
JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 1

Autonomic Communications & Network
Virtualization: A Real Self-organizing Model for

Substrate Networks
Clarissa Marquezan, Giorgio Nunzi, Marcus Brunner, Lisandro Granville

Abstract—In this paper we propose the joint use of autonomic
communications and network virtualization. We defined a full
decentralized self-organizing model which aims to reduce the
overall traffic of the substrate network by migrating virtua l
nodes. The specific contributions of this work are: (i) definition
a decentralized management architecture for network virtual-
ization; (ii) heuristics to identify cut-through traffic pa ttern
overloading links of the substrate network only correlating in-
formation of local resources; (iii) and a a fully decentralized self-
aware, and self-configuring algorithm to negotiate the migration
of virtual resources.

Index Terms—Self-organizing, Network Virtualization, Re-
source Usage, Maitenance, Virtual Resource Migration

I. I NTRODUCTION

A UTONOMIC communications is a suitable approach to
deal with complex and dynamic networks [1]. The key

of autonomic communications is of building sophisticated
networks capable to manage themselves and deal with changes
in the environment. Among several scenarios employing au-
tonomic communications [2][3][4], virtual environments de-
serve special attention due to their complexity, dynamics and
potential to be economically explored. Network virtualization
[5][6][7], for instance, is emerging as a promising technology
able to improve the large deployment of networks and the eco-
nomical relationship between service providers and substrate
network providers.

In fact the benefit of network virtualization is to outsource
the operational costs associated to the physical infrastructure
to a single provider. For instance, multimedia providers may
deploy their services, like IPTV services, without dealing
with high investments on the physical infrastructure along
different networks (core, metropolitan, and home networks,
for example) [8]. Efficient use of resources becomes of
paramount importance to operate the substrate network in
network virtualization context. The complex dependencies
and dynamic changes on requirements of resources [9][10]
demand sophisticated management techniques, like autonomic
communications.

Manuscript received December 1, 2008; revised January 11, 2007.
Clarissa Marquezan is Phd candidate of Institute of Informatics, Federal

Univertisity Of Rio Grande do Sul, Porto Alegre, Brasil, andPhd intern
student at NEC Network Research Laboratories, Heidelberg,Germany (e-
mail: clarissa@inf.ufrgs.br).

Giorgo Nunzi and Marcus Brunner are with NEC Network Research
Laboratories, Heidelberg, Germany (e-mail:{nunzi, brunner}@nw.neclab.eu).

Lisandro Granville is with Institute of Informatics, Federal Univertisity Of
Rio Grande do Sul, Porto Alegre, Brasil (e-mail: granville@inf.ufrgs.br).

Indeed, the autonomic solutions proposed so far for virtual
environments present limitations to maintain the efficientuse
of the resources in the presence of dynamic, transient changes
because they use a centralized, total-view, and off-line ap-
proach. The major limitations are the low responsiveness to
network changes, the overhead introduced by the management
traffic going until the central entity, and the high latency of
analysis and enforcement of reallocation process. Taking into
account that network virtualization is in its infancy [9], the
maintenance of efficient resource consumption on the substrate
network under dynamic, transient conditions is, to the authors
knowledge, a rather untouched research topic. Thus, we pro-
pose in this paper the joint use of autonomic communications
and network virtualization to efficiently maintain the use of
substrate resources.

We defined a full decentralized self-organizing model which
goal is to reduce the overall traffic of the substrate networkby
migrating virtual nodes. The algorithms of the self-organizing
model are executed by each physical node of the substrate
network, dismissing any kind of central entity. The analy-
sis of the conditions that triggers the resource reallocation
uses only local information of the physical node where the
analysis is executed. The adoption of a fully decentralized
execution supported by localized information, allows each
management entity to make online and autonomous decisions.
The parallel execution of all management entities produces
a self-organizing substrate network. In practical terms, the
contributions of this work are:

• the definition of a decentralized management architecture
for network virtualization;

• heuristics to identify a cut-through traffic pattern over-
loading links of the substrate network only correlating
information of local resources;

• and the definition of a fully decentralized self-aware, and
self-configuring algorithm to negotiate the migration of
virtual resources.

To validate the self-organizing model proposed here, we de-
veloped an Omnet ++ module for the decentralized control and
management architecture of the virtual model considered in
this paper. We implemented the self-organizing algorithmsto
manage the substrate network of this virtual model. The evalu-
ation scenario is based on IPTV services. As mentioned before,
the deployment of IPTV services involves heavy investments
on the physical infrastructure. So far, IPTV providers are
good candidates to use network virtualization techniques to

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 2

deploy their resources in a virtual network. Moreover, the
IPTV traffic can dynamically change according to the user’s
preferences for a certain content, and this change is exactly the
object of study in our model. Being this, we simulated virtual
IPTV networks. We compared the total traffic of the substrate
network (with and without the self-organizing model) under
varying user’s request rates for each virtual IPTV network.
The results show the efficiency of our self-organizing model
and its viability to self-manage the use of substrate resources
in network virtualization.

The remainder of this paper is described as follows. The
management architecture of the network virtualization mode
considered in this work is presented on Section 2. We intro-
duce the self-organizing model on Section 3. The evaluated
scenario is described on Section 4, while results associated to
this evaluation are discussed on Section 5. The related workis
presented in Section 6. Finally, Section 7 brings the remaining
challenges and the conclusions of this work.

II. N ETWORK V IRTUALIZATION MODEL

As first step, we illustrate the reference architecture for
virtual networks that we adopt in our work as a model.
A virtual network replicates entirely the network elements
commonly present in a physical infrastructure, like nodes and
links. Nevertheless, the coexistence of two different strata
(virtual and physical) and their mapping needs to be properly
characterized; we do this, with the help of Fig. 1. The substrate
network comprehends all physical resources belonging to an
infrastructure provider, and the virtual networks (VN) are
slices of the substrate network resources assigned to virtual
providers. Virtual links are connections between two adjacent
virtual nodes of the same virtual network. As illustrate in Fig.
1, virtual links can have a one to one mapping to substrate
links (e.g., the link A#1-C#1 of VN#1), or span different links
on the substrate network, generating a cut-through traffic on
some substrate nodes (e.g., the link A#1-E#1 of VN#1 creates
a cut-through traffic on the physical Node B).

Fig. 1. Network virtualization environment

It is out of the scope of this paper to characterize the
economical model, the parameters, and algorithms required
to define and map virtual networks into the substrate network.
Further details about the network virtualization can be found

in specific projects like GENI [11] and 4WARD [12], or in
[9][10]. However, some minimal assumptions are necessary
and presented in Fig. 2.

