
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— This work proposes a probabilistic management

paradigm for solving some major challenges of decentralized

network management. Specifically, we show how to cope with 1)

the overhead of redundant information gathering and processing,

2) the decentralized management in dynamic and unpredictable

environments, and 3) the considerable effort required for

decentralized coordination of management functions.

To this end, we describe a framework for probabilistic

decentralized management in the context of in-network

management. We demonstrate how this framework can be

applied to a network of information, a novel clean-slate approach

towards an information-centric future Internet. We show by

means of a simulation study in the area of performance and fault

management that we can significantly reduce the effort and

resources dedicated to management, while we are able to achieve

a sound level of accuracy of the overall network view.

Index Terms—Network Management, Probabilistic

Management, Decentralized Management, Self-managing

systems, Future Internet Management.

I. INTRODUCTION

HIS paper addresses problems in network management
systems that are decentralized and need to operate in more

or less dynamic networking environments. We assume that
future internetworking technology will be managed in a more
automated and decentralized way than today. This basically
means that management functionality will get nearer to the
network functions running in the network, no matter on what
layer they are running, or whether the layering principle will
persist in future network architectures. In the most extreme
case, the management functionality could get conflated with
the network functionality, allowing for inherently self-
managing networks. But also any degree from the traditional
centralized to the fully decentralized, inherently self-managing
system is possible, and any mixture thereof. Note that some
research explores the opposite direction. McKeown et al. [1],
for instance, try to remove as much control and management
functionality as possible from the network.

Decentralized management functions typically accumulate
management information from the network, then store and
process the information for analyzing the history, deriving
conclusions, and taking actions eventually. Management
functions also coordinate with the same or other types of

Manuscript received August 8, 2008. This work was supported in part by the
European Union through the 4WARD project (http://www.4ward-project.eu/)
in the 7th Framework Programme. The views expressed in this paper are
solely those of the authors and do not necessarily represent the views of their
employers, the 4WARD project, or the Commission of the European Union.

functions on the same or other nodes. Storage, computation,
and communication require resources of the network and the
nodes. When all nodes execute those functions, potentially
large quantities of CPU time, memory capacity and
communication bandwidth will be wasted.

In dynamic and unpredictable network and system
environments, management in a traditional way is difficult.
The fact that nodes might join and leave the network and
might not be reachable from a central station, and that their
behavior is brittle, makes the network fairly difficult to
manage. Basically, dynamic behavior does not allow for an
exact real-time view of the system and it prevents coordinative
functionality when the dynamics are too high. Many
coordinated decentralized algorithms, for instance, routing
protocols or peer-to-peer systems, fail in such dynamic
environments. Finally, some cooperating or coordinating
decentralized control and management functions tend to
converge to a synchronous behavior causing problems in
resource usage peaks. We argue that management systems that
forego coordination might perform better in such scenarios.

To this end, we propose to use probabilistic decentralized
network management in the context of an in-network
management framework to tackle the challenges described
above. We assume throughout this paper a high degree of
decentralization of management functions. Additionally, we
assume the management system being decomposed into a set
of different management functions running on each node
simultaneously. We propose a randomization process being
part of a meta-management on each node, which randomly
turns on or off certain management functions on the node. This
approach is a prerequisite for resource-efficient decentralized
network management, because it prevents redundancy in
gathering and processing network management information. It
also allows for an uncoordinated way of achieving similar
management goals compared to a coordinated approach to
decentralized network management. The probabilistic behavior
makes the framework particularly attractive for the
management of highly dynamic network environments, such as
mobile and ad-hoc networks. In those environments, the
uncoordinated property is specifically beneficial.

Still, probabilistic management must achieve similar results
as conventional network management; therefore, we evaluate
our paradigm in the context of a network of information
(NetInf) [2], a clean-slate approach towards an information-
centric future Internet. Rather than addressing nodes, NetInf
addresses information elements in the network.

Probabilistic Decentralized Network Management

Marcus Brunner, Dominique Dudkowski, Chiara Mingardi, and Giorgio Nunzi
NEC Laboratories Europe, Network Research Division, Heidelberg, Germany

Email: {brunner|dudkowski|mingardi|nunzi}@nw.neclab.eu1

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

After a brief introduction of the in-network management
framework in Section II, we describe probabilistic
management in Section III. We evaluate the concept in the
context of NetInf in Section IV and discuss the results and the
applicability of the probabilistic paradigm to real
environments in Section V. We close with a differentiation of
our work and the state of the art (Section VI) and summarize
the approach including future work in Section VII.

