
Enhancing Classifiers through Neural Network Ensembles  
 
 

Alexandru Onaci, Camelia Vidrighin, Mihai Cuibus, Rodica Potolea 
Technical University of Cluj-Napoca 

Camelia.Vidrighin@cs.utcluj.ro 
 
 

Abstract 
 

Artificial neural networks are known to have strong 
generalization abilities, but they entirely lack 
comprehensibility, due to their connectionist nature. 
Neural network ensembles augment this characteristic, 
making them less appealing in domains where 
comprehensibility is as important as accuracy. This 
paper presents the implementation of a new system 
based on a method for combining ensembles of neural 
networks with symbolic learners. The focus is on 
enhancing the symbolic classifiers by using a neural 
network ensemble as a pre-processing step for them. 
The results obtained during the evaluations on the new 
system have confirmed that the approach is suitable 
for enhancing the performance of symbolic classifiers. 
 
 
1. Introduction 
 

Machine learning techniques can be split into two 
major categories, the symbolic and the connectionist 
learning approaches. The symbolic techniques involve 
mechanisms for representing knowledge in a structured 
way, such as rules that can be easily comprehended by 
the user. In connectionist learning techniques the 
knowledge learned is not transparent to the user, but 
represented throughout a connected network of units. 

A representative example of connectionist methods 
is that of the neural networks. During the last few 
years their utility has been reconfirmed in various 
categories of problems, such as function 
approximation – including time series prediction and 
modeling, classification – including pattern and 
sequence recognition, or data processing – filtering, 
clustering, blind source separation and compression. 
Applications areas include pattern and sequence 
recognition, medical diagnosis, stock-market 
prediction, credit assignment and machine monitor and 
control. 

Neural networks work by taking a set of inputs and 
creating hidden interdependencies between them in 
order to produce an output. Therefore they can be 
applied in any situation where a relation between the 
input and the output exists, even if the relation is not 
obvious and cannot be easily represented as production 
rules. 

There are two main inconveniences related to 
artificial neural networks, namely their lack of 
transparency and instability. The lack of transparency 
is due to the fact that they learn the separation hyper-
planes by means of weights and activation functions, 
which encode the information inside the network 
architecture. This has lead to a reluctance of employing 
them in some application domains.  

Another reason for their reduced usage in real 
world problems is induced by their instability. That is, 
small changes in the training data may result in very 
different models, thus affecting the performance on 
unseen data [12]. 

In order to solve this stability problem artificial 
neural network ensembles have been introduced. In a 
neural network ensemble several networks are trained 
to approximate the same function. The prediction of 
the ensemble is the combination of the results obtained 
by each individual network. It has been shown [6] that 
the generalization ability and the stability of an 
artificial neural network ensemble are better than that 
of a single network. However, the network adds a new 
layer of complexity and its comprehensibility is 
inferior to that of a single neural network. 

In order to address this problem, Zhou [14] 
introduces C4.5 Rule PANE (C4.5 Rule Preceded by 
Artificial Neural Ensemble), a system which uses a 
neural network ensemble as a preprocess step for a rule 
induction algorithm. The main idea is to try and extract 
rules while keeping the accuracy as close as possible to 
that of the neural network ensemble. The rule 
induction algorithm used is C4.5 Rule. It is derived 
from Quinlan’s C4.5 decision tree [8]. Zhou argues 
that such an approach is particularly beneficial in 
application areas where the comprehensibility is as 



important as the generalization ability. One such 
domain is that of medical diagnosis and prognosis, 
where the large amount of patient data can be 
processed by classification systems in order to provide 
valuable support to the diagnosis process. Besides the 
accuracy needed in such cases, the transparency of the 
prediction process is also of great importance, because 
the physician needs to validate its assumptions against 
the knowledge learned by the system. To make that 
possible, the system must present its knowledge in 
structured form.   

