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Abstract— This work proposes a probabilistic management 

paradigm for solving some major challenges of decentralized 

network management. Specifically, we show how to cope with 1) 

the overhead of redundant information gathering and processing, 

2) the decentralized management in dynamic and unpredictable 

environments, and 3) the considerable effort required for 

decentralized coordination of management functions. 

To this end, we describe a framework for probabilistic 

decentralized management in the context of in-network 

management. We demonstrate how this framework can be 

applied to a network of information, a novel clean-slate approach 

towards an information-centric future Internet. We show by 

means of a simulation study in the area of performance and fault 

management that we can significantly reduce the effort and 

resources dedicated to management, while we are able to achieve 

a sound level of accuracy of the overall network view. 

 
Index Terms—Network Management, Probabilistic 

Management, Decentralized Management, Self-managing 

systems, Future Internet Management. 

I. INTRODUCTION 

HIS paper addresses problems in network management 
systems that are decentralized and need to operate in more 

or less dynamic networking environments. We assume that 
future internetworking technology will be managed in a more 
automated and decentralized way than today. This basically 
means that management functionality will get nearer to the 
network functions running in the network, no matter on what 
layer they are running, or whether the layering principle will 
persist in future network architectures. In the most extreme 
case, the management functionality could get conflated with 
the network functionality, allowing for inherently self-
managing networks. But also any degree from the traditional 
centralized to the fully decentralized, inherently self-managing 
system is possible, and any mixture thereof. Note that some 
research explores the opposite direction. McKeown et al. [1], 
for instance, try to remove as much control and management 
functionality as possible from the network. 

Decentralized management functions typically accumulate 
management information from the network, then store and 
process the information for analyzing the history, deriving 
conclusions, and taking actions eventually. Management 
functions also coordinate with the same or other types of 
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functions on the same or other nodes. Storage, computation, 
and communication require resources of the network and the 
nodes. When all nodes execute those functions, potentially 
large quantities of CPU time, memory capacity and 
communication bandwidth will be wasted. 

In dynamic and unpredictable network and system 
environments, management in a traditional way is difficult. 
The fact that nodes might join and leave the network and 
might not be reachable from a central station, and that their 
behavior is brittle, makes the network fairly difficult to 
manage. Basically, dynamic behavior does not allow for an 
exact real-time view of the system and it prevents coordinative 
functionality when the dynamics are too high. Many 
coordinated decentralized algorithms, for instance, routing 
protocols or peer-to-peer systems, fail in such dynamic 
environments. Finally, some cooperating or coordinating 
decentralized control and management functions tend to 
converge to a synchronous behavior causing problems in 
resource usage peaks. We argue that management systems that 
forego coordination might perform better in such scenarios. 

To this end, we propose to use probabilistic decentralized 
network management in the context of an in-network 
management framework to tackle the challenges described 
above. We assume throughout this paper a high degree of 
decentralization of management functions. Additionally, we 
assume the management system being decomposed into a set 
of different management functions running on each node 
simultaneously. We propose a randomization process being 
part of a meta-management on each node, which randomly 
turns on or off certain management functions on the node. This 
approach is a prerequisite for resource-efficient decentralized 
network management, because it prevents redundancy in 
gathering and processing network management information. It 
also allows for an uncoordinated way of achieving similar 
management goals compared to a coordinated approach to 
decentralized network management. The probabilistic behavior 
makes the framework particularly attractive for the 
management of highly dynamic network environments, such as 
mobile and ad-hoc networks. In those environments, the 
uncoordinated property is specifically beneficial. 

Still, probabilistic management must achieve similar results 
as conventional network management; therefore, we evaluate 
our paradigm in the context of a network of information 
(NetInf) [2], a clean-slate approach towards an information-
centric future Internet. Rather than addressing nodes, NetInf 
addresses information elements in the network. 
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After a brief introduction of the in-network management 
framework in Section II, we describe probabilistic 
management in Section III. We evaluate the concept in the 
context of NetInf in Section IV and discuss the results and the 
applicability of the probabilistic paradigm to real 
environments in Section V. We close with a differentiation of 
our work and the state of the art (Section VI) and summarize 
the approach including future work in Section VII. 