II. BACKGROUND: IN-NETWORK MANAGEMENT

In traditional Internet management (Fig. 1, left), functionality
resides outside the network in management stations and
servers. These entities interact via management protocols such
as SNMP or CLI with the network elements to execute FCAPS
management functions, such as fault and performance
management. In commercial networks, these interactions often
occur out-of-band through special communication networks.

Such a management approach has proven successful for

relatively small networks (up to a few hundreds of nodes) and
static configurations. For emerging large-scale, dynamic, and
heterogeneous network environments, however, this approach
turns out to be inadequate. This situation has been recognized
and attempts to decentralized management have been
proposed. For instance, SNMPv2 [3] introduces the concept of
intermediary managers that interact in a weakly decentralized
hierarchical structure for distributed data collection. Another
example is RMON [4], which uses monitors and probes that
allow making decisions outside the agent and local to an
occurring anomaly. However, such approaches are highly
limited in their functionality and are far from reflecting the
inherent nature of management to networks.

To overcome the limitations of current management
technologies, we pursue in the scope of the 4WARD project
[5][6] a new paradigm for network management, which we call
in-network management (INM) [7]. INM’s key idea is that
management processes are implemented as embedded
management capabilities inside of network nodes, forming a
self-organizing and inherent management plane (Fig. 1, right)
that requires only the bare minimum of human intervention.
INM provides the principles, methodology, and framework for
implementing embedded management functions in current and
future communication networks.

III. PROBABILISTIC MANAGEMENT FRAMEWORK

Since management functions are in many cases redundant
across the network, we propose to turn them on or off
randomly. At one point in time, thus, some functions are
turned on, while others are not. The specific way of how the
activation of management functions is realized may depend on
additional system constraints and performance tradeoffs. If all
functions that are subject to the probabilistic management
process are instantiated and resident in the memory of the
networked device beforehand, rapid switching between on and
off states is possible, which allows fine-granular probabilistic
control. It is also conceivable to include the installing and
uninstalling of management functions in the randomization
process, for instance, if constraints in the transient memory of
the networking device apply. While memory resources are
conserved, CPU utilization increases and more coarse-grained
turning on and off is more advisable. In general, different
tradeoffs between the cost of activating and deactivating a
function and resource savings are possible. For ease of
discussion and without loss of generality, we assume in the
following the first of the discussed alternatives.

By control and management functions, we refer to classical
functions including, but not limiting to, fault, performance, and
configuration management. Note that by “random”, we refer to
any type of randomness, including pseudorandom and
perfectly random processes. While perfect randomness is
difficult to achieve with today’s technology, pseudorandom
behavior, implemented by popular random number generators,
is absolutely sufficient for our applications.

A. Framework Overview

Fig. 2 illustrates the basic layout of our probabilistic
management framework. A set of management functions is
running on the node, interacting with the networking
functionality directly or through the node’s database(s) or
information store(s). A component called the Randomization
Process designates the meta-management entity that takes care
of randomization of the management functionality. The
randomization process can be influenced through various
factors and might be configured from an external entity.

The randomization process on the network element has a

probability function fi with a certain probability distribution
per management function on the node (Fig. 3). An interval Ii
denotes the interval between two successive executions of the
randomization process for a certain function, which can be

Network Functionality and Resources

Randomization

Process

Node External

Configuration

Set Func

(on/off)

Node Internal

Values (X) INM Framework

Meta Management

External Configuration

of probabilistic behavior

Fig. 2. Basic probabilistic management framework (node view).

notifications
about rare

events

Traditional Network Management

Network
element

Managed
domain

Analysis,
decisions,

and actions

In-Network Management

Managed
domain

high-level
management

commands

Peer-to-peer
interaction

Network elements
with embedded

management

capabilities

Fig. 1. Traditional and in-network management.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

fixed, dynamic, or random. Each time the interval Ii elapses,
function fi decides whether or not a function is turned on or
off. Both probability function and the interval may depend on
configuration, type of function as well as configuration and
internal information. In a special case, those values might also
depend on information about neighboring nodes. However,
such models introduce additional, more complicated
dependencies again, which we attempt to minimize with the
probabilistic scheme in the first place.

