower with respect to the sequential approach. This is because sending the event to multiple handlers increases the probability that one of them is able to handle it with success. Increasing the number of destinations can decrease further the completion time, especially if the probability of success of the closest handlers is low. However, the parallel approach has the evident disadvantage that the traffic generated increases linearly with the number of parallel destinations.
This result was somehow predictable (as it is a characteristic of distributed systems), but we believe it is important to state that the trade-off between timeliness and traffic consumption cannot be resolved, but necessarily the expected behavior of the system should be defined in the governance process of the INM framework. In addition, we propose that nodes should support the different distribution mechanisms, and they should be able to switch from one to another on the basis of network conditions. For example, during plug-and-play phase every node can be bootstrapped with the most conservative mode (i.e. the sequential mode), but then the nodes running time-sensitive services should be able to switch mode to maintain timeliness of their services.
When we compare the two scenarios it turns out that the non homogeneous one presents worse results, with very high completion times and traffic generated. This is due to the fact that the closest handlers are with high probability unable to handle events with success, and the events have to be forwarded to the further handlers, with a consequent worsening of the performances. Nevertheless if we compare the case of sequential and the parallel 2, we can see that worsening does not happen in equal manner: the former increases of 3.75 times, while the latter increase of 5.87 times. The result appear at first unexpected, because a parallel distribution would always fill the topology in less steps. In reality, this increase is caused by those occurrences when an event could not be handled by any nodes in the network. Without any preliminary partitioning of the handlers, a handler can receive the same event more than once, due to the forwarding to multiple destinations, adding an extra step before the failure case is finally registered. This case occurs with more frequency in the non homogenous scenario and therefore the worsening of the performances is higher than in the sequential mode. This experience gives us an important design guideline: a best effort paradigm for event handling is certainly effective in guaranteeing that an event would be properly handled, but the performances are somehow wrongly measured. We consider this as a limitation of our assumptions we made about the initial knowledge of the handlers and we regard this as a requirement that should be provided by the discovery functionality of the new management architecture.
Fig. 7 and Fig. 8 give a better insight into the completion time distributions of the homogeneous and non homogeneous scenario. In both histograms we notice the presence of high values, approximately between 400ms and 1400ms, especially in the sequential case. These correspond to the occurrences in which all handlers fail in the correlation process or the proper handler is the last in the sequential chain. Such high completion times might not satisfy timeliness requirements that are characteristic of certain events. Therefore, it is suggested to include inside an event an expiration time, after which the distribution process is stopped and a negative reply is sent back to the generator. This would avoid unnecessary traffic to flow in the network. Moreover, a generator would be informed soon about the impossibility of handling the event and could take further actions, such as contacting the user interface in the worst case.
The results about the computational capabilities show up to which limits the distributed system can perform. Fig. 9 shows that the limitations of computational capabilities tend to saturate the performances of the system. The sequential mode is more resilient with respect to these constraints, while the parallel mode tends to saturate the system faster. Under very constrained configuration, the disadvantage of consuming more traffic is not compensated anymore by the gain in time. This might not be an issue when considering a small scale network or a single service; nevertheless, when considering performances of a large scale service network, it should be taken in account that a certain planning of the computational resources is required and mapped properly to the parallel distribution mechanism, in order to guarantee performances of the fault management process.
Fig. 10 shows that with low computational capability the traffic is decreasing, but this clearly happens at the expenses of less effectiveness of the system, because a certain number of events cannot be delivered to the proper handler, as stated by the percentages in Table II. Again, this result provides us a useful guideline on how to build a self-tuning event handling, where the proper mode is decided based on the objectives, traffic conditions and failures occurred.
V. Conclusion

In this paper we have studied event handling in the context of a clean-slate network management architecture. 4WARD proposes a radically new paradigm for management of the Future Internet, in which management functions are embedded in the network itself and follows a fully distributed approach. Fundamental requirements in INM are enabling self-managing properties in a scalable way and guaranteeing proper network performances in different conditions. For this purpose, modeling and controlling the trade-off between management traffic and efficiency of the management operations is a key aspect of INM.
Event handling is a fundamental management mechanism and needs to be designed properly according to the distributed and self-managing approach.
In this context, the contributions of the study presented in this paper are the following:

(i) A generic framework for event handling has been presented, which captures the functionalities of existing event processing techniques and can be used to build a complete event handling mechanism in a distributed manner.
(ii) We illustrated a system model for event handling, which allows to reproduce the behavior of existing correlation engines without providing details on the correlation logic itself.