II. BACKGROUND: IN-NETWORK MANAGEMENT 

In traditional Internet management (Fig. 1, left), functionality 
resides outside the network in management stations and 
servers. These entities interact via management protocols such 
as SNMP or CLI with the network elements to execute FCAPS 
management functions, such as fault and performance 
management. In commercial networks, these interactions often 
occur out-of-band through special communication networks. 

 
Such a management approach has proven successful for 

relatively small networks (up to a few hundreds of nodes) and 
static configurations. For emerging large-scale, dynamic, and 
heterogeneous network environments, however, this approach 
turns out to be inadequate. This situation has been recognized 
and attempts to decentralized management have been 
proposed. For instance, SNMPv2 [3] introduces the concept of 
intermediary managers that interact in a weakly decentralized 
hierarchical structure for distributed data collection. Another 
example is RMON [4], which uses monitors and probes that 
allow making decisions outside the agent and local to an 
occurring anomaly. However, such approaches are highly 
limited in their functionality and are far from reflecting the 
inherent nature of management to networks. 

To overcome the limitations of current management 
technologies, we pursue in the scope of the 4WARD project 
[5][6] a new paradigm for network management, which we call 
in-network management (INM) [7]. INM’s key idea is that 
management processes are implemented as embedded 
management capabilities inside of network nodes, forming a 
self-organizing and inherent management plane (Fig. 1, right) 
that requires only the bare minimum of human intervention. 
INM provides the principles, methodology, and framework for 
implementing embedded management functions in current and 
future communication networks. 

III. PROBABILISTIC MANAGEMENT FRAMEWORK 

Since management functions are in many cases redundant 
across the network, we propose to turn them on or off 
randomly. At one point in time, thus, some functions are 
turned on, while others are not. The specific way of how the 
activation of management functions is realized may depend on 
additional system constraints and performance tradeoffs. If all 
functions that are subject to the probabilistic management 
process are instantiated and resident in the memory of the 
networked device beforehand, rapid switching between on and 
off states is possible, which allows fine-granular probabilistic 
control. It is also conceivable to include the installing and 
uninstalling of management functions in the randomization 
process, for instance, if constraints in the transient memory of 
the networking device apply. While memory resources are 
conserved, CPU utilization increases and more coarse-grained 
turning on and off is more advisable. In general, different 
tradeoffs between the cost of activating and deactivating a 
function and resource savings are possible. For ease of 
discussion and without loss of generality, we assume in the 
following the first of the discussed alternatives. 

By control and management functions, we refer to classical 
functions including, but not limiting to, fault, performance, and 
configuration management. Note that by “random”, we refer to 
any type of randomness, including pseudorandom and 
perfectly random processes. While perfect randomness is 
difficult to achieve with today’s technology, pseudorandom 
behavior, implemented by popular random number generators, 
is absolutely sufficient for our applications. 

A. Framework Overview 

Fig. 2 illustrates the basic layout of our probabilistic 
management framework. A set of management functions is 
running on the node, interacting with the networking 
functionality directly or through the node’s database(s) or 
information store(s). A component called the Randomization 
Process designates the meta-management entity that takes care 
of randomization of the management functionality. The 
randomization process can be influenced through various 
factors and might be configured from an external entity. 