The probability distribution can be adapted in dependence

of information that is either internal or external to a node, or
both. A typical example of adaptation may occur based on the
node-internal information of free memory capacity. The
probability distribution may then correlate to the remaining
memory in that the likelihood of turning the function on and
off increases and decreases, respectively, with free memory
capacity. For functions requiring dedicated memory for
information storage while running, such as measurement and
monitoring functions, the likelihood of those functions being
active depends on the locally available storage. Typically, the
probability distribution may be distributed exponentially,
meaning that as long as the storage is fairly empty, the
likelihood to run the function is very high, while after a certain
point the likelihood is increasing rapidly.

B. Probabilistic Management Interfaces

The interfaces defined by the probabilistic management
framework pertain to the setting, deleting, and changing of the
random process configuration table for each function. This
means that a function must be identified uniquely within the
node. Given that the same management function may run
multiple times in a separate instance, each instance shows up
as a separate function in the configuration table.

The interface for receiving node-internal information from
either the management functions or directly from the node’s
network functionality and resource management functions is
not further specified. The reception of information in both pull
and push model depend on the instrumentation of the
components that send the information.

The interface of management functions basically includes
the setting of the management function to the on or off state.
Since setting the function on includes a certain instantiation or
installation step, a second interface supports the notification of
the function that it is being turned on. This differentiation
allows for more independence from the specific node-internal
execution environment. For example, in our Java-based

simulation prototype in Section IV, we instantiate each
management function as an object, which is then notified
through a method call about its activation. Conversely, when
the function is turned off, it is not deinstalled, but rather
notified about its being deactivated. The process of finding
management functions and including the knowledge about
each function is a basic feature of the in-network management
framework, and is here not further discussed.

C. Interdependency with Random Function Behavior

Besides the introduced dedicated randomization process, the
management functions themselves may have an internal
probabilistic behavior. Such functions therefore support an
interface to configure function-specific probability-related
distributions or configuration settings.

A representative example for such interdependency is the
case of nodes monitoring their neighbors for a failing or
misbehaving node. Let us assume that the management
function defines an internal probability value, say 0.3. Hence,
with the probability of 0.3, a node selects any of its neighbors
to monitor and actively check against failures through pinging
other neighbors. In that case, the information on how many
neighbors do monitor a node in the mean is relevant for
deciding the probability of a node to set a neighbor monitoring
function on or off. Such scenarios require the cooperation
between the randomization process of the probabilistic
framework and the management function itself.

This type of interaction, however, should be considered the
rare case, because it introduces deterministic behavior that is
contrary to the motivation of probabilistic behavior. Assuming
that a purely deterministic algorithm can be readily used, the
reduction of resources, for instance, can be achieved more
easily and in a well-controlled way by means of aggregation.
For example, let us assume that a node requires two neighbors
to participate in a monitoring task. In this case, the node
simply tells all its neighbors how many nodes it still needs and
how many monitors it already has. Instead of a randomization
process, an explicit coordination algorithm can be used.

While such an approach works in the previous example, it is
generally not feasible in a network with complex function
types and particular implementations that might not be
compatible in terms of coordination or cooperation.
Furthermore, coordination introduces additional
communication overhead, which may be significant for a large
number of functions executing in parallel.

D. Influencing the Probability

In general the adaptation of the probabilistic mechanisms is
performed through setting of probabilities, distributions, or
parameters that depend on function type, system and network
environment, operational requirements, and activity level of
the management function. In the latter case, when a function
uses a large part of the CPU time without reading or writing
any values, the assumption is that this function can run less
often. The probability that such a function is active is then set
to a lower value. For example, in Fig. 4, if the relationship

Function Interval Probability Function Parameters

f1 I1
Uniformly distributed

within range
Low = 1

High = 10

f2 I2
Uniformly distributed

with average
Avg = 0.2

f3 I3
Normally distributed

with average
Avg = f (node-

internal value X)

f4 I4
Equally distributed

with average
Avg = f (node

capability)

… … … …

Fig. 3. Random process configuration table.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

between CPU usage and configuration actions (setting values
in the system) is not in relation, a change of such a function’s
probability to run can be foreseen. The topmost function f4 is
using 25% of the CPU time, but does not have any write
operation on values for configuration. Therefore, the
probability of function f4 being executed is decreased, which in
the long run (i.e., not in timeframes of the decision making
process), lowers the usage of the CPU. Note that this does not
imply anything about short-time function scheduling, but that
the function might run less frequently in the future.