(iii) We provided an analysis of event distribution mechanisms based on simulations, with respect to timeliness and traffic metrics.
(iv) Based on the obtained results we provided a set of design guidelines for INM, which point out trade-offs, requirements and drawbacks of different approaches.

We believe this analysis and the resulting guidelines are an important stone in the construction of clean-slate management architecture and will be the basis to redesign lean management processes in the Future Internet.
Acknowledgment

.This work was supported in part by the European Union through the 4WARD project (http://www.4ward-project.eu/) in the 7th Framework Programme. The views expressed in this paper are solely those of the authors and do not necessarily represent the views of their employers, the 4WARD project, or the Commission of the European Union.
We thank Clarissa Marquezan for the fruitful discussions.
References

[1] J.P. Martin-Flatin, G. Jakobson and L. Lewis, "Event Correlation in Integrated Management: Lessons Learned and Outlook”, Journal of Network and Systems Management, Vol. 17, No. 4, pp. 481-502, December 2007.

[2] S. Yucel and N. Anerousis, "Event Aggregation and Distribution for Web-based Management Systems", Proceedings of IFIP/IEEE IM2009, Boston MA, pp. 35-48, May 1999.

[3] R. Lemos Vianna, E. Rafael Polina, C. Cassales Marquezan, L. Bertholdo, L. M. Rockenbach Tarouco, M. J. Bosquiroli Almeida and L. Zambenedetti Granville, “An Evaluation of Service Composition Technologies Applied to Network Management”, Proceedings of IFIP/IEEE IM, Munich, pp.420-428.

[4] I. Al-Oqily and A. Karmouch, “A Self-Organizing Composition Towards Autonomic Overlay Networks”, IFIP/IEEE NOMS 2008, pp. 287-294.

[5] Y. Tang, E. Al-Shaer and B. Zhang, “Toward Globally Optimal Event Monitoring & Aggregation For Large-scale Overlay Networks”, Proceedings of the 10th IFIP/IEEE IM07, Munich, pp.236-245.

[6] M. Hasan, B.Sugla and R. Viswanathan, “A Conceptual Framework for Network Management Event Correlation and Filtering Systems”, Proceedings of IFIP/IEEE IM99, Boston MA, pp. 233-246.

[7] G. Jiang and G. Cybenko, “Temporal and Spatial Distributed Event Correlation for Network Security”, Proceedings of the American Control Conference, Vol.2, pp.996-1001, July 2004.

[8] M. Garofalakis and R. Rastogi, “Data Mining Meets Network Management: The NEMESIS Project”, In ACM SIGMOD Int'l Workshop on Research Issues in Data Mining and Knowledge Discovery, May 2001.
[9] L Burns, JL Hellerstein, S Ma, CS Perng, DA Rabenhorst, D Taylor, “A Systematic Approach to Discovering Correlation Rules for Event Management”, IFIP/IEEE IM2001.
[10] W. Tai, D. O’Sullivan, J. Keeney, “Distributed Fault Correlation Scheme using a Semantic Publish/Subscribe system”, IFIP/IEEE NOMS2008
[11] M. Leitner, P. Leitner, M. Zach, S. Collins, C. Fahy,” Fault Management based on peer-to-peer paradigms; A case study report from the CELTIC project Madeir”, IFIP/IEEE International Symposium on Integrated Network Management 2007.
[12] C. Foley, S. Balasubramaniam, E. Power, M. Ponce de Leon, D. Botvich, D. Dudkowski, G. Nunzi, and C. Mingardi, “A Framework for In-Network Management in Heterogeneous Future Communication Networks”, IEEE MACE 2008
[13] Y. Cheng, R. Farha, M. Sup Kom, A. L. Garcia and J. Won-Ki Hong, “A Generic Architecture for Autonomic Service and Network Management”. Computer Communications, 29(18):3691-3709, November 2006.
[14] S.A. Yemini, S. Kliger, S. Mozes, E. Yemini, and D Y. Ohsie. “High Speed And Robust Event Correlation”, IEEE Communications Magazine, May 1996.
[15] H. Wietgrefe and K. Tochs, “Using neural networks for alarm correlation in cellular phone networks”, International Workshop on Applications of Neural Networks in Telecommunications 1997.
[16] S. Han, S. Lisle, and G. Nehib, “IPTV Transport Architecture Alternatives and Economic Considerations,” IEEE Communications Magazine, vol. 46, no. 2, pp. 70–77, 2008.
[17] Barreto, G. A., et all., “Condition monitoring of 3G cellular networks through competitive neural models", IEEE Transactions on Neural Networks, 16(5):1064-1075.