 
The randomization process on the network element has a 

probability function fi with a certain probability distribution 
per management function on the node (Fig. 3). An interval Ii 
denotes the interval between two successive executions of the 
randomization process for a certain function, which can be 
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Fig. 2.  Basic probabilistic management framework (node view). 
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Fig. 1.  Traditional and in-network management. 
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fixed, dynamic, or random. Each time the interval Ii elapses, 
function fi decides whether or not a function is turned on or 
off. Both probability function and the interval may depend on 
configuration, type of function as well as configuration and 
internal information. In a special case, those values might also 
depend on information about neighboring nodes. However, 
such models introduce additional, more complicated 
dependencies again, which we attempt to minimize with the 
probabilistic scheme in the first place. 

 
The probability distribution can be adapted in dependence 

of information that is either internal or external to a node, or 
both. A typical example of adaptation may occur based on the 
node-internal information of free memory capacity. The 
probability distribution may then correlate to the remaining 
memory in that the likelihood of turning the function on and 
off increases and decreases, respectively, with free memory 
capacity. For functions requiring dedicated memory for 
information storage while running, such as measurement and 
monitoring functions, the likelihood of those functions being 
active depends on the locally available storage. Typically, the 
probability distribution may be distributed exponentially, 
meaning that as long as the storage is fairly empty, the 
likelihood to run the function is very high, while after a certain 
point the likelihood is increasing rapidly. 

B. Probabilistic Management Interfaces 

The interfaces defined by the probabilistic management 
framework pertain to the setting, deleting, and changing of the 
random process configuration table for each function. This 
means that a function must be identified uniquely within the 
node. Given that the same management function may run 
multiple times in a separate instance, each instance shows up 
as a separate function in the configuration table. 

The interface for receiving node-internal information from 
either the management functions or directly from the node’s 
network functionality and resource management functions is 
not further specified. The reception of information in both pull 
and push model depend on the instrumentation of the 
components that send the information. 

The interface of management functions basically includes 
the setting of the management function to the on or off state. 
Since setting the function on includes a certain instantiation or 
installation step, a second interface supports the notification of 
the function that it is being turned on. This differentiation 
allows for more independence from the specific node-internal 
execution environment. For example, in our Java-based 

simulation prototype in Section IV, we instantiate each 
management function as an object, which is then notified 
through a method call about its activation. Conversely, when 
the function is turned off, it is not deinstalled, but rather 
notified about its being deactivated. The process of finding 
management functions and including the knowledge about 
each function is a basic feature of the in-network management 
framework, and is here not further discussed. 

C. Interdependency with Random Function Behavior 

Besides the introduced dedicated randomization process, the 
management functions themselves may have an internal 
probabilistic behavior. Such functions therefore support an 
interface to configure function-specific probability-related 
distributions or configuration settings. 

A representative example for such interdependency is the 
case of nodes monitoring their neighbors for a failing or 
misbehaving node. Let us assume that the management 
function defines an internal probability value, say 0.3. Hence, 
with the probability of 0.3, a node selects any of its neighbors 
to monitor and actively check against failures through pinging 
other neighbors. In that case, the information on how many 
neighbors do monitor a node in the mean is relevant for 
deciding the probability of a node to set a neighbor monitoring 
function on or off. Such scenarios require the cooperation 
between the randomization process of the probabilistic 
framework and the management function itself. 

This type of interaction, however, should be considered the 
rare case, because it introduces deterministic behavior that is 
contrary to the motivation of probabilistic behavior. Assuming 
that a purely deterministic algorithm can be readily used, the 
reduction of resources, for instance, can be achieved more 
easily and in a well-controlled way by means of aggregation. 
For example, let us assume that a node requires two neighbors 
to participate in a monitoring task. In this case, the node 
simply tells all its neighbors how many nodes it still needs and 
how many monitors it already has. Instead of a randomization 
process, an explicit coordination algorithm can be used. 

While such an approach works in the previous example, it is 
generally not feasible in a network with complex function 
types and particular implementations that might not be 
compatible in terms of coordination or cooperation. 
Furthermore, coordination introduces additional 
communication overhead, which may be significant for a large 
number of functions executing in parallel. 