The probability to turn on and off a function might also

depend on the function’s additional characteristics. For
instance, when management functionality is operationally
critical, the implementing function must be executed with high
probability. Conversely, less important functionality can be set
to a smaller execution probability. For achieving a certain
management goal, the probability function and parameters
might need to be changed from externally. For example, in
order to increase the accuracy of management information that
a function exports, the execution probability of that function
has to be increased in the first place (cf. Section IV.B).

For setting of the probability variables, the control loop can
go through a centralized component reading or writing values
in the management function on the node. For example, when
the monitored values calculated by the management function
are fairly similar across all functions of the same type on
different nodes, there is a good chance that those management
functions are very redundant, and the probability of that
function to be run can be decreased for the future.

IV. EVALUATION

We have implemented parts of the INM framework in a
Java-based simulation environment and added functionality for
creating and running probabilistic decentralized management
scenarios. We are able to dynamically add management
functionality to a node, which is in turn automatically added to
the randomization process handling the respective function.
The probability distributions can be parameterized
dynamically by setting a specific random number generator in
the randomization table.

A. Application to a Network of Information

We apply the probabilistic management framework to a future
Internet approach called the Network of Information (NetInf)
[2]. Motivated by the fact that users are more interested in the

information, rather than the individual nodes storing the
information, NetInf defines a new information-centric
paradigm. Rather than building on the networking paradigm of
node-centric communication, NetInf exploits information-
centricity to connect and relate information elements with one
another and to directly build dictionary and management
structures on top of these elements. The essence for our
purposes is that NetInf provides a global distributed
information store, where applications publish information and
are able to query information from the system.

Fig. 5 illustrates the basic NetInf architecture. The left side
shows the network structure, which runs on top of today’s IP
networks, but may also run on top of novel future Internet
technologies to be developed. The right side shows a sketch of
a node’s partial internal structure, including the NetInf-specific
functionality and the probabilistic management framework.
Application access the system through an API on top, and the
system uses some networking technology at the bottom. The
dots in the different functions of the network of information
system (e.g. caching/storage) denote management functionality
associated with those service-specific functionalities.

The management information of the NetInf system that we

use in the following comprises the number of API calls, the
size of each cache, and the number of transport requests. We
will use more of the internal NetInf functionalities later on,
once we will have introduced more specific mechanisms and
algorithms of the network of information.

B. Results

For all of the following simulations we used the home-grown
simulator implementation based on Java. We executed 20
simulation runs per data point in a scenario of 100 nodes. All
nodes are dissemination nodes, sending information objects
when requested by an application node. Every node is an
application node as well, hosting an application emulator
pushing information into the system as well as requesting
information elements. We assume dissemination on demand,
meaning that information objects are sent to a new node only
when requested by that node. Once an information object is
delivered to that node, it remains in that node’s local data
cache and may be used for future requests of other nodes. The
objects to be retrieved are randomly chosen with an equal
distribution over all existing information objects in the system.

DNNDNNDNNDNN

H

H H

H

H

H

H

H

H

DNNDNNDNNDNN

DNNDNNDNNDNN

DNNDNNDNNDNNDNNDNNDNNDNN

DNNDNNDNNDNN
DNNDNNDNNDNN

DNNDNNDNNDNN

Dissemination
Network

APIAPIAPIAPI

APIAPIAPIAPI

APIAPIAPIAPI

APIAPIAPIAPI

APIAPIAPIAPI

Applications

Network Transport
Incl. IP, …

Cache/Store

Search func

Dissemination alg

P
ro

b
a

b
ilis

tic
 M

g
t

F
ra

m
e

w
o

rk

Information requests

Bit transport requests

H: Host

DNN: Dissemination Network Node

API

Fig. 5. Network of Information (NetInf).

100%

75%

20%

35%

f1

f2

f4

f3

CPU Usage per

management
function

Configuration

actions per
management

function

f1 f1 f1 f1f2 f2 f3 f1

Time t

Time t

Fig. 4. Dependency of resource usage and activity level.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

The interval of publishing and retrieval requests is equally
distributed over a fixed range. There are ten times more
information requests than object publications. Finally, we
assume a fixed simulation time of 1000 seconds.

1) Monitoring of the Network of Information

In this scenario, we study the effects of probabilistic
management in a well-balanced setting in order to understand
the effects of the approach in common situations. In the
simulations we monitored various values including the number
of API requests for retrieving and publishing information,
internal cache size, number of transport requests etc. We
divided the overall monitoring task into two functions, each of
which can be turned on or off randomly. One of the functions
monitors the API requests from applications; the other reads
data that is gathered in the NetInf system anyway for internal
use.