A Virtual Node is composed of a set of assigned fraction
of resources of the substrate node, like CPU clocks, memory,
link bandwidth, and a certain storage capacity. An important
aspect in the architecture of virtual nodes is the transparency.
Virtual nodes from different virtual networks cannot see or
exchange any type of information to assure isolation among
the providers. Additionally, the data exchanged in the virtual
node is transparent to the substrate node to preserve the
privacy of the virtual customers. Nevertheless, some minimal
primitives to inspect the activity of different slices are normally
available: as an example, the substrate controllers are normally
allowed to read the amount of computational resources used
(e.g., CPU, memory or disk) and traffic consumed.

Fig. 2. Substrate node architecture

The allocation and supervisions of the slices of a Virtual
Node is performed by a dedicated element, that we callVirtual
Manager. In an advanced setting with autonomic capability,
the Virtual Manager is also the element executing the self-
organizing algorithms. As presented in Fig 2, theMonitoring
Loop gathers relevant measured data for the self-organizing
control loop: the relevant information is the amount of network
traffic (the white box on theVirtual Manager module) and
reads/writes of memory of each virtual node deployed on the
substrate node (the light gray box on theVirtual Manager
module).

The resource consumption of a substrate node can be
divided into two classes; (i) resources allocated to a Virtual
Node and (ii) the cut-through traffic between Virtual Nodes
executed on different substrate nodes, like illustrated inFig.
1. We believe that the identification of the source consumer of
resources of a substrate node is essential for deciding how to
optimize resource allocation. Therefore, we define asVirtual
Pipe the cut-through traffic inside a substrate node. From the
point of view of the Virtual Manager, the Virtual Pipe and the
Virtual Node are treated equally as consumer of resources,
but the first one is not visible in the virtual network topology.

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 3

Note, that the virtaul pipe concept can be implemneted in
different ways. The key though for our work is, that the Virtual
Managager is able to measure the traffic of the cut-through
traffic and is able to associate it with a Virtual Network.

The Self-organizing Control Loopexecutes the autonomic
algorithm in every substrate node. Its purpose is to change
or optimize the traffic by moving a virtual node associated
to this traffic to the substrate node. Our approach relies
on a completely distributed execution of the optimization
algorithms, where the evaluation and decision to reallocate
resources is performed on each node in coordination with a
substrate neighbor node. The next section describes the details
of the self-organizing system proposed in this paper.

III. SELF-ORGANIZING MODEL

The self-organizing model is characterized by the use of
local information to identify bottlenecks situations, andby
the full distributed decision-making process to reallocate the
virtual resources. In this section, we show the virtual manager
roles and how they are related to the heuristics defined
to characterize traffic patterns. We also show the heuristics
themselves, and the self-organizing control loop.

A virtual manager is designed to be an autonomous entity
that makes decisions to reduce the resource consumption based
only on the information monitored on its substrate node. So,
when a link of a substrate node is identified as overload the
virtual manager triggers the process to identify the traffic
pattern of each virtual network using the resources of this
substrate node. The goal is to identify if some of the virtual
networks is presenting the pattern associated with cut-through
traffic.

We named the pattern associated with cut-through traffic as
“forward traffic”. The forward traffic is described as a flow
departing from a virtual node, passing-by virtual pipes (or
even virtual nodes) of the same virtual network, and arriving
in a distinct virtual node. Fig.3 shows examples of forward
traffic on virtual networks #1 and #2 (respectively VN#1 and
VN#2). In the case of VN#1, the flow departs from substrate
node A, passes through the virtual pipe on substrate node B
and is forwarded until the destination. Considering the case of
VN#2 the flow departs from substrate node C, passes-by the
virtual pipe on substrate node A, and reaches the destination
on substrate node B.

Let’s suppose that links ls
1

and ls
2

(both belonging to Ls -
notation on Table I) are considered overloaded by the virtual
managers of substrate nodes C/A, and A/B, respectively. Link
ls
1

has only the traffic flow from VN#2, while link ls
2

contains
traffic flows from both virtual networks. The challenge of the
self-organizing algorithm running within the virtual managers
is to “guess” if the flows inside these links match the forward
traffic pattern without getting any extra information than the
resources locally used by the virtual network.

We explicitly use the term “guess” because we do not
inspect the content of the traffic running inside the virtual
network. In contrast, we transparently account the amount of
resources used by the virtual network without knowing the
semantic associated to the accounted value. Thus, our traffic

pattern identification is accomplished by heuristics defined
to search for the forward pattern among the clues given by
the resources consumed by each virtual network inside the
substrate nodes.

The presence of a virtual network in a substrate node can
be accomplished by distinct virtual elements (pipes or nodes),
and the substrate resources associated to these elements are
different. So, the guessing process is different for virtual pipes
and for virtual nodes, and for this reason two heuristics were
elaborated. The first one is calledreceiving candidateheuristic
and investigates the resources used by a virtual pipe associated
with the virtual network. The second one is namedmoving
candidateheuristic and it identifies a forward traffic pattern
when a virtual node of a virtual network is deployed on the
substrate node. The details of these heuristics are explained in
the sequence.

The output of the heuristics is a list of virtual networks
to be received or moved. These lists are called, respectively,
receiving and moving candidate. An example of this output is
presented in Fig. 3. The self-organizing algorithms running in
the substrate node C identified the virtual node of VN#2 as
a moving candidate, while substrate nodes A and B identified
virtual nodes from VN#1 and VN#2 as moving candidates, and
virtual pipes from VN#2 and VN#1 as receiving candidates.

Based on the traffic pattern characterization, and the cost
evaluation of reorganizing virtual resources, the virtualman-
ager of each substrate node take the actions to reorganize the
resources of the virtual networks identified in the candidate
lists without a global view of the resources. Bellow, we present
the details of the decision-making to reorganize the resources.
The notation used in the following subsections is describedin
Table I, superscript denotes a virtual or a substrate element,
and subscript is used to identify the indexes of elements.