D. Influencing the Probability 

In general the adaptation of the probabilistic mechanisms is 
performed through setting of probabilities, distributions, or 
parameters that depend on function type, system and network 
environment, operational requirements, and activity level of 
the management function. In the latter case, when a function 
uses a large part of the CPU time without reading or writing 
any values, the assumption is that this function can run less 
often. The probability that such a function is active is then set 
to a lower value. For example, in Fig. 4, if the relationship 

Function Interval Probability Function Parameters

f1 I1
Uniformly distributed

within range
Low = 1

High = 10

f2 I2
Uniformly distributed

with average
Avg = 0.2

f3 I3
Normally distributed

with average
Avg = f (node-

internal value X)

f4 I4
Equally distributed

with average
Avg = f (node 

capability)

… … … …

Fig. 3.  Random process configuration table. 
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between CPU usage and configuration actions (setting values 
in the system) is not in relation, a change of such a function’s 
probability to run can be foreseen. The topmost function f4 is 
using 25% of the CPU time, but does not have any write 
operation on values for configuration. Therefore, the 
probability of function f4 being executed is decreased, which in 
the long run (i.e., not in timeframes of the decision making 
process), lowers the usage of the CPU. Note that this does not 
imply anything about short-time function scheduling, but that 
the function might run less frequently in the future. 

 
The probability to turn on and off a function might also 

depend on the function’s additional characteristics. For 
instance, when management functionality is operationally 
critical, the implementing function must be executed with high 
probability. Conversely, less important functionality can be set 
to a smaller execution probability. For achieving a certain 
management goal, the probability function and parameters 
might need to be changed from externally. For example, in 
order to increase the accuracy of management information that 
a function exports, the execution probability of that function 
has to be increased in the first place (cf. Section IV.B). 

For setting of the probability variables, the control loop can 
go through a centralized component reading or writing values 
in the management function on the node. For example, when 
the monitored values calculated by the management function 
are fairly similar across all functions of the same type on 
different nodes, there is a good chance that those management 
functions are very redundant, and the probability of that 
function to be run can be decreased for the future. 

IV. EVALUATION 

We have implemented parts of the INM framework in a 
Java-based simulation environment and added functionality for 
creating and running probabilistic decentralized management 
scenarios. We are able to dynamically add management 
functionality to a node, which is in turn automatically added to 
the randomization process handling the respective function. 
The probability distributions can be parameterized 
dynamically by setting a specific random number generator in 
the randomization table. 

A. Application to a Network of Information 

We apply the probabilistic management framework to a future 
Internet approach called the Network of Information (NetInf) 
[2]. Motivated by the fact that users are more interested in the 

information, rather than the individual nodes storing the 
information, NetInf defines a new information-centric 
paradigm. Rather than building on the networking paradigm of 
node-centric communication, NetInf exploits information-
centricity to connect and relate information elements with one 
another and to directly build dictionary and management 
structures on top of these elements. The essence for our 
purposes is that NetInf provides a global distributed 
information store, where applications publish information and 
are able to query information from the system.  

Fig. 5 illustrates the basic NetInf architecture. The left side 
shows the network structure, which runs on top of today’s IP 
networks, but may also run on top of novel future Internet 
technologies to be developed. The right side shows a sketch of 
a node’s partial internal structure, including the NetInf-specific 
functionality and the probabilistic management framework. 
Application access the system through an API on top, and the 
system uses some networking technology at the bottom. The 
dots in the different functions of the network of information 
system (e.g. caching/storage) denote management functionality 
associated with those service-specific functionalities. 

 
The management information of the NetInf system that we 

use in the following comprises the number of API calls, the 
size of each cache, and the number of transport requests. We 
will use more of the internal NetInf functionalities later on, 
once we will have introduced more specific mechanisms and 
algorithms of the network of information. 