This paper adopts an approach similar to that found 
in [14] to construct a system which uses a neural 
network ensemble as a pre-processing step for a 
symbolic classifier. The evaluation is performed on 
several symbolic classifiers. Also, several methods for 
building the ensemble neural networks are explored. 

The rest of the paper is organized as follows. 
Section 2 presents the theoretical concepts on which 
the system described in Section 3 is built. Section 4 
presents the evaluations performed. The results are 
presented in Section 5, and the conclusions are drawn 
in section 6.   

 
2. Theoretical Background 
 
2.1 Artificial Neural Network Ensemble 
 

In [6] it is shown that the performance of systems 
based on neural networks can be further improved by 
training several networks and combining their 
predictions. The process of building an ensemble 
consists of two steps. First, each network in the 
ensemble is trained individually, in slightly different 
conditions. Second, when making a prediction, the 
outputs of the individual components are combined. 

In order for the ensemble to perform better than the 
individual networks, each component must have a high 
degree of accuracy, and the ensemble must have a 
certain degree of diversity among its members. Each 
network component may be good at classifying some 
type of instances but weaker at classifying others. This 
kind of diversity allows for a higher variety of 
instances to be classified accurately by the ensemble. 

The most prominent approaches for constructing the 
ensemble are Breiman’s bagging and Schapire’s 
boosting. Bagging [1] generates each component 
network by taking a bootstrap sample (with 
replacement) from the original dataset S. The sampled 
dataset SB has the same size as the original dataset. 
Therefore some instances from S may be missing, 
while other may appear multiple times. Instances that 

are not in SB can be used as a validation set for the 
component network that is being constructed. 

Boosting [5] is an iterative process. During each 
iteration, or boosting phase, an individual model is 
built by varying the weights of the instances used for 
training. The algorithm re-weights the training set at 
the end of each boosting phase: the weights of the 
instances that have been incorrectly classified in the 
current phase are increased, while those of the 
correctly classified instances are decreased. 

Output combination is typically achieved through 
averaging or voting. Averaging is employed in 
prediction problems, while voting is appropriate for 
classification problems. 
 
2.2 Symbolic Classifiers  
 

The category of symbolic classifiers encompasses 
those algorithms which present knowledge in a 
structured, comprehensible form. Examples include 
decision trees, rule based systems or naïve Bayes 
learners. This section briefly describes the algorithms 
we have used in building our system.  

The C4.5 algorithm is an extension to the original 
ID3 algorithm. ID3 uses a top-down inductive 
approach, selecting at each step the attribute that best 
classifies the data. The measure used to quantify 
attribute strength is “borrowed” from information 
theory and it called the information gain. It measures 
how well an attribute separates the training data with 
respect to the class they have. 

Developed by Eibe and Witten, PART [4] is an 
algorithm which infers rules by repeatedly generating 
partial decision trees. It works by obtaining a rule from 
the “best” leaf of the partial tree obtained at each step. 
The algorithm combines two important paradigms for 
rule learning, namely creating rules from decision trees 
and using the separate-and-conquer technique. 

AdaBoost.M1 is the most popular and historically 
most significant boosting algorithm. Introduced by 
Freund and Schapire [5], it was the first algorithm to 
employ the boosting approach in building classifier 
ensembles. An interesting remark related to 
AdaBoost.M1 is that it has been mathematically 
proved that the error on the un-weighted training 
examples approaches zero exponentially with an 
increasing number of boosting steps. Still, its success 
is mostly due to its outstanding performance in 
practice. Although conventionally AdaBoost.M1 is not 
a symbolic classifier, we have included it in our work 
to study the degree to which the neural network 
ensemble can improve the performance of a simple 
classifier.  

 



2.3 The Basic Algorithm 
 

The main idea of the current approach is to use the 
neural network ensemble as a pre-processing step in 
training the symbolic classifier. That is we use the 
ensemble to re-label the data which will provide the 
input of the symbolic classifier. 