B Maximum bandwidth capacity of a link
T Total amount of traffic
IN Incoming traffic
OUT Outgoing traffic
Nsl

vl
Number of virtual links inside the substrate link

Ls List of links in a substrate node
VLs List of virtual links inside a substrate link
VNETLs List of substrate links of a

virtual network in a substrate node
OvLinks List of overloaded links in a substrate node
OvVLink ls List of overloaded virtual links in a substrate link
readv Amount of reads of virtual node
writev Amount of writes of virtual node

TABLE I
NOTATIONS OFSELF-ORGANIZING MODEL

A. Identification of an Overloaded Substrate Link

In our model an overloaded link is the element that starts
the evaluation of possible reorganization of virtual resources.
So, for each link lsi ∈ Ls, where i is the index of Ls, the
condition presented in (1) verifies if the substrate link ls

i should
be included in the list of overloaded substrate links OvLinks.

lsi ∈ OvLinks if T lsi > Blsi ∗ α (1)

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 4

Fig. 3. Forward traffic pattern. The virtual networks presented in this figure are based on the virtual topologies used in Fig. 1

If the OvLinks is not empty, the next step is to identify
which virtual link inside each overloaded substrate link is
consuming the resources. We defined the functionMajorT()
(2) applied for each substrate link ls

j ∈ OvLinks, where j is
the index of the substrate link inside the list OvLinks. The
goal is to verify which virtual link lvk is consuming the major
part of the resources of the substrate link ls

j , where k is the
index of the virtual network. For each substrate link ls

j a list
OvVLink lsj is created with the lv

kj , where lvkj is the virtual
link of virtual network k inside the substrate link ls

j .

lvkj ∈ OvV Link lsj if MajorT (lsj) = true, where

MajorT (lsj) =

{

true if T lvkj ≥ T lsj−T lvkj,
false otherwise

(2)

After the identification of the overloaded virtual link starts
the process to determine whether the flow(s) associated to the
virtual link matches with the forward traffic pattern.

B. Receiving Candidate Heuristic

As described above, the receiving candidate heuristic is
applied to identify a forward traffic when a virtual pipe is
associated with the overloaded virtual link inside the linklsj .
In a reduced virtual network topology like the one presentedin
Fig. 3 the identification of a forward traffic pattern in a virtual
pipe is trivial, because the input in one virtual/substratelink
is the output in the other virtual/substrate link. However,a
complex topology, where a virtual pipe is connect to more
than two virtual links, requires a detailed correlation of the
traffic flowing through the virtual links of this virtual pipe. The
receiving candidate heuristic elaborated in this work considers
these complex topologies.

We defined a set of conditions related to the traffic passing
through the virtual pipe that must be analyzed before declaring
a substrate node as a receiving candidate.1. The analysis of
the virtual pipe traffic can be done comparing the incoming
traffic against the outgoing traffic of the analyzed virtual link,
or vice-verse. For the receiving candidate heuristic we based
the analysis on the comparison of the incoming traffic against

1Virtual nodes can behave like virtual pipes forwarding the traffic. However,
this case requires different conditions which are out of thescope of this paper.

the outgoing traffic. The conditions listed below are applied
for each virtual link lvkj belonging to each OvVLinklsj list.

• Condition 1: Guarantees that no read and write is
associated to the virtual networkk.

ForwardT =

{

1 if (readv
k = 0) ∧ (writev

k = 0)
0 otherwise

• Condition 2: Identify if the main traffic of lvkj is an
incoming traffic.

IN MainT =

{

1 if INlvkj ≥ T lvkj−INlvkj ,
0 otherwise

• Condition 3: Correlate the amount of incoming traffic
of lvkj with single outgoing traffic of the same virtual
network in other substrate link belonging to VNETLs.
This correlation enables the identification of the case that
all traffic arriving in lvkj is entirely forwarded to a single
virtual link.

SingleOut =

{

1 if ∀ lsy ∈ VNETLsk : INlvkj ≥ OUTlvky ,
0 otherwise

• Condition 4: Correlate the amount of incoming traffic of
lvkj with all outgoing traffic of the same virtual network in
other substrate links belonging to VNETLs. The goal is to
detect whether the incoming traffic onlvkj is forwarded to
multiple distinct virtual links of the same virtual network.

MultipleOut =











1 if ∀ lsy ∈ VNETLsk,

andy 6= j : INlvkj ≤
(

∑

y OUTlvky

)

0 otherwise

The final analysis presented in (3) is able to determine
if the virtual link associated with a virtual network under
analysis on the substrate linklsj is supposed to be inserted
in the ReceivingCandidateList. This list is a tuple<virtual
network, virtual link>, where the first element of the tuple can
have multiple entrances, but the second one is unique.

< vnetk, lvkj > ∈ Receiving Candidate List if

ForwardT ∧ (IN MainT ∨ (SingleOut∨ MultipleOut))
(3)

The virtual manager of the substrate node will use theRe-
ceiving CandidateList during a cycle of the self-organizing
control loop.

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 5

C. Moving Candidate Heuristic

The moving candidate heuristic complements the analysis
of a forward traffic considering the perspective of a virtual
node. We compare the incoming traffic against the outgoing
traffic of each virtual linklvkj belonging to eachOvVLink lsj
list. For the moving candidate heuristic we have to identifyif
a virtual node is generating the outgoing traffic insidelvkj .

In this work, we assume that a virtual node need to use
other resources than just the virtual links to originate a traffic
flow in lvkj . We also assume that the virtual node also uses
the resources from storage devices, like memory or hard disk.
For example, a virtual streaming server needs to read the
requested media from some storage before sending this data to
the requester. Thus, the moving candidate heuristic identifies
a relationship between the outgoing traffic of linklvkj with
the amount ofreadv

k of the virtual network k. To establish
this relationship a different set of conditions are required to
identify the forward traffic pattern on a virtual node, and here
as well, the conditions are applied for each virtual linklvkj

belonging toOvVLink lsj .
• Condition 1: The virtual networkk must read data from

its virtual storage slice.

ReadData =

{

1 if (readv
k > 0)

0 otherwise

• Condition 2: The outgoing traffic oflvkj must be higher
than the incoming traffic of the same virtual link.

OUT MainT =

{

1 if OUTlvkj ≥ T lvkj−OUTlvkj ,
0 otherwise

• Condition 3: The outgoing traffic oflvkj must be associ-
ated with an amount of data retrieved fromreadv

k). The
problem here is to identify the amount of data read from
the virtual storage and forwarded throughlvkj , because
we do not inspect any kind of data packet of the virtual
network. So, the only way to identify the amount of
reads flowing as outgoing traffic oflvkj is defining a
similarity relation between the outgoing traffic oflvkj and
the resources consumed by the virtual networkk. So far,
we defined a similarity functionSim() that determines
if a given amount ofreadv

k belongs to the “interval of
similarity” of the outgoing traffic onlvkj .

Sim(lvkj, V) =

{

1 if SimBottom(lvkj) ≤ V ≤SimUp(lvkj),
0 otherwise

where,
SimBottom(lvkj)= lvkj − (lvkj ∗ δ),
SimUp(lvkj)= lvkj + (lvkj ∗ δ), and

V =
((

∑

y INlvky

)

+ readv
k

)

− ((
∑

z OUTlvkz) + writev
k) ,

whereδ ∈ ℜ : 0 ≤ δ ≤ 1,
y, z are the index ofVNETLsk, andz 6= j.