B. Results 

For all of the following simulations we used the home-grown 
simulator implementation based on Java. We executed 20 
simulation runs per data point in a scenario of 100 nodes. All 
nodes are dissemination nodes, sending information objects 
when requested by an application node. Every node is an 
application node as well, hosting an application emulator 
pushing information into the system as well as requesting 
information elements. We assume dissemination on demand, 
meaning that information objects are sent to a new node only 
when requested by that node. Once an information object is 
delivered to that node, it remains in that node’s local data 
cache and may be used for future requests of other nodes. The 
objects to be retrieved are randomly chosen with an equal 
distribution over all existing information objects in the system. 
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Fig. 5.  Network of Information (NetInf). 
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The interval of publishing and retrieval requests is equally 
distributed over a fixed range. There are ten times more 
information requests than object publications. Finally, we 
assume a fixed simulation time of 1000 seconds. 

1) Monitoring of the Network of Information 

In this scenario, we study the effects of probabilistic 
management in a well-balanced setting in order to understand 
the effects of the approach in common situations. In the 
simulations we monitored various values including the number 
of API requests for retrieving and publishing information, 
internal cache size, number of transport requests etc. We 
divided the overall monitoring task into two functions, each of 
which can be turned on or off randomly. One of the functions 
monitors the API requests from applications; the other reads 
data that is gathered in the NetInf system anyway for internal 
use. 

We considered the value of the number of API information 
retrieval requests. When extrapolating the monitored values to 
the overall network and monitoring time, we have the same 
average number of information requests per node independent 
of the probability of running the monitoring function. The 
average amount of data gathered per node, however naturally 
decreases with smaller probabilities (Fig. 6), therefore less 
monitoring instances are running in the network. This is as 
expected in a system with equally distributed activity. 

 
However, as shown in Fig. 6, the standard deviation across 

all simulation runs differs with the probability of running the 
monitoring function. This means that the extrapolated data’s 
accuracy is smaller than when all monitored data is considered. 
We observe, however, that down to a probability of just 0.3, 
which is equivalent to the running of only about one third of 
the monitoring functions, the standard deviation only changes 
insignificantly (see Fig 7 for the same numbers represented as 
percentages). This underpins the ability of probabilistic 
methods to achieve accuracy levels that are similar to ideal 
methods in the scope of network management. Note that the 
standard deviation is not zero since the there is also variability 
through the random generation of the network load. 

So far we have chosen a fairly balanced load model for the 
network of information. In the following scenario, we modify 
the load model to have ten dedicated nodes in the network that 

do a lot of information publishing. In average, they do the 
same amount of publishing as other nodes do retrievals, but far 
less retrievals than the other nodes. 

Fig. 7 shows the comparison of the standard deviations in 
the case of balanced and unbalanced load. In an unbalanced 
setting, the deviation increases faster and reaches a larger 
value than in a balanced setting. Hence, the monitoring 
accuracy is smaller. Still the average number of retrievals and 
the average number of publishes, when extrapolated, are the 
same no matter what probability we have chosen. Also the 
monitoring data size is the same as shown in Fig. 6. Although 
in the unbalanced case, the standard deviation grows 
significantly, it still remains below four percent at a probability 
of 0.3. This is a remarkably low standard deviation, which 
means that even in unbalanced scenarios, probability-based 
methods allow significant resource savings while retaining a 
high level of the monitored information’s accuracy. 

 
2) Fault Management in the Network of Information 

The next set of simulations is concerned with fault 
management functions. We define a fault as the situation 
where a node is down and hence, unreachable for responding 
to object information retrieval requests. We detect a node 
failure when another node attempts to retrieve an object from 
the failed node, but was not able to do so. We do not 
differentiate whether such a failure is due to a network or a 
node problem. Note that there are several different ways of 
doing fault management. For simplicity, we restrict the 
following discussions to only one possible way that we use to 
analyze the suitability of the probabilistic management. 