The algorithm flow can be divided into the 
following steps: 

 

1. Train the neural network ensemble using the 
available training data. 

2. Use the trained ensemble to classify the available 
data. 

3. [optional] Generate random data and use the 
trained ensemble to classify it. 

4. Run a symbolic learning algorithm on the data 
generated in steps 2 and 3 

 

Because neural networks ensembles have good 
generalization ability, the output dataset of the 
ensemble may be better for classification than the 
original dataset, because some “bad ingredients” in the 
original dataset might have been removed (e.g. noise). 

 
3. System Description 
 

There are several particularities related to the 
current implementation. They concern both the neural 
network ensemble and the symbolic classifier. 

Suppose we have a dataset S = {(v1, c1), 
(v2,c2)….(vn,cn)}, where vi is the feature vector for the 
i-th instance and ci is the class of that  instance. From 
this dataset a certain percent of the instances will be 
used in training. Denote the training dataset with T. 
The remaining data will form the evaluation set, 
denoted by V.  

In the first step an artificial neural network 
ensemble is trained using T. The method used in [14] 
is bagging with un-weighted majority vote. Our 
implementation employs both bagging and boosting. 

In what follows, we shall denote the number of 
neural networks in the ensemble by E 

 
The Bagging Approach 

 
We have to obtain E bootstrap samples from T, 

denoted with B1, B2 … BE. Each neural network in the 
ensemble is trained using one of the B1…BE sets as its 
training set. Let N* denote the trained neural network 
ensemble containing E neural networks denoted by N1, 
N2…NE. The output of N* is the class label that has 
received the most number of votes (majority voting 
technique). 

The Boosting Approach 
 

A boosting algorithm begins by setting the same 
weight for each instance in T. Then, a neural network 
BB1 is built using T. The weights of the instances that 
are correctly classified by B1 B are decreased, while 
those of the incorrectly classified instances are 
increased. Next a second neural network BB2 is built on 
the modified weighted dataset, focusing on instances 
with high weights. The algorithm continues until either 
the error rate of the neural network exceeds 50% or it 
is below a given threshold. The learning process can 
stop also when the maximum number of models in the 
ensemble is reached. 

 
Once the neural network ensemble N* is built, 

using bagging or boosting, the feature vectors of T are 
passed through N* in order to obtain their final class 
labels – step two in the algorithm. Each feature vector 
in T,      fi = (vi, ci), i=1..n is supplied to the trained 
ensemble N*, which predicts a class for it – ci*. The 
predicted class could be the same as the original class 
ci, but this is not guaranteed.  

Using the above mentioned process, a new training 
dataset is obtained and denoted by T1 that has the same 
number of instances as S, but newly created class 
labels for each of them. Every feature vector in T1 has 
the form fi = (vi, ci*) where i=1…n. 

Because the neural network ensemble N* has a 
good generalization ability Zhou claims that this newly 
created dataset T1 may be better for rule induction than 
T because some bad ingredients like noise, have been 
removed. 

Using the trained ensemble N* new additional data 
can be created by randomly generating feature vectors 
and processing them using N* in order to obtain their 
class labels. This dataset is called the additional 
training dataset and is denoted by T2. For every feature 
vector f2 in T2 we have f2 = (v2, c2). The feature vectors 
from T2 are passed through the trained ensemble N* 
and a new class c2* is obtained, thus making the 
features vectors in T2 having the form f2 = (v2, c2*). 
The size of this additional dataset is multiple of the 
original training set T. The exact size must be 
manually determined for each dataset used in testing, 
in order to obtain good performances. 

The two training datasets T1 and T2 are then 
combined in a new dataset D which is used as the 
training dataset for a machine learning algorithm. The 
obtained results are validated using the evaluation set 
V. 
 