The listMoving CandidateList is created after the analysis
presented in (4), and this list is also composed of the tuple
<virtual network, virtual link>.

< vnetk, lvkj > ∈ Moving Candidate List if

ReadData ∧ OUT MainT ∧ Sim(lvkj , V)
(4)

In the sequence, we present the self-organizing control loop
that analyzes the traffic of the substrate links according tothe

heuristics described above, and if necessary applies a moving
mechanism to reallocate the virtual resources.

D. Self-organizing Control Loop

The self-organizing control loop is detailed in Algorithms1,
2 and 3. The first stage of the control loop is to characterize the
conditions that trigger the reallocation of the virtual resources.
The equations previously described in this section are used
to locally identify the status of the resources in a substrate
node and create the receiving and moving candidate lists
(between steps 1 and 4 of Algorithm 1). Atfer this first stage
the Algorithms 2 and 3 are executed in parallel in the same
substrate node, as stated in “Step 6” of Algorithm 1.

During the execution of Algorithms 2 and 3, an offer-based
behavior is played by the virtual managers. The Algorithm 2
makes the virtual manager of a substrate node, communicate
with its substrate neighbors offering itself to receive a virtual
node associated with a virtual network presenting some cut-
through traffic. The virtual manager offering itself does not
know what are the virtual infrastructures of their neighbors.
For this reason, the Algorithm 3 is designed to receive those
offers/requests to move a virtual node and choose the best one
that matches with its requirements to move a virtual node.

In case of a positive matching, there is also the evaluation
of the cost-efficiency relation to execute the migration of the
requested virtual node (Step 3 of Algorithm 3). An initial
study about the cost-efficiency on migrating virtual nodes
was described in [13]. If the matching and the evaluation
are positive both algorithms will prepare the infrastructure
required to apply the migrating mechanism. It is out of the
scope of this paper describe the details of the migrating
mechanism.

The key of Algorithm 2 is to create an ofter to a virtual
node,

Algorithm 1 Self-organizing Control Loop

Step 1 CreateOvLinks list (based
on Equation (1)).

Step 2 CreateOvVLink lsj for eachlsj in OvLinks

(based on Equation (2)).
Step 3 For each linklvkj in OvLinks verify if

it belongs toReceivingCandidateList (based
on Equation (3).

Step 4 For each linklvkj in OvLinks verify if
it belongs toMoving CandidateList (based
on Equation (4).

Step 5 If ReceivingCandidateList and
Moving CandidateList are empty,
GOTO Step 7.

Step 6 ExecuteAlgorithm 2 andAlgorithm 3 .
Step 7 Wait next self-organizing control loop

cycle and GOTOStep 1.

Our self-organizing model considers that a virtual node can
not migrate to a substrate node that is not adjacent. A multiple
hop migration violates our assumption of local based decision-
making, because the migration of a virtual node among

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 6

Algorithm 2 Receiving Candidate Algorithm

Step 1 For eachvnetk in ReceivingCandidateList
find the most overloaded linklvkj and send
request for the substrate neighbor node of this
link to move the virtual node ofvnetk.

Step 2 For each request wait for the reply of the
substrate neighbor during an interval of timet.

Step 3 If negative reply forvnetk
remove the tuple associated withvnetk
and lvkj from ReceivingCandidateList,
GOTO Step 2.

Step 4 If positive reply forvnetk
activate migration under the perspective of
substrate node that receives the virtual node.

Step 5 If timeout of intervalt
for vnetk, remove all tuples withvnetk
from ReceivingCandidateList.

Algorithm 3 Moving Candidate Algorithm

Step 1 For eachvnetk in Moving CandidateList
wait an interval of timet for a request to move
the virtual node associated withvnetk.

Step 2 If there is avnetk on Moving CandidateList
that matches with the received request,
GOTO Step 3, otherwise, send a negative
reply to substrate node owner of the received
request and GOTOStep 1.

Step 3 If the cost-efficiency is positive for
vnetk, send a positive reply message to substrate
neighbor, remove all tuples withvnetk from
Moving CandidateList, and activate migration
under perspective of substrate node that moves
the virtual node, otherwise send negative reply.

Step 4 If timeout of intervalt
for vnetk, remove all tuples withvnetk
from Moving CandidateList.

different substrate nodes requires the analysis of all resources
involved in the process. We can ensure that a multiple hop
migration will never happen through the employment of the
negative answer on Step 2 of Algorithm 3 that avoids a request
to move a virtual node be forwarded among neighbors until
find a positive match.

In this sense, if there is a forward traffic between two virtual
nodes separated by a chain of virtual pipes, the eliminationof
the virtual pipes (i.e., the cut-through traffic), and thus the
approximation of the virtual nodes will require more than
one self-organizing cycle. However, given the nature of the
algorithms running inside the self-organizing control loop,
both virtual nodes can migrate in parallel during the same
cycle.

IV. T ESTBED

An architecture proposed for IPTV [14] is depicted in Figure
4. The Super Head-End (SHE) element of such architecture is

responsible for receiving and storing the flows, in this caseTV
channels and videos, from national content providers. These
flows are forwarded through a core network infrastructure, and
stored on the Video Hub Offices (VHO). Then the flows are
transported over the metropolitan network and stored on the
Video Serving Office (VSO) devices. Finally, the IPTV content
reaches the home network and is delivered to the Set-Top-Box
inside the television of the end user. For this testbed we assume
that the SHE, VHO, and VSO are the elements virtualized and
we show the self-organizing model applied to manage the VSO
elements.

Fig. 4. IPTV Architecture

The testbed is composed of two IPTV providers covering
the same geographic region. The network topologies (substrate
and virtual) and the initial mapping of the virtual IPTV
networks are depicted in Fig. 5. We consider a ring topology
for both substrate and virtual networks, since this kind of
topology is presented as a economically alternative for the
deployment of IPTV infrastructures [8]. The substrate network
is composed of 9 substrate nodes (“sn”), and each virtual
IPTV network is composed of 3 adjacent nodes on the virtual
network topology, but not directly connected on the substrate
network topology. Between each virtual node there are 2 vir-
tual pipes2. To simulate the traffic inside the virtual networks,
we defined a user request model (extending concepts of [15]).
The next subsections present the user’s request model, the
routing process within the virtual networks, and the monitoring
process to collect data used by the self-organizing controlloop.