For the following simulations we continue to use the 
previously stated NetInf setting. We randomly choose 100 
nodes which at a random time during the simulation fail for a 
duration of 2 seconds. We have chosen this value because it 
denotes the boundary where failed nodes are showing up in the 
form of information retrieval errors. If the failure duration is 
shorter, there is a set of failed nodes that are not detected, 
since no information retrieval requests destined for that node 
fall within the failure window. However, Fig. 8 shows that also 
for a probability of 100% to run the fault management 
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Fig. 6.  Standard deviation and amount of monitoring data gathered. 
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functionality, a small number of node failures are still not 
detected by the NetInf. In order to also detect these failures, 
targeted fault management would be required that actively 
checks the nodes’ mutual reachability. 

 
Regarding the probability-based detection of faults, Fig. 8 
shows that the fraction of detected faults is fairly small down 
to a probability of approximately 50%. This observation is true 
for both the balanced and unbalanced setting, which are both 
shown in the figure. Furthermore, even at a probability of only 
10%, it is still possible to detect about half of the occurring 
failures. Note that the resource usage decreases linearly with 
the probability to run a management function. 

Comparing the balanced and unbalanced case, the latter 
shows only a slight decrease in the ability to detect node faults 
and the standard deviation thereof. This confirms that the 
probabilistic management paradigm is not only applicable for 
homogeneous scenarios. It also tolerates inhomogeneous load 
models and is able to achieve high accuracy. 

V. DISCUSSION 

A. How can the probabilistic management system be sup-

ported in current and future Internet architectures? 

In order to support our probabilistic management framework, 
we have identified the following five key requirements based 
on the discussions in Section III: 

Granularity: Network management functions should be 
built into the network in a fine-grained way, so that turning on 
and off can occur on a detailed level (cf. Fig. 5). 

Overhead: The probabilistic control logic shall be light-
weight in nature, in the sense that turning management 
functions on and off involves only low overhead. 

Flexibility: It should be possible to customize the way in 
which probabilistic methods are applied. For instance, it is 
desirable to easily accommodate additional management 
functions into randomization processes. 

Transitivity: Because management functions naturally 
interact within control loops, turning on or off single functions 
may not imply the desired resource savings. For example, in 

the distributed aggregation of performance values, turning off 
top-level reporting at the aggregation root might still lead to 
updates within the aggregation tree. Therefore, the turning on 
and off process may also require the consistent (de)activation 
of transitively connected management functions. 

Interactivity: Despite the fact that management functions 
are embedded into the network, it is still necessary to interact 
with management functions from externally, for example, to 
tune and influence probabilistic processes based on additional 
external knowledge (cf. Fig. 2). 

In order to support probabilistic decentralized network 
management under the given requirements, INM provides two 
architectural elements: self-managing functional components 
(FCs) and fine-grained management capabilities (MCs). 

Fig. 9 shows two FCs that implement the Search func and 
Dissemination alg layer in Fig. 5. Each FC contains two 
planes, denoted integrated and inherent management plane.  
Inherent management pertains to management functions that 
are inseparable from and shipped with the FC. For example, a 
dissemination algorithm may manage its own set of parameters 
to tune dissemination performance. Integrated management 
refers to modular management functionality that exports 
interfaces to other management functions and which can, 
optionally, be added to or removed from an FC. The 
probabilistic management functionality can be modeled by an 
integrated management function (cf. Fig. 5 and Fig. 9). 

Integrated management functions publish their functionality 
via the integrated and external management interfaces. To the 
latter, only high-level management interactions are published 
(e.g. related to service management), while only low-level 
ones are published to the former (e.g. related to network 
element management). The clear separation is motivated by 
the fact that it is desired to reduce human interaction to only 
high-level objectives (e.g. business goals). 

All management functionality is implemented via fine-
grained MCs, thus naturally supporting the granularity 
requirement. Each MC exports specific interfaces. Some MCs 
interact with the inherent management plane through cross-
plane invocation, thereby connecting inherent and integrated 
management. This is useful, e.g., for monitoring performance 
parameters that are inherent to an FC. If desired, any MC may 
implement a probabilistic interface to connect to the 
probabilistic MC, thereby plugging into the probabilistic 
management framework according to Fig. 2. 