4. Experimental Work 
 

The experiments performed in this paper evaluate 
the new system on several machine learning classical 
benchmarks. The primary purpose in devising the 
evaluation procedures was to check if the idea of 
preceding symbolic classifiers with neural network 
ensembles leads to the improvement of the initial 
learning algorithm. A second concern is associated 
with the idea formulated in [14], regarding the positive 
impact that random data can have on the learning 
capabilities of the symbolic classifier. The procedure 
presented there is very simple: data is generated 
randomly and is fed to the neural network ensemble, 
which predicts class labels for each feature vector. The 
newly obtained data is combined with existing, re-
labeled training set and provided to the symbolic 
learner for training. In [14] it was concluded that this 
was a good technique for reducing the error of the 
symbolic classifier. Furthermore, the tests performed 
in [14] showed that adding a number of instances equal 
to three times the size of the original training set lead 
to the highest error reduction. 

In order to answer the above questions, tests on five 
different datasets have been performed. The datasets 
are freely available at the UCI Machine Learning 
Repository. Four of the datasets are from the medical 
domain, and one is from the car manufacturer industry. 
Instances with missing values were removed from each 
dataset. Information about the datasets can be found in 
Table 1. 

The employed symbolic learning algorithms are 
C4.5, PART and AdaBoost.M1. Although 
AdaBoost.M1 is not an actual symbolic classifier, it 
was included in our evaluation in order to better 
evaluate the impact of the neural network ensemble on 
the performance of the “simple” classifier. 

For each test 80% of the available instances have 
been used to train the neural network, and the rest of 
20% have been kept for evaluation. Results have been 
averaged over 100 runs.  
 

The bootstrap sampling only uses about 63% of the 
available instances to generate new data, and thus the 
rest of the instances not used by bagging can be used 
as a validation set for each neural network in the 
ensemble. During each epoch in the training process of 
each neural network its generalization error is 
estimated on the validation dataset, and if the error 
does not change for a number of consecutive epochs 
the training process stops in order to avoid overfitting.  

Experimentally we have observed that the optimum 
number of epochs is five. This value coincides with 
what was observed in [14].  

Table 1 – Dataset Information 
 

Dataset Instances Classes Attributes 
Liver disorder 345 2 6 
Heart disease 303 5 13 

Diabetes 768 2 8 
Breast cancer 699 2 9 

Cars 1728 4 6 
 
Other general parameters related to the neural 

networks were obtained empirically, in a process 
which is generally known as fine tuning. The neural 
networks are standard feed-forward networks trained 
using the back propagation algorithm, with one hidden 
layer. During our experiments we have observed that 
the best results are obtained when the number of 
hidden units varied between 9 and 12, the learning rate 
was about 0.6 and the momentum varied between 0.2 
and 0.3.  

The neural network ensemble contains 11 members 
in the case of bagging, and may contain less than 11 
members when boosting is performed (due to the 
nature of the approach). This value was also obtained 
experimentally. For bagging ensembles we used both 
weighted and un-weighted voting. Boosting employed 
weighted voting. 

 In order to validate the idea related to additional 
data we incrementally increased the size of the 
additional training dataset between 0% and 500% of 
the original dataset. 

 

5. Results 
 

The experimental results using bagging with un-
weighted majority vote are shown in Table 2. We have 
used the following abbreviations: NE for the algorithm 
enhanced by the neural network ensemble and NNE 
for neural network ensemble alone. We have 
considered the tests with no additional data, such as to 
evaluate the improvement produced by the neural 
network ensemble. As it can be observed from Table 2, 
the neural network ensemble yields the lowest error 
rates on all datasets. Significant improvements can be 
observed for C4.5 and PART when the neural network 
is used as a pre-processing step, on all datasets. An 
interesting result is the fact that the improvement in the 
case of AdaBoost.M1 is no better than the 
improvement obtained for the other classifiers. On 
average, PART achieves the highest relative error 
reduction (12%), with an impressive 32% on the Cars 
dataset. 