A. User’s Request model

There are two main concepts on our request model: commu-
nity and preferences. A community characterizes the behavior
of a group of users belonging to a virtual IPTV provider.
There is a direct mapping between a community and a virtual
network. The main parameters of a community are: number
of movies requested per hour - request rateλ (reqs/hour),
and the preference associated with each movie. A preference
determines how often a movie will be requested, and it is
defined as an array of ranges. For example, a community#1
has 3 movies and the array of ranges describing the preferences
of the movies contains the values “0.3, 0.7, 1”. This means

2The number of virtual nodes and virtual pipes can be defined bya cost
model relating the amount of resources used for deploying a virtual network
and the flexibility desired to reorganize the substrate network. This cost model
is not the focus of this paper.

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 7

Fig. 5. Virtual topologies and initial mapping of virtual elements

that movie#1 has 30% of changes to be chosen, movie#2 40%
and movie#3 30%.

A request generated in our model is denoted by the tuple
<comm id, req time, vnodesrc, movie>. The comm id pa-
rameter is determined by a round robin selection on the list
of communities. The time for the next request follows the
exponential distribution presented in (5).

req time ∼ Exp

(

1

(λ/3600)

)

(5)

The source virtual node and the requested movie are re-
quired by the IPTV applications running within the virtual
networks, so that a data flow can be created. The virtual
node requesting a movie is chosen according a uniform
distribution among all virtual nodes of its virtual network
(U(low vnode id, high vnode id)). The requested movie is
defined based on functionDefMovie(comm id, uniform),
where uniform ∼ U(0, 1). The random valueuniform
will be compared with the intervalRange, a field of list
MapRange (that maps the range array of preference for each
movie of a community). For instance, following the example
of the array of ranges described above, for community#1 and
movie#1,Range has the interval[0, 0.3), for movie#2Range
is equal[0.3, 0.7), and movie#3 hasRange equal[0.7, 1). The
definition of the movie is detailed in (6).

DefMovie(comm id, uniform) =






movie if ∃ < comm, Range, movie >∈ MapRange :
(comm id = comm) ∧ (uniform ⊂ Range)

−1 otherwise
(6)

The process to generate a user request finishes with the
definition of the virtual node hosting the selected movie.
Being this, the request is sent to the destination node, that
identifies the source virtual node and start the transmission
of the requested movie. The load of the virtual networks will
vary according with the request rate and the movie preference.
The request rate impacts the total amount of traffic consumed
by the virtual network, and the preference determine which
links will be more overloaded by the requests of the users.

B. Routing Process Within the Virtual Networks

To enable the packet transmission between virtual nodes we
use a shortest path routing algorithm provided by the simulator
Omnet++. The routes to the virtual nodes are recalculated
periodically during the life time of a virtual network. The
routing algorithm receives “hints” from virtual manager ofthe
substrate node, about the presence of virtual pipes on substrate
neighbors. Thus, a virtual node can find a path to a virtual
neighbor even if there is no substrate adjacent connection
between the virtual neighbors.

C. Monitoring Process

The self-organizing loop depends on the monitoring process
to take decisions. We defined a two-step monitoring process.
On the first step all data passing through the measurement
points is stored. Indeed, we don’t store the data itself, but
the size of the packets received/sent and the size of blocks
of memory/storage read and written are saved in a first-stage
buffers. Distinct buffers are always used for network-related
and memory/storage-related resources during the monitoring
process. The second step is activated periodically and for the
experiments we use an interval of 10s. All size of the packets
or blocks of the first-stage buffers are summed and stored in
the second-stage buffers. At the end of the second-step, the
first buffers are erase, and no history of the received/sent or
read/write data is kept for the next second-step monitoring
process.

When the self-organizing control loop starts a cycle, it
first determines the amount of network and memory/storage
resources consumed within two self-organizing loops. The
amount of used resources is the average obtained after pro-
cessing data inside the second-stage buffers. Differentlyfrom
the monitoring process, at the end of a self-organizing cycle we
don’t clear the second-stage buffer. We use a sliding window
to keep part of data inside the second-stage buffer and erase
the rest of the data.

V. EVALUATION

We defined 2 sets of experiments to be executed with
the testbed. The first experiment presents the behavior of

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 8

v n e t A 0 . 4 _ v n e t B 0 . 6 (w i t h o u t s o n)

v n e t A 0 . 5 _ v n e t B 0 . 5 (w i t h o u t s o n)

v n e t A 0 . 6 _ v n e t B 0 . 4 (w i t h o u t s o n)

v n e t A 0 . 4 _ v n e t B 0 . 6 (w i t h s o n)

v n e t A 0 . 5 _ v n e t B 0 . 5 (w i t h s o n)

v n e t A 0 . 6 _ v n e t B 0 . 4 (w i t h s o n)

T i m e (s)

1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6. Total traffic of the substrate network.

l i n k _ s n 1 _ s n 2

l i n k _ s n 2 _ s n 3

l i n k _ s n 3 _ s n 4

l i n k _ s n 4 _ s n 5

l i n k _ s n 5 _ s n 6

l i n k _ s n 6 _ s n 7

l i n k _ s n 7 _ s n 8

l i n k _ s n 8 _ s n 9

l i n k _ s n 9 _ s n 1

T i m e (s)

1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 5 0 0 0 0 0 0 0 0 0 0 0

Fig. 7. Traffic per substrate link.
(Without son - 0.4VN#1 0.6 VN#2)

l i n k _ s n 1 _ s n 2

l i n k _ s n 2 _ s n 3

l i n k _ s n 3 _ s n 4

l i n k _ s n 4 _ s n 5

l i n k _ s n 5 _ s n 6

l i n k _ s n 6 _ s n 7

l i n k _ s n 7 _ s n 8

l i n k _ s n 8 _ s n 9

l i n k _ s n 9 _ s n 1

T i m e (s)

1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 8. Traffic per substrate link.
(With son - 0.4VN#1 0.6 VN#2)

self-organizing model when the request rate change from a
lower request rate to a higher request rate. The second set of
experiments verifies the efficiency of the self-organizing model
when the interval to activate the self-organizing control loop
varies from 1s to 20s, and when the preferences of the movies
are different for each virtual network. Table II presents the
parameters of the substrate and the virtual networks that are
fixed for both sets of experiments.