The process of capability embedding directly supports the 
overhead requirement. Firstly, probabilistic management is 
implemented as a light-weight MC itself. The switching on and 
off then reduces, for instance, to a function call to other MCs 
by the probabilistic MC (e.g. within a Linux kernel module, or 
a sensor node’s monolithic code block). 

Support for the flexibility requirement is an integrated 
feature of the INM framework, which allows the adding and 
removal of MCs. Due to the light-weight nature of the MCs, 
these processes are also light-weight. 
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Fig. 8.  Fault detection. 
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The transitivity requirement is supported in two ways. 

Assuming an MC implements a probabilistic interface as noted 
above, the MC can support transitivity directly, e.g., when the 
MC knows best how to inhibit other transitively connected 
MCs. On the other side, the probabilistic framework may take 
the role of transitively turn on and off MCs shown in Fig. 9 by 
an interaction between the probabilistic MCs in both FCs. This 
works, e.g., in such cases where the governed turning on and 
off does not impact the semantics of a management function. 

Finally, the interactivity requirement is supported by the 
external management interface, which allows external parties 
to interact with the probabilistic MC, e.g., to set new 
probability values (which might in turn be propagated to an 
MC via its probabilistic interface, cf. Fig. 2). 

Additional details on the INM framework are given in [7]. 

B. Are the numbers we obtain from a probabilistic 

management system good enough for managing a network? 

As shown in Fig. 6, as long as the system is well balanced, we 
can run the probabilistic management system on very low 
probabilities and get an error no larger than 0.2%. Even when 
reducing the probability down to as low as 30%, which in turn 
means a reduction of monitoring traffic by 70%, no accuracy is 
sacrificed for average values across the network. 

In more unbalanced scenarios, the extrapolation of values is 
less accurate than in balanced ones, and naturally accuracy of 
the observed management data decreases with smaller 
probability values. In the presented case of fault management, 
we are still able to achieve a 95% success rate in the detection 
of faults. This value is combined from both probabilistic 
management and from the effect that no service requests at all 
occur at a subset of the faulty nodes. 

The difference between balanced and unbalanced scenarios 
is smaller for fault management than for the monitoring case. 

Since fault management may be more critical in some 
scenarios than just monitoring, our results demonstrate that 
even more critical management tasks are suitable for being 
subjected to probabilistic management. 

C. Is the concept of probabilistic management acceptable 

by users and operators? 

In general, probabilistic systems lack acceptability due to their 
nature of being not intuitively understandable. Specifically, 
looking into control and management systems, there is a fairly 
large resistance to systems that incorporate a certain degree of 
randomness. If we assume that the decentralized self-managing 
design of future network management will become reality, we 
will already have a certain degree of uncertainty in the self-
managing system itself, doing configuration and performance 
management automatically. We feel that in such situations a 
certain degree of randomness does not harm. 

More interestingly, many of today’s successful networking 
technologies do depend on significant degrees of randomness. 
One of the most prominent examples is Ethernet’s highly 
successful CSMA/CD scheme, which employs randomization 
for solving distributed medium access problems. Another 
example is statistical multiplexing performed in IP networks. 
Possibly the most striking fact is that even in network security, 
randomization is a widely accepted and applied technique that 
lies at the basis of many cryptographic protocols. All of these 
scenarios share that the underlying systems contain certain 
degrees of nondeterministic behavior, which does not allow 
the application of purely deterministic mechanisms. While 
these randomization processes are sometimes difficult to 
grasp, we believe that, based on our evaluation, they will also 
be vital in future communication networks, which will be 
characterized by significant complexity where indeterminacy 
and unpredictability will play a major role. 