Table 2 – Error rates obtained with bagging 
using un-weighted majority vote 

 
Algorithm Bupa 

(%) 
Cleve
land 
(%) 

Pima 
(%) 

Wisco
nsin 
(%) 

Cars 
(%) 

C4.5 39.38 47.35 26.58 5.81 8.85 

C4.5 NE 36.70 45.56 24.88 5.11 7.20 

PART 38.45 48.83 27.07 4.32 4.87 

PART NE 36.16 45.11 25.10 4.00 3.31 

AdaBoost 39.44 47.46 27.22 3.48 4.87 

AdaBoostNE 36.02 44.42 23.94 3.35 4.86 

NNE 35.25 42.02 23.73 3.31 0.66 

 
Table 3 – Error rates obtained with bagging 

using weighted majority vote 
 
Algorithm Bupa 

(%) 
Cleve
land 
(%) 

Pima 
(%) 

Wisco
nsin 
(%) 

Cars 
(%) 

C4.5 39.69 48.13 26.67 5.20 8.85 

C4.5 NE 36.55 45.39 25.05 4.72 8.77 

PART 38.36 47.61 27.37 5.94 4.99 

PART NE 36.20 45.93 25.32 5.91 4.91 

AdaBoost 38.55 49.56 25.65 4.66 5.91 

AdaBoostNE 34.30 49.50 24.32 4.55 5.59 

NNE 34.85 42.18 24.07 3.58 0.73 

 
The experimental results for a weighted majority 

vote are shown in Table 3. Again, no additional data 
was used. Once more, the neural network outperforms 
all other algorithms. 

The results are quite similar to that of the un-
weighted majority vote. The improvement for the Cars 
dataset is not as significant as before. A reason why 
such similar results have been obtained can be found in 
the nature of neural networks: they are known to be 
powerful classifiers, with very low error rates.  

Table 4 – Error rates obtained with boosting 
 

Algorithm Bupa 
(%) 

Cleve
land 
(%) 

Pima 
(%) 

Wisc
onsin 
(%) 

Cars 
(%) 

C4.5 40.36 47.25 26.68 5.45 8.82 

C4.5 NE 38.30 44.70 25.69 4.66 20.29 

PART 38.27 48.23 27.20 4.60 5.04 

PART NE 36.38 43.77 25.30 4.07 16.13 

AdaBoost 38.26 48.36 25.49 5.05 5.24 

AdaBoostNE 35.88 45.89 24.96 3.76 29.34 

NNE 35.16 42.60 24.62 3.77 2.35 

 
Table 4 shows the results obtained using boosting 

as the method for constructing the neural network 
ensemble. The overall relative reduction in the error 
rate is about 8%. For the Cars dataset, the neural 
network ensemble does not improve the performance 
of the symbolic classifier. This happens because the 
boosting stops when the error exceeds 50% or when it 
goes below a given threshold (in this case it was 1%). 
Because a single neural network has a very low error 
rate on this dataset (1-2%) the number of networks 
created through boosting is usually very small (1 or 2). 
This has a large impact on the diversity of the 
ensemble, affecting its generalization ability. This 
phenomenon cannot be observed on the other datasets, 
because the error of the single classifiers does not 
converge to zero so quickly. An important result would 
be if we could develop a way to set the threshold for 
the error rate automatically. Clearly this threshold is 
dependent on the dataset and its value has an important 
role in the performance of the algorithm. Finding this 
value automatically is a problem of future interest. 

Therefore a weighted voting scheme does not 
produce significant changes to the ensemble, when 
compared to an un-weighted scheme.  

During the experiments we have observed that the 
time complexity reaches the highest value when the 
datasets contains only nominal attributes (Cars 
dataset). Also, when the dataset contains entirely 
numerical attributes, the time complexity is low and 
the improvement in the generalization ability of the 
algorithm is much better, because decision trees 
algorithms have problems dealing with numeric 
attributes. 