Parameter Value

Total number of substrate nodes 9
Number of virtual networks 2
Number of virtual nodes per VN 3
Data rate of substrate links 2Gbit/s
Data rate of virtual link 1Gbit/s
Size of virtual storage 50GB
Size of each movie 4GB
Overloaded link thresholdα 0.7
Similarity factor δ 0.2
Type of IPTV transmission Video on demand
Number of communities 2
Number of movies per community 3
Duration of movie 100 min
Placement of the movies Movie#1 ⊢ Virtual node A
for each virtual network Movie#2 ⊢ Virtual node B

Movie#3 ⊢ Virtual node C
Preference I (P-I) Movie#1 - 30%

Movie#2 - 20%
Movie#3 - 50%

Preference II (P-II) Movie#1 - 50%
Movie#2 - 20%
Movie#3 - 30%

Preference III (P-III) Movie#1 - 30%
Movie#2 - 50%
Movie#3 - 20%

TABLE II
FIXED PARAMETERS

A. Change on Request Rate

At the beginning of the experiment the total request rate
λ of the testbed is fixed to 100 req/hour. This amount of
requests is shared by the two virtual networks. We executed
the experiments with three groups of sharedλ per virtual
network: in group 1 VN#1 has 40% and VN#2 has 60%
(0.4 VN#1 0.6 VN#2); for group 2 each virtual network has
50% of λ (0.5 VN#1 0.5 VN#2); and group 3 has 60% for

VN#1 and 40% for VN#2 (0.6VN#1 0.4 VN#2). After 3
hours of transmission we changed the totalλ to 500 req/hour,
but we keep the percentage of the sharedλ after the change. In
this experiment, the interval among the self-organizing cycles
is fixed to 10s, and the preference of the movies is fixed as P-
III for both virtual networks. Figs.6-8 illustrate the associated
results of this experiment.

Fig.6 brings the total traffic of the substrate network with
and without the self-organizing model. The three groups of
λ present the same behavior when the self-organizing model
is not active. In this case the total traffic consumed in the
substrate network goes from [1.8; 2.7] Gbit/s up to [11.6; 12.1]
Gbit/s, during a period of 100 min that represents the interval
to transfer a entire movie. When the self-organizing model is
active in the network we can see on Fig.6, that before the end
of the transmission of one movie the reorganization of the
virtual resources occurs. After the re-organization, the total
traffic consumption decreases approximately 4.2Gbit/s.

Fig.7 and Fig.8 describe the traffic consumption per sub-
strate link when the distribution ofλ is given by group
1 (0.4 VN#1 0.6 VN#2). When the self-organizing in not
active (Fig.7) there are three main flows being transmitted.The
first one is passing through “linksn1 sn2”, “link sn8 sn9”,
and “link sn9 sn1”. These links contain the requests for
movies 1 and 3 from virtual nodes A#1,A#2 to C#1,C#2.
The second flow is related to requests for movie 2 (hosted on
virtual nodes B#1 and B#2) from the users on virtual nodes
A#1 and A#2. This traffic is passing through “linksn2 sn3”,
“link sn3 sn4”, and “link sn4 sn5”. Finally the third flow is
associated with the requests for the movie 3 (hosted on virtual
nodes C#1 and C#2) from the users on virtual nodes B#1
and B#2, and the traffic is flowing through “linksn5 sn6”,
“link sn6 sn7”, and “link sn7 sn8”.

In this scenario of test, the self-organizing model detectsthat
substrate links around substrate node sn5 are overloaded. The
preference P-III makes the movies hosted in this substrate node
more popular, and thus there is more traffic going out from
this substrate node. Moreover, P-III also determines that the
second more requested movie is hosted inside substrate node
sn 2. So, users from substrate node sn5 tends to request more
movies in sn2 than in sn8 (Fig.5) for both virtual networks,
and this makes the traffic in the left size of sn5 be higher
than on the right side (Fig.5). The next step is to identify the

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 9

w i t h o u t _ s o n

w i t h _ s o n _ 1 s

w i t h _ s o n _ 5 s

w i t h _ s o n _ 1 0 s

w i t h _ s o n _ 1 5 s

w i t h _ s o n _ 2 0 s

T i m e (s)

1 0 0 0 0 1 5 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 9. Scenario VN#1P-I VN#2 P-I

w i t h o u t _ s o n

w i t h _ s o n _ 1 s

w i t h _ s o n _ 5 s

w i t h _ s o n _ 1 0 s

w i t h _ s o n _ 1 5 s

w i t h _ s o n _ 2 0 s

T i m e (s)

1 0 0 0 0 1 5 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 10. Scenario VN#1P-I VN#2 P-II

w i t h o u t _ s o n

w i t h _ s o n _ 1 s

w i t h _ s o n _ 5 s

w i t h _ s o n _ 1 0 s

w i t h _ s o n _ 1 5 s

w i t h _ s o n _ 2 0 s

T i m e (s)

1 0 0 0 0 1 5 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 11. Scenario VN#1P-I VN#2 P-III

virtual node that is consuming more resources. The graphic
presented in Fig.8 has VN#2 with 60% of the total request rate,
and thus this virtual network is consuming more resources of
the substrate network, and is identified by the self-organizing
model to be moved.

Finally, we need to know which virtual nodes of VN#2
should be moved. The self-organizing algorithm is executed
and at the end of the cycle two virtual nodes of VN#2 were
migrated. The number of virtual nodes that move is transparent
for the system. Analyzing the log files it is possible to identify
which virtual nodes moved to which substrate nodes. In this
scenario of test, virtual node A#2 moved from sn2 to sn 3,
and virtual node B#2 moved from sn5 to sn 4.

The self-organizing model reacted in the expected way for
traffic load imposed by the request model configured for this
experiment. We concluded that differences between the request
load of distinct virtual networks (like 20% of the total request
load) does not present a significant impact on the total traffic
consumption. We also concluded that the preferences of the
movies play an important role on the decision of which virtual
node should be moved, and where to move this virtual node.

B. Varying Preferences and Execution Interval of Self-
organizing Control Loop

For this experiment we fixed the total number of requests
in the substrate network to 500 req/hour, and each virtual
network has 250 req/hour. There are two dimensions varying.
The first one is the interval of self-organizing execution that
varies among 1s, 5s, 10s, 15s, 20s. The second dimension is
related to the preferences of the movies, and we present the
combination of the preferences between the virtual networks.
Figs.9-11 show the total traffic consumed in the network for
this set of experiment.

Comparing the graphics of Figs.9-11 it is visible that
the preferences of the movies impact the self-organization
efficiency. Fig.9 presents the case where the users of both
virtual networks have the same preference for the movies. The
consequence is that the scenario in Fig.9 is more overloaded
then the others. The other two scenarios, respectively from
Fig.10 and Fig.11, take just one round to reorganize the virtual
nodes. However, the graphic of Fig.9 shows that two rounds
of reorganization of the virtual nodes are required, and there-
sultant traffic is lower then the other cases. For example, after
the last reorganization the traffic consumption in “VN#1P-
I VN#2 P-II” and “VN#1 P-I VN#2 P-III” is within the

interval of [7; 7.7]Gbit/s In contrast, “VN#1P-I VN#2 P-
I” takes more time to reach the stability, but the resultant
traffic in the substrate network is within [4.3; 4.8]Gbit/s.These
experiments indicate that the more overloaded is the substrate
network the better will be the efficiency of the self-organizing
model.