We considered the value of the number of API information
retrieval requests. When extrapolating the monitored values to
the overall network and monitoring time, we have the same
average number of information requests per node independent
of the probability of running the monitoring function. The
average amount of data gathered per node, however naturally
decreases with smaller probabilities (Fig. 6), therefore less
monitoring instances are running in the network. This is as
expected in a system with equally distributed activity.

However, as shown in Fig. 6, the standard deviation across

all simulation runs differs with the probability of running the
monitoring function. This means that the extrapolated data’s
accuracy is smaller than when all monitored data is considered.
We observe, however, that down to a probability of just 0.3,
which is equivalent to the running of only about one third of
the monitoring functions, the standard deviation only changes
insignificantly (see Fig 7 for the same numbers represented as
percentages). This underpins the ability of probabilistic
methods to achieve accuracy levels that are similar to ideal
methods in the scope of network management. Note that the
standard deviation is not zero since the there is also variability
through the random generation of the network load.

So far we have chosen a fairly balanced load model for the
network of information. In the following scenario, we modify
the load model to have ten dedicated nodes in the network that

do a lot of information publishing. In average, they do the
same amount of publishing as other nodes do retrievals, but far
less retrievals than the other nodes.

Fig. 7 shows the comparison of the standard deviations in
the case of balanced and unbalanced load. In an unbalanced
setting, the deviation increases faster and reaches a larger
value than in a balanced setting. Hence, the monitoring
accuracy is smaller. Still the average number of retrievals and
the average number of publishes, when extrapolated, are the
same no matter what probability we have chosen. Also the
monitoring data size is the same as shown in Fig. 6. Although
in the unbalanced case, the standard deviation grows
significantly, it still remains below four percent at a probability
of 0.3. This is a remarkably low standard deviation, which
means that even in unbalanced scenarios, probability-based
methods allow significant resource savings while retaining a
high level of the monitored information’s accuracy.

2) Fault Management in the Network of Information

The next set of simulations is concerned with fault
management functions. We define a fault as the situation
where a node is down and hence, unreachable for responding
to object information retrieval requests. We detect a node
failure when another node attempts to retrieve an object from
the failed node, but was not able to do so. We do not
differentiate whether such a failure is due to a network or a
node problem. Note that there are several different ways of
doing fault management. For simplicity, we restrict the
following discussions to only one possible way that we use to
analyze the suitability of the probabilistic management.

For the following simulations we continue to use the
previously stated NetInf setting. We randomly choose 100
nodes which at a random time during the simulation fail for a
duration of 2 seconds. We have chosen this value because it
denotes the boundary where failed nodes are showing up in the
form of information retrieval errors. If the failure duration is
shorter, there is a set of failed nodes that are not detected,
since no information retrieval requests destined for that node
fall within the failure window. However, Fig. 8 shows that also
for a probability of 100% to run the fault management

0

2

4

6

8

10

12

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

probability

s
td

 d
e
v
 n

r
g

e
ts

 p
e
r

n
o

d
e

0

2

4

6

8

10

12

d
a
ta

 m
o

n
it

o
re

d
 p

e
r

n
o

d
e

in
 M

b
y
te

s

Std dev nr of gets memory usage for monitoring data

Fig. 6. Standard deviation and amount of monitoring data gathered.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

probability

S
ta

n
d
a

rd
 D

e
v
ia

ti
o

n

unbalanced load balanced

Fig. 7. Standard deviation of balanced vs. unbalanced load.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

functionality, a small number of node failures are still not
detected by the NetInf. In order to also detect these failures,
targeted fault management would be required that actively
checks the nodes’ mutual reachability.

Regarding the probability-based detection of faults, Fig. 8
shows that the fraction of detected faults is fairly small down
to a probability of approximately 50%. This observation is true
for both the balanced and unbalanced setting, which are both
shown in the figure. Furthermore, even at a probability of only
10%, it is still possible to detect about half of the occurring
failures. Note that the resource usage decreases linearly with
the probability to run a management function.

Comparing the balanced and unbalanced case, the latter
shows only a slight decrease in the ability to detect node faults
and the standard deviation thereof. This confirms that the
probabilistic management paradigm is not only applicable for
homogeneous scenarios. It also tolerates inhomogeneous load
models and is able to achieve high accuracy.

V. DISCUSSION

A. How can the probabilistic management system be sup-

ported in current and future Internet architectures?