Fig. 3 Example of different results on different conditions.

TABLE II

Percentage of successfully handled events in relation to computational capability, homogeneous scenario

computational capability (# events)�
success rate (%)�
�
�
sequential�
parallel 3�
parallel 6�
�
6�
0.928�
0.957�
0.968�
�
5�
0.927�
0.952�
0.957�
�
4�
0.910�
0.930�
0.938�
�
3�
0.892�
0.912�
0.924�
�

Rule of Engine1: e1 and e2 (Root Cause A

Rule of Engine2: e1 and e3 and e4 (Root Cause B

At t1: { e1, e2} (Engine1 gives success

At t2>> t1: { e1, e3} (No Engine gives success

At t3>> t2: { e1, e3, e4} (Engine2 gives success

distributeEventParallel(event e, handlerList L, maxDest n) {

			 L’ = L

handled = false

while (!handled AND !L’.isEmpty()) {

							 i = 0

while (i<n AND !L’.isEmpty()) {

h = handler of L’ with min delay

L’ = L’ – h

send e to h

i++ }

wait for i replies

if (al least 1 positive reply) handled = true }

			 return handled }

distributeEventSequential(event e, handlerList L) {

			 L’ = L

handled = false

while (!handled AND !L’.isEmpty()) {

							 h = handler of L’ with min delay

L’ = L’ – h

send e to h

wait for reply

if (reply is positive) handled = true }

			 return handled }

�

Fig. 10. Traffic generated in relation to computational capability, homogeneous scenario.

�

Fig.9. Completion time in relation to computational capability, homogeneous scenario.

�

Fig. 8. Completion time distribution, non homogeneous scenario.

�

Fig. 7. Completion time distribution, homogeneous scenario.

TABLE I

Completion time and traffic results of simulations with 1000 events generated and computational capability of 10 event

�
Homogeneous scenario�
Non homogeneous scen.�
�
mode�
completion time (avg), ms�
traffic (avg), # messages�
completion time (avg), ms�
traffic (avg), # messages�
�
sequential�
111.1�
1.9�
417.3�
3.4�
�
parallel 2�
37.3�
6.0�
218.9�
10.3�
�
parallel 3�
28.9�
11.1�
173.7�
18.0�
�
parallel 4�
29.7�
14.3�
171.8�
21.8�
�
parallel 5�
31.4�
16.3�
161.9�
25.2�
�
parallel 6�
29.1�
17.9�
159.0�
26.0�
�

Fig. 6 Algorithm for parallel distribution.

� EMBED PowerPoint.Slide.8 ���

Fig. 4 Model for event handlers.

Fig. 5Algorithm for sequential distribution.

� EMBED PowerPoint.Slide.8 ���Fig. � SEQ Fig. * ARABIC �2� Event framework in an IPTV infrastructure.

� EMBED PowerPoint.Slide.8 ���

Fig. � SEQ Fig. * ARABIC �1� Event handling framework.

� http://www.4ward-project.eu/

� A real system is also affected by the time required by a CPU to execute the algorithm. We think this is negligible compared to the duration of a correlation window, but nevertheless this could be considered in our processing time as well.

� http://www.omnetpp.org/

_1279631960.ppt

generator

handler

with neural

engine

handler with static rules

service

optimizer

user interface

HEALING

ACTION

Root Cause

Event 1

Event 2

Event 1

event handled

event not handled

_1280226829.ppt

Edge Routers

Video

Servers

Operation and

Maintenance

Home Network

Content

Distribution

Network

Fes

_1279626024.ppt

δ(t)

event

Success / failure

(Root cause found?

		List of events handled

		Probabilities of success

Network conditions

Memory constraints

		Processing time

		Maximum number of events