Now, if we analyze the graphics of Figs.9-11 considering
the interval of self-organizing execution, we also verify that
it plays an important role in our model. In all scenarios
there are re-organizations when the interval of self-organizing
execution is smaller than 20s. This behavior indicates that
there is a relationship between the monitoring process and
the self-organizing model. The monitoring process used for
this experiments is based on sliding windows that keep part
of the measurements executed in past cycles of self-organizing
control loop, and can perhaps masquerade or postpone required
self-organizations. An future study about the relationship be-
tween monitoring process and self-organizing might improve
the efficiency of the self-organizing model.

An interesting behavior is observed on scenario “VN#1P-
I VN#2 P-I” (Fig.9). The execution of this scenario with
interval of self-organization of 1s, 5s, and 10s presents the
same curves (from now on we will refer just the interval
of 10s represented by the case withson 10s). The same
scenario with interval of 15s (withson 15s) presents distinct
results after the self-organization. The cases withson 10s
and with son 15s execute the first round of reorganization
approximately in the same time (withson 10s executes the
reorganization 1.5 min before withson 15s). Both cases exe-
cute two rounds of self-organization but the second one occurs
in different moments.

The case withson 15s executes the second round of self-
organization approximately 38 min after the first round, and
reaches a stable state where the overall traffic consumption
on the network is within [5.3;5.8]Gbit/s. Case withson 10s
takes 101 min to execute the second self-organization round,
and then it also reaches a stable state with traffic con-
sumption within [4; 4.5]Gbit/s. The maximum reduction on
traffic consumption achieved by withson 15s is 52%, while
with son 10s reaches 62% (if compared with the traffic con-
sumption when the self-organizing is not active). The early
execution self-organization on case withson 15s does not
guaranteed that it would present a better efficiency overtime.
As evidenced by case withson 10s, a later reorganization
reduced even more the total traffic consumed in the substrate

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 10

network. To understand the reason for this difference we
have to analyze the behavior of the each substrate link.
Fig.12 presents the traffic inside the substrate links when case
with son 10s is executed, and Fig.13 illustrate the traffic for
case withson 15s.

l i n k _ s n 1 _ s n 2

l i n k _ s n 2 _ s n 3

l i n k _ s n 3 _ s n 4

l i n k _ s n 4 _ s n 5

l i n k _ s n 5 _ s n 6

l i n k _ s n 6 _ s n 7

l i n k _ s n 7 _ s n 8

l i n k _ s n 8 _ s n 9

l i n k _ s n 1 _ s n 9

T i m e (s)

1 0 0 0 0 1 5 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 12. Scenario VN#1P-I VN#2 P-I - Case withson 10s

l i n k _ s n 1 _ s n 2

l i n k _ s n 2 _ s n 3

l i n k _ s n 3 _ s n 4

l i n k _ s n 4 _ s n 5

l i n k _ s n 5 _ s n 6

l i n k _ s n 6 _ s n 7

l i n k _ s n 7 _ s n 8

l i n k _ s n 8 _ s n 9

l i n k _ s n 9 _ s n 1

T i m e (s)

1 0 0 0 0 1 5 0 0 0

T
ra

ff
ic

(B
it

)

0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 13. Scenario VN#1P-I VN#2 P-I - Case withson 15s

The main differences between Fig.12 and Fig.13 are the
substrate links affected by the self-organizing cycle. The
initial round of self-organization on both cases is triggered by
“link sn7 sn8”, however the movement of virtual nodes was
not the same. Case withson 10s moved 2 virtual nodes on
the first round, while case withson 15s moved only 1 virtual
node. Decisions of which virtual nodes should be moved in
a round of self-organization cause consequences on all sub-
sequent decisions. In this sense, the the interval of executing
the self-organization control loop is a relevant parameterwhen
there is an overloaded scenario. This conclusion is supported
by the fact that cases withson 10s and withson 15s on
the other two scenarios (Fig.10 and Fig.11) present a more
stable behavior. This experiment shows that an specific study
about the execution interval of self-organizing control loop
is required to determine the parameters that produce the best
results considering different loads on the substrate network.

VI. RELATED WORK

On a first sight, the proposed self-organizing model might
be seen an extension of existing virtual machine live migration.
Recently, self-organization techniques [16][17] have been em-
ployed on server virtualization scenarios [18][3][19]. Inthese
cases, the virtual machines are self-organized according to

the workloads of the physical nodes, and generally, this self-
organization is accomplished migrating virtual machines to
physical ones with lower workloads. However, the metrics tra-
ditionally used to determine the workload of virtual machines
are CPU and memory, and in a virtual network the bandwidth
consumption is one major metric to be considered in the
migration process. Beyond these metrics, virtual network live
migration is different from virtual machine migration because
it has also to deal with virtual topology issues and routing
connections reconfigurations.

A very recent research on virtual router migration is pre-
sented by Yi Wang et al. [6]. In this paper the authors proposed
VROOM, a virtual router migration mechanism, where the
virtual interfaces of the routers are not directly mapped to
physical ports and in this sense it is possible to migrate a router
among different physical devices. The authors presented the
migration mechanism itself and argued the advantages of using
this approach to deal with management changes, planning, and
new service deployment. However, nothing was mentioned
about the analysis to trigger the router migration, and how
this approach can help to reduce the resource consumption on
the substrate network.

Since network virtualization is a very new research area,
there are few proposals properly considering maintenance of
resource management. Until now the focus of the researches
are the efficient mapping of virtual networks to the substrate
network. The work presented by Houidi et al. [10] explicitly
considers autonomic principals on their mapping process. On
the other hand, Yuy et al. [9] do not use autonomic features,
but the authors employ splitting and migration mechanism to
reorganize the mapping of virtual links used by each virtual
network.

In [10], Houidi et al. present a distributed and autonomic
mapping framework responsible for self-organizing the vir-
tual networks on top of the substrate network every time
a new deployment request arrives. This request triggers the
autonomic elements, which in their turn, exchange messages
to build a global view of the all virtual network topologies
and decide where to place/replace the resources of the virtual
networks. Despite the fact that the approach presented in
[10] employs autonomic features and decentralization on the
reallocation mechanism itself, the decision of when and how
reorganize the substrate network is still based on external
and global view approach. As discussed before, this design
is not appropriated to deal with dynamic, transient changeson
resource consumption.