Table 5 – Relative error reduction obtained 
with bagging using un-weighted majority vote 

 

Algorithm Bupa 
(%)  

Cleve 
land 
(%) 

Pima 
(%) 

Wiscon 
sin 
(%) 

Cars 
(%) 

C4.5 6 3 6 12 18 

PART 6 7 7 7 32 

AdaBoost 8 6 12 3 1 

 
Table 6 – Relative error reduction obtained 
with bagging using weighted majority vote 

 

Algorithm Bupa 
(%)  

Cleve 
land 
(%) 

Pima 
(%) 

Wiscon 
sin 
(%) 

Cars 
(%) 

C4.5 8 5 6 9 1 

PART 5 3 7 1 1 

AdaBoost 11 1 5 2 5 

 
Table 7 – Relative error reduction obtained 

with boosting 
 

Algorithm Bupa 
(%)  

Cleve 
land 
(%) 

Pima 
(%) 

Wiscon 
sin 
(%) 

Cars 
(%) 

C4.5 5 5 4 14 -130 

PART 5 9 7 12 -220 

AdaBoost 6 5 2 25 -460 

 
In order to gain statistical insight into the results, 

the relative error reduction has been calculated. We 
have used the following formula for C4.5 (same for 
PART and AdaBoost.M1): 
 

ErrorC
ErrorNNECErrorCreductionErr

5.4
5.45.4 −

=           (1) 

 
The values obtained are presented in Tables 5-7. 

The best results are obtained when using bagging with 
an un-weighted voting method. In this case, the 

performance increases by 9%, with a peak value of 
32% on the Cars dataset.  

The results obtained when using bagging and a 
weighted voting method are quite similar to those 
obtained using the un-weighted voting scheme, except 
for the Cars dataset.   

The boosting approach of the algorithm creates a 
serious drop in performance on the Cars dataset. This 
drop is expected, since it has previously been observed 
when comparing error rates also. This behaviour is 
related to how the boosting algorithm works. The 
relative error reduction proves once again that setting 
the correct lower error threshold is a critical step 
towards performance improvement. 

 
The second batch of tests was related to the 

assumption that the generalization ability of the output 
classifiers can be further improved by using additional 
training data. The results obtained for C4.5 using 
bagging with un-weighted vote are shown in figures 1-
5.  

The values on the x axis represent the size of the 
randomly generated data, being a multiple of the initial 
set size. 

 

35.2

35.6

36

36.4

36.8

0 1 2 3 4 5

additional training set size ratio

er
ro

r r
at

e

 
 

Figure 1 – Error variation for different sizes of 
the additional data on Bupa 

 

0

2

4

6

8

0 1 2 3 4 5

additional training set size ratio

er
ro

r r
at

e

 
 

Figure 2 – Error variation for different sizes of 
the additional data on Cars 

 



43.2

43.8

44.4

45

45.6

46.2

0 1 2 3 4

additional training set size ratio

er
ro

r r
at

e

5

 
 

Figure 3 - Error variation for different sizes of 
the additional data on Cleveland 

 

23.7

24

24.3

24.6

24.9

25.2

0 1 2 3 4

additional training set size ratio

er
ro

r r
at

e

5

 
 

Figure 4 – Error variation for different sizes of 
the additional data on Pima 

 

4.2

4.4

4.6

4.8

5

5.2

0 1 2 3 4

additional training set size ratio

er
ro

r r
at

e

5

 
 

Figure 5 – Error variation for different sizes of 
the additional data on Wisconsin 

 
A first remark is that additional training data can 

reduce the error rate of the symbolic classifier. The 
value of the ratio of additional data for which the best 
performance is obtained depends on the dataset. We 
observed that increasing the data with an amount equal 
to 4 or 5 times the initial dataset size usually leads to a 
significant relative error reduction (up to 70% for the 
Cars dataset). However, increasing this ratio further 
may not lead to improved performance. 

 
 

6. Conclusions and future work 
 

Neural networks and neural network ensembles are 
known to perform well in classification tasks, but their 
usage in certain application areas has been restricted 
due to their lack of transparency in the prediction 
process. By utilizing a neural network ensemble as a 
pre-process step for a symbolic algorithm, the black-
box property of the neural network is eliminated.  