On the business side, it is more relevant to assess the 
commercial benefit of lowering the resource usage for network 
management and paying with less precision in some cases. It 
always makes sense to design resource-efficient systems, 
specifically, in mobile and resource-limited environments. In 
many novel network architectures, the management of very 
dynamic networks like car-to-car communication, ad-hoc 
networks and peer-to-peer is required. In such environments, 
probabilistic management helps by easing the introduction of 
management into the dynamic system, which would not be 
possible with traditional management paradigms. 

VI. RELATED WORK 

In the area of traffic measurement, the idea of packet 
sampling [8][9] has been used for reducing the amount of 
management information or the reduction of processing needs 
for high-speed link packet capturing. In order to enable 
capturing packets on high speed links with low cost, only 
every n-th packet is captured or exported. Our approach does 
not deal with a specific management function like 
measurements, but rather turns on and off randomly the 
complete function. We do for the moment not assume any 
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randomization within the function itself, which is function-
specific and therefore out of our control. 

A second area of related work is that of scheduling, 
specifically of process scheduling [10]. Assuming that our 
functions are running within process, we could argue we 
randomly set processes to sleep. In principle, our work has 
little to do with classical process scheduling, since the job or 
task is not even there to be scheduled, when it is turned off. So 
no resources are used at all. Also we do not optimize the 
resource scheduling. Rather we achieve efficiency through not 
running unnecessary many of the same functions on the 
network for gaining the same or similar results.  

The third area of related mechanisms is the class of 
randomness in media access protocols [11]. For example, 
randomized scheduling for medium access, both wired and 
wireless, is a known way of removing a deterministic 
coordination function for decentralized medium access system. 
In our case, we use a similar approach applied to decentralized 
network management functionality. 

There is quite some work in sensor and ad-hoc network 
management [12][13]. However such work does not take into 
account the approach of probabilistic management, but rather 
deal with the problem of low resource management paradigms 
to lower the cost in resource-limited networking environments. 
Work being in the same area, but specifically using also 
probabilistic behavior is the following. [14] proposes to use 
the connectivity probability of ad-hoc nodes in order to define 
clusters reporting to a management node. Thus, the 
management plane connectivity is based on a probabilistic 
behavior. We go a step further and run certain functionality on 
a node in a probabilistic way. However, we can naturally take 
the connectivity probability into account as an input to derive 
the run probability of a function (dependent on the function 
itself). The authors of [15] propose a self-managing system for 
ad-hoc network management, which spreads management 
functionality across different nodes taking into account the 
nodes’ capabilities in terms of resources. In our probabilistic 
framework, the capability would influence the probability of 
running a certain function on a certain node. 

VII. SUMMARY AND FUTURE WORK 

In this paper, we proposed a fairly generic probabilistic 
management framework for efficiently managing networks in a 
decentralized way. The probabilistic management paradigm 
allows for a generic mechanism to turn on or off certain 
management functionally based on a probability, which can be 
influenced by the operator, the capabilities of the node, the 
function itself, or any other external information. 

So far we have only scratched the surface of the potential of 
such a paradigm. We believe that in many cases it is useful to 
do without deterministic management behavior. While this is 
against the traditional thinking of telecommunications or 
internet operators and administrators, we need to consider how 
to make them comfortable with such a paradigm. For example, 
we can introduce decentralized management with a probability 

of 100%, showing that the system correctly works for some 
functions, and only then slowly reduce the percentages of 
running the functions. The resource usage reduction could then 
be used for running other functions, both management or non-
management functions alike. 

Finally, there are naturally certain application areas, which 
do not profit or where it is not feasible to run such a 
probabilistic management framework, such as real-time or 
highly reliable systems. Those must be identified and 
optimally, classified based on a suitable taxonomy, in order to 
have clear application and use cases where probabilistic 
management works and where it doesn’t. This also means that 
we need to extend and evaluate the paradigm in other 
networking systems than the network of information. 
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