The work presented by Yuy et al. [9] is specially target to
deal with dynamic requests for embedding/removing virtual
networks from the substrate. The authors map the constrains
of the virtual network to the substrate network by splittingthe
requirements of one virtual link in more than one substrate
link. The reorganization is accomplished migrating/realocating
split virtual links to other substrate network links. A time
window is used to regulate when a reorganization of the virtual
network links is required. The problem of this approach is
defining an appropriate time window able also to deal with
the dynamics of the virtual network life cycle, and not only
with the dynamics of the requests to embed.

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 11

Splitting and migrating virtual links are actions comparable
to rerouting techniques on previous virtual networks envi-
ronments [20]. However, network virtualization enables the
resource management beyond rerouting traffic. As presented
in this paper we can migrate virtual nodes to better use the
substrate resources. Actually, the authors of [9] mentioned
that the migration of virtual nodes is their future work. We
believe that the our self-organizing model and the mapping
model defined by Yuy et al. are complementary solutions for
the efficient resource management of network virtulization
technology.

VII. C ONCLUSION

In this paper we presented a self-organizing model for
substrate networks based on network virtualization concepts.
Our work contributes to the research community on autonomic
communications with lessons of how to build a self-organizing
network without global knowledge or synchronization among
the autonomic entities. The experiments proved that even
without external management entities, or global view of the
substrate network, it is possible to efficiently manage the
resources. Our model also contributes to the network virtu-
alization field. We showed that efficient maintenance of the
substrate network can be achieved through the reorganization
of the virtual resources. As part of future work we plan to
introduce new self-* features in our model. Indeed, the next
step of this research is the definition of a self-configuration
and a self-optimization process to adapt the parameters of
the self-organizing control loop and improve the success of
a reorganization. Other directions of our work are related to
the network virtualization context. We intend to investigate
the cross-layer interactions between the management tasks
executed on the substrate network and within the virtual
network.

ACKNOWLEDGEMENT

This work was partly funded by the Brazilian Ministry of
Education (MEC/CAPES, PDEE Program, process 4436075),
and by the European Union through the 4WARD project in the
7th Framework Programme [12]. The views expressed in this
paper are solely those of the authors and do not necessarily
represent the views of their employers, the 4WARD project,
or the Commission of the European Union.

REFERENCES

[1] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A surveyof
autonomic communications,”ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 1, no. 2, pp. 223–259, December 2006.

[2] P. k. Mckinley, F. A. Samimi, J. K. Shapiro, and C. Tang, “Service
Clouds: A Distributed Infrastructure ofr Constructing Autonomic Com-
munication Services,” inDASC’06: Proceeding of the 2nd IEEE Inter-
national Symposium on Dependable, Autonomic and Secure Computing,
2006, pp. 341–348.

[3] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and D. Chess, “Server
virtualization in autonomic management of heterogeneous workloads,”
in Proceeding of 10th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2007), May 2007, pp. 139–148.

[4] T. Guan and E. Zaluska, “An Autonomic Service Discovery Mechanism
to Support Pervasive Device Accessing Semantic Grid,” inProceedings
of The 4th IEEE International Conference on Autonomic Computing
(ICAC2007), Jacksonville, Florida, USA, 2007.

[5] N. Niebert, I. E. Khayat, S. Baucke, R. Keller, R. Rembarz, and J. Sachs,
“Network Virtualization: A Viable Path Towards the Future Internet,”
Journal Wireless Personal Communications, vol. 45, no. 4, pp. 511–
520, June 2008.

[6] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford,
“Virtual routers on the move: live router migration as a network-
management primitive,” inSIGCOMM ’08: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication. New York, NY,
USA: ACM, 2008, pp. 231–242.

[7] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your
spare time,” inACM SIGCOMM Computer Communications Review, Jan
2007.

[8] S. Han, S. Lisle, and G. Nehib, “IPTV Transport Architecture Alterna-
tives and Economic Considerations,”IEEE Communications Magazine,
vol. 46, no. 2, pp. 70–77, 2008.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Computer Communications Review, vol. 38, no. 2, pp. 17–29,
2008.

[10] I. Houidi, W. Louati, and D. Zeghlache, “A Distributed and Auto-
nomic Virtual Network Mapping Framework,” inProceedings of Fourth
IEEE/IFIP International Conference on Autonomic and Autonomous
Systems, 2008. ICAS 2008, March 2008, pp. 241–247.

[11] GENI, “Global environment for network innovations,” 2008, available
at http://www.geni.net/office/office.html.

[12] 4WARD, “The fp7 4ward project,” 2008, available at http://www.
4ward-project.eu/.

[13] C. Marquezan, J. Nobre, L. Granville, G. Nunzi, D. Dudkowski, and
M. Brunner, “Distributed reallocation scheme for virtual network re-
sources,” inIEEE International Conference on Communications (ICC
2009), 2009, Submitted.

[14] N. Degrande, K. Laevens, D. D. Vleeschauwer, and R. Sharpe, “Increas-
ing the User Perceived Quality for IPTV Services,”IEEE Communica-
tions Magazine, vol. 46, no. 2, pp. 94–99, 2008.

[15] D. Agrawal, M. S. Beigi, C. Bisdikian, and N. Lee, “Planning and
Managing the IPTV Service Deployment,” inProceeding of 10th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2007), 2007, pp. 353 – 362.

[16] K. Hermann, “Self-organizing replica placement - a case study on
emergence,” inIEEE First International Conference on Self-Adaptative
and Self-Organizing Systems (SASO 2007), 2007.

[17] J.-L. Lu, F. Valois, and D. B. M. Dohler, “Fisco: A fully integrated
scheme of self-configuration and self-organization for wsn,” in IEEE
Wireless Communications and Networking Conference, 2007.WCNC
2007. IEEE Computer Society, March 2007, pp. 3370 – 3375.

[18] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtual-
ization: integration and load balancing in data centers,” in SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[19] X. Y. Wang, D. Lan, X. Fang, M. Ye, and Y. Chen, “A resource
management framework for multi-tier service delivery in autonomic
virtualized environments,” inIEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2008), 2008, CDROM.

[20] Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto,
and M. Murata, “Gradually Reconfiguring Virtual Network Topologies
Based on Estimated Traffic Matrices,” inProceedings of 26th IEEE In-
ternational Conference on Computer Communications. IEEE INFOCOM
2007, May 2007, pp. 2511–2515.

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, XXXX 2009 12

PLACE
PHOTO
HERE

Clarissa Marquezan Biography text here.

PLACE
PHOTO
HERE

Giorgio Nunzi Biography text here.

PLACE
PHOTO
HERE

Marcus Brunner Biography text here.

PLACE
PHOTO
HERE

Lisandro Granville Biography text here.