This approach is investigated in the current paper. 
We develop a system which uses a neural network 
ensemble as a pre-processing step for a symbolic 
learning algorithm. The system is intended to be 
beneficial in domains where the generalization ability 
is as important as the comprehensibility of the decision 
process. 

We have tackled several techniques for building the 
ensemble: bagging with un-weighted vote, bagging 
with weighted vote, and boosting. As symbolic output 
classifier we used the C4.5 decision tree and the PART 
rule learner. We have also included AdaBoost.M1 in 
our evaluation to study the impact of the ensemble 
neural network on one of the most robust classifiers. 

Evaluations were conducted in order to investigate 
the performance variation produced by the neural 
network ensemble on the output classifiers. Also, tests 
have been carried out to study the impact of additional 
data on the performance of the single classifiers.      

The results obtained have shown that the current 
implementation can be a powerful tool for improving 
the performance of several machine learning 
algorithms while keeping the comprehensibility of 
their outputs. This conclusion is supported by the 
overall 8% relative reduction of the error. Also, 
improvements have been observed in the 
generalization ability of the output classifiers when 
additional data was used. Establishing the ratio of 
added data is still an open problem, and a problem of 
interest to us. 
 

References 
 
[1] L. Breiman, “Bagging Predictors”, Machine Learning, 

1996. 
 
[2] P. Cunningham, J. Carney, and S. Jacob, “Stability 

problems with artificial neural networks and the 
ensemble solution,” Artificial Intelligence in Medicine, 
vol. 20, no.3, pp.217-225, 2000. 

 
[3] P. Domingos, “Knowledge Discovery via Multiple 

Models”, Intelligent Data Analysis, 2, 187-202, 1998.  
 
[4] E. Frank and I. Witten. “Generating Accurate Rule Sets 

Without Global Optimization”, Machine Learning: 



Proceedings of the Fifteenth International Conference, 
Morgan Kaufmann Publishers, San Francisco, 1998. 

[5] Y. Freund and R. Schapire. “A decision-theoretic 
generalization of on-line learning and an application to 
boosting”, Journal of Computer & System Sciences, 
1997. 

 
[6] L. K. Hansen and P. Salamon. “Neural network 

ensembles”, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol.12, no.10, pp.993-1001,1990. 

 
[7] J. Mao, “A case study on bagging, boosting and basic 

ensembles of neural networks for OCR,” in Proc. IEEE 
Int. J. Conf. Neural Networks, vol.3, Anchorage, AK, 
1998, pp.1828-1833. 

 
[8] J. Quinlan. C4.5: Programs for Machine Learning. 

Morgan Kaufmann, 1993. 
 
[9] J.R. Quinlan, “Comparing Connectionist and Symbolic 

Learning Methods”, In Computational Learning Theory 
and Natural Learning, R. Rivest 1994, 445-456. 

[10] R. Setiono, “Extracting rules from pruned neural 
networks for breast cancer diagnosis,” Artificial 
Intelligence in Medicine, vol.8, no.1, pp.37-51, 1996. 

 
[11] D. Sharkey, Ed. Combining Artificial Neural Nets: 

Ensemble and Modular Multi-net Systems. London: 
Springer-Verlag, 1999. 

 
[12] R. Wall and P. Cunningham, “Exploring the potential 

for rule extraction from ensembles of neural networks”, 
11th Irish Conference on Artificial Intelligence 
&Cognitive Science,2000. 

 
[13] R. Wall, P. Cunningham and P. Walsh, “Explaining 

predictions form a neural network ensemble one at a 
time”,  Lecture Notes in Computer Science, 2000. 

 
[14] Z.H. Zhou and Y. Jiang, “Medical Diagnosis with C4.5 

Rule Preceded by Artificial Neural Network Ensemble’, 
IEEE Transactions on Information Technology in 
Biomedicine, 2002. 

 
 

 