In order to support our probabilistic management framework,
we have identified the following five key requirements based
on the discussions in Section III:

Granularity: Network management functions should be
built into the network in a fine-grained way, so that turning on
and off can occur on a detailed level (cf. Fig. 5).

Overhead: The probabilistic control logic shall be light-
weight in nature, in the sense that turning management
functions on and off involves only low overhead.

Flexibility: It should be possible to customize the way in
which probabilistic methods are applied. For instance, it is
desirable to easily accommodate additional management
functions into randomization processes.

Transitivity: Because management functions naturally
interact within control loops, turning on or off single functions
may not imply the desired resource savings. For example, in

the distributed aggregation of performance values, turning off
top-level reporting at the aggregation root might still lead to
updates within the aggregation tree. Therefore, the turning on
and off process may also require the consistent (de)activation
of transitively connected management functions.

Interactivity: Despite the fact that management functions
are embedded into the network, it is still necessary to interact
with management functions from externally, for example, to
tune and influence probabilistic processes based on additional
external knowledge (cf. Fig. 2).

In order to support probabilistic decentralized network
management under the given requirements, INM provides two
architectural elements: self-managing functional components
(FCs) and fine-grained management capabilities (MCs).

Fig. 9 shows two FCs that implement the Search func and
Dissemination alg layer in Fig. 5. Each FC contains two
planes, denoted integrated and inherent management plane.
Inherent management pertains to management functions that
are inseparable from and shipped with the FC. For example, a
dissemination algorithm may manage its own set of parameters
to tune dissemination performance. Integrated management
refers to modular management functionality that exports
interfaces to other management functions and which can,
optionally, be added to or removed from an FC. The
probabilistic management functionality can be modeled by an
integrated management function (cf. Fig. 5 and Fig. 9).

Integrated management functions publish their functionality
via the integrated and external management interfaces. To the
latter, only high-level management interactions are published
(e.g. related to service management), while only low-level
ones are published to the former (e.g. related to network
element management). The clear separation is motivated by
the fact that it is desired to reduce human interaction to only
high-level objectives (e.g. business goals).

All management functionality is implemented via fine-
grained MCs, thus naturally supporting the granularity
requirement. Each MC exports specific interfaces. Some MCs
interact with the inherent management plane through cross-
plane invocation, thereby connecting inherent and integrated
management. This is useful, e.g., for monitoring performance
parameters that are inherent to an FC. If desired, any MC may
implement a probabilistic interface to connect to the
probabilistic MC, thereby plugging into the probabilistic
management framework according to Fig. 2.

The process of capability embedding directly supports the
overhead requirement. Firstly, probabilistic management is
implemented as a light-weight MC itself. The switching on and
off then reduces, for instance, to a function call to other MCs
by the probabilistic MC (e.g. within a Linux kernel module, or
a sensor node’s monolithic code block).

Support for the flexibility requirement is an integrated
feature of the INM framework, which allows the adding and
removal of MCs. Due to the light-weight nature of the MCs,
these processes are also light-weight.

0

2

4

6

8

10

12

0

20

40

60

80

100

120

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

s
td

 d
e

v

p
e

rc
e

n
t

o
f

fa
u

lts
 d

e
te

c
te

d

probability

faults detected, unbalanced faults detected balanced

std dev, unbalanced sdt dev, balanced

Fig. 8. Fault detection.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

The transitivity requirement is supported in two ways.

Assuming an MC implements a probabilistic interface as noted
above, the MC can support transitivity directly, e.g., when the
MC knows best how to inhibit other transitively connected
MCs. On the other side, the probabilistic framework may take
the role of transitively turn on and off MCs shown in Fig. 9 by
an interaction between the probabilistic MCs in both FCs. This
works, e.g., in such cases where the governed turning on and
off does not impact the semantics of a management function.

Finally, the interactivity requirement is supported by the
external management interface, which allows external parties
to interact with the probabilistic MC, e.g., to set new
probability values (which might in turn be propagated to an
MC via its probabilistic interface, cf. Fig. 2).

Additional details on the INM framework are given in [7].

B. Are the numbers we obtain from a probabilistic

management system good enough for managing a network?

As shown in Fig. 6, as long as the system is well balanced, we
can run the probabilistic management system on very low
probabilities and get an error no larger than 0.2%. Even when
reducing the probability down to as low as 30%, which in turn
means a reduction of monitoring traffic by 70%, no accuracy is
sacrificed for average values across the network.

In more unbalanced scenarios, the extrapolation of values is
less accurate than in balanced ones, and naturally accuracy of
the observed management data decreases with smaller
probability values. In the presented case of fault management,
we are still able to achieve a 95% success rate in the detection
of faults. This value is combined from both probabilistic
management and from the effect that no service requests at all
occur at a subset of the faulty nodes.

The difference between balanced and unbalanced scenarios
is smaller for fault management than for the monitoring case.

Since fault management may be more critical in some
scenarios than just monitoring, our results demonstrate that
even more critical management tasks are suitable for being
subjected to probabilistic management.

C. Is the concept of probabilistic management acceptable

by users and operators?

In general, probabilistic systems lack acceptability due to their
nature of being not intuitively understandable. Specifically,
looking into control and management systems, there is a fairly
large resistance to systems that incorporate a certain degree of
randomness. If we assume that the decentralized self-managing
design of future network management will become reality, we
will already have a certain degree of uncertainty in the self-
managing system itself, doing configuration and performance
management automatically. We feel that in such situations a
certain degree of randomness does not harm.

More interestingly, many of today’s successful networking
technologies do depend on significant degrees of randomness.
One of the most prominent examples is Ethernet’s highly
successful CSMA/CD scheme, which employs randomization
for solving distributed medium access problems. Another
example is statistical multiplexing performed in IP networks.
Possibly the most striking fact is that even in network security,
randomization is a widely accepted and applied technique that
lies at the basis of many cryptographic protocols. All of these
scenarios share that the underlying systems contain certain
degrees of nondeterministic behavior, which does not allow
the application of purely deterministic mechanisms. While
these randomization processes are sometimes difficult to
grasp, we believe that, based on our evaluation, they will also
be vital in future communication networks, which will be
characterized by significant complexity where indeterminacy
and unpredictability will play a major role.

On the business side, it is more relevant to assess the
commercial benefit of lowering the resource usage for network
management and paying with less precision in some cases. It
always makes sense to design resource-efficient systems,
specifically, in mobile and resource-limited environments. In
many novel network architectures, the management of very
dynamic networks like car-to-car communication, ad-hoc
networks and peer-to-peer is required. In such environments,
probabilistic management helps by easing the introduction of
management into the dynamic system, which would not be
possible with traditional management paradigms.

VI. RELATED WORK

In the area of traffic measurement, the idea of packet
sampling [8][9] has been used for reducing the amount of
management information or the reduction of processing needs
for high-speed link packet capturing. In order to enable
capturing packets on high speed links with low cost, only
every n-th packet is captured or exported. Our approach does
not deal with a specific management function like
measurements, but rather turns on and off randomly the
complete function. We do for the moment not assume any

external

mgmt IF

service IF

integrated

mgmt caps

mgmt cap

invocation

inherent

mgmt. caps

probabilistic

mgmt cap

cross-plane

invocation

mgmt cap

control

integrated

mgmt plane

inherent

mgmt plane

integrated

mgmt IF

Search

func FC

Dissem.

alg FC

Fig. 9. Structure of and interactions between functional components.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

randomization within the function itself, which is function-
specific and therefore out of our control.

A second area of related work is that of scheduling,
specifically of process scheduling [10]. Assuming that our
functions are running within process, we could argue we
randomly set processes to sleep. In principle, our work has
little to do with classical process scheduling, since the job or
task is not even there to be scheduled, when it is turned off. So
no resources are used at all. Also we do not optimize the
resource scheduling. Rather we achieve efficiency through not
running unnecessary many of the same functions on the
network for gaining the same or similar results.

The third area of related mechanisms is the class of
randomness in media access protocols [11]. For example,
randomized scheduling for medium access, both wired and
wireless, is a known way of removing a deterministic
coordination function for decentralized medium access system.
In our case, we use a similar approach applied to decentralized
network management functionality.

There is quite some work in sensor and ad-hoc network
management [12][13]. However such work does not take into
account the approach of probabilistic management, but rather
deal with the problem of low resource management paradigms
to lower the cost in resource-limited networking environments.
Work being in the same area, but specifically using also
probabilistic behavior is the following. [14] proposes to use
the connectivity probability of ad-hoc nodes in order to define
clusters reporting to a management node. Thus, the
management plane connectivity is based on a probabilistic
behavior. We go a step further and run certain functionality on
a node in a probabilistic way. However, we can naturally take
the connectivity probability into account as an input to derive
the run probability of a function (dependent on the function
itself). The authors of [15] propose a self-managing system for
ad-hoc network management, which spreads management
functionality across different nodes taking into account the
nodes’ capabilities in terms of resources. In our probabilistic
framework, the capability would influence the probability of
running a certain function on a certain node.

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed a fairly generic probabilistic
management framework for efficiently managing networks in a
decentralized way. The probabilistic management paradigm
allows for a generic mechanism to turn on or off certain
management functionally based on a probability, which can be
influenced by the operator, the capabilities of the node, the
function itself, or any other external information.

So far we have only scratched the surface of the potential of
such a paradigm. We believe that in many cases it is useful to
do without deterministic management behavior. While this is
against the traditional thinking of telecommunications or
internet operators and administrators, we need to consider how
to make them comfortable with such a paradigm. For example,
we can introduce decentralized management with a probability

of 100%, showing that the system correctly works for some
functions, and only then slowly reduce the percentages of
running the functions. The resource usage reduction could then
be used for running other functions, both management or non-
management functions alike.

Finally, there are naturally certain application areas, which
do not profit or where it is not feasible to run such a
probabilistic management framework, such as real-time or
highly reliable systems. Those must be identified and
optimally, classified based on a suitable taxonomy, in order to
have clear application and use cases where probabilistic
management works and where it doesn’t. This also means that
we need to extend and evaluate the paradigm in other
networking systems than the network of information.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, “OpenFlow: enabling innovation in
campus networks”, ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, pp. 69-74, Apr. 2008.
[2] C. Dannewitz, K. Pentikousis, R. Rembarz, É. Renault, O. Strandberg,

and J. Ubillos, „Scenarios and research issues for a network of
information,” Proc. MobiMedia’08, Oulu, Finland, Jul. 2008.

[3] Internet Engineering Task Force (IETF), “Introduction to Version 2 of
the Internet-Standard Network Management Framework,” Request for

Comments (RFC) 1441, April 1993.
[4] Internet Engineering Task Force (IETF): “Remote Network Monitoring

Management Information Base,” RFC 2819, May 2000.
[5] N. Niebert, S. Baucke, I. El-Khayat, M. Johnsson, B. Ohlman, H.

Abramowicz, K. Wuenstel, H. Woesner, J. Quittek, and L. M. Correia,
“The way 4WARD to the creation of a future Internet,” Proc.

PIMRC’08, Cannes, France, Sep. 2008. To appear.
[6] “4WARD: Architecture and Design for the Future Internet,”

Collaborative Research Project within the European Commission 7th
Framework Programme (FP7), online: http://www.4ward-project.eu/.

[7] C. Foley, S. Balasubramaniam, E. Power, M. P. de Leon, D. Botvich, D.
Dudkowski, G. Nunzi and C. Mingardi, “A framework for in-network
management in heterogeneous future communication networks,” Proc.

MACE’08, Samos Island, Greece, Sep. 2008. To appear.
[8] Nick Duffield, ed., “A Framework for packet selection and reporting,”

Internet Draft, draft-ietf-psamp-framework-13.txt, June 2008.
[9] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of sampling

methodologies to network traffic characterization,” ACM SIGCOMM

Computer Comm. Review, vol. 23, no. 4, pp. 194-203, Oct. 1993.
[10] J. Nino-Mora, “Stochastic scheduling,” Encyclopedia of Optimization,

vol. V, pp. 367-372, 2001. Kluwer. Updated version.
[11] G. Mergen and L. Tong, “Random scheduling medium access for

wireless ad hoc networks,” Proc. MILCOM’02, vol. 2, pp. 868-872,
Anaheim, California, USA, Oct. 2002.

[12] W. Chen, N. Jain, and S. Singh, “ANMP: Ad-Hoc Network
Management Protocol,” IEEE Journal on Selected Areas in

Communications, vol. 17, no. 8, pp. 1506-1531, Aug. 1999.
[13] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “MANNA: A

management architecture for wireless sensor networks,” IEEE

Communications Magazine, vol. 41, no. 2, pp. 116-125, Feb. 2003.
[14] R. Badonnel, R. State, and O. Festor, “Probabilistic management of ad-

hoc networks,” Proc. NOMS’06, p. 339-350, Vancouver, Canada, Apr.
2006.

[15] C.-C. Shen, C. Jaikaeo, C. Srisathapornphat, and Z. Huang, “The
Guerilla management architecture for ad-hoc networks,” Proc.
MILCOM’02, vol. 1, pp. 467-472, Anaheim, California, USA, Oct.
2002.

