
Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITEHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol. 47 (61), 2002, ISSN 1224-600X

 1

Portable Ontology Query Language (POQL)

Tudor Muresan, Rodica Potolea, Alin Suciu,
Emilia Cimpian, Adrian Mocan, Radu Popovici, Horatiu Tarcea

Computer Science Department, Technical University of Cluj-Napoca,

24th Baritiu Street, Cluj-Napoca, Romania
{tmuresan, potolea, alin}@cs.utcluj.ro

{cemilia, madrian, pandrei, tiustin}@asterix.obs.utcluj.ro

Abstract - This paper presents the definition
and implementation of a query language for
reusable knowledge bases, which uses the
Prolog logical form. The advantage is, along
with the complexity and flexibility of the
allowed questions, the fact that it constitutes a
theoretical interface with user friendly
querying systems (i.e. NLI). Also, it makes use
of the Prolog solving mechanism for an
extensive search in the solution space,
providing the framework for the development
of theories for automated merging and
alignment of existing ontologies. The current
implementation represents a prototype of
POQL.

Keywords: logical query language, knowledge
base space searching, portable ontology,
implementation

I. INTRODUCTION

A large number of ontologies have been
constructed taking into account the principle of
generating reusable knowledge bases by
adopting standard representational languages
[2], [9] or by achieving portability through a
translational approach [8]. The advantage of
easy knowledge acquisition [1], [4] of the
existing tools becomes a weakness from the
querying point of view. Thus, it becomes
appropriate the development of query tools
independent of the ontology representation.
Such query tools serve both for the development
of user friendly query interfaces (i.e. Natural
Language Interfaces) and for the purpose of
merging and alignment of the existing
ontologies. Furthermore, currently [7], there are
yet extremely few theories or methods that

facilitate or automate the process of reconciling
disparate ontologies.

This paper presents the definition and
implementation of a query language for reusable
knowledge bases, which uses the Prolog logical
form. The advantage is, along with the
complexity and flexibility of the allowed
questions, the fact that it constitutes a
theoretical interface with user friendly querying
systems (i.e. NLI). Also, it makes use of the
Prolog solving mechanism, for generating all
the solutions of a specific search, providing the
framework for the development of theories for
automated merging and alignment of existing
ontologies.

In section 2 we give an overview of the main
concepts pertaining to a reusable ontology
frame which conform to the OKBC model [6].
The 3rd section constitutes a description of the
syntax and semantics of the query language.
Section 4 presents the architecture we chose to
implement for our tool. Experimental results are
shown in section 5. We conclude by presenting
the conclusions and proposals for further
development, in section 6.

II. OPEN KNOWLEDGE BASE
CONNECTIVITY (OKBC) ONTOLOGY

FRAME

An ontology is a specification of a
representational vocabulary for a shared domain
of discourse. The OKBC standard frame
ontology consists of a hierarchy of frames [5],
[6]. They are organized, according to their role,
into three main categories: classes, slots and
facets.

Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITEHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol. 47 (61), 2002, ISSN 1224-600X

 2

• Classes are concepts in the domain of
discourse, collections of objects that
have similar properties; they are
arranged into a subclass-superclass
hierarchy and allow multiple
inheritance. There are two
subcategories for classes: metaclasses -
classes which have as instances other
classes, and ordinary classes – which
have ordinary instances as their
materialization.

• Slots are named binary relations
between a class and either another
class or a primitive object in order to
describe properties, attributes of
classes or relations between classes.
Slots attached to a class may be further
constrained by facets.

• Facets are named ternary relations
between a class, a slot, and either
another class or a primitive object; they
describe properties of slots and may
impose additional constraints on a slot
attached to a class.

• Instances are materializations of
classes.

A knowledge base includes both the ontology
and individual instances of classes with specific
values for their slots. The distinction between
classes and instances is not an absolute one due
to the existence of metaclasses.

III. QUERIES: SYNTAX AND SEMANTICS

A query consists of one or more linked atomic
queries. The syntax of such connections follows
the Prolog logical form syntax, with
conjunctions and disjunctions between
expressions.

<query> ::= <atomic query> |

<atomic query> <logical-op> |
<query> |
‘not(‘ <query> ‘)’

<atomic query> ::=

<term> <poql-op> <term> |
<path term> |
<path term> <relational-op>
<path term> | <axiom-
predicate> | ‘(‘ <query> ‘)’

<path term> ::= <term> |

<term> ‘.’ <path term>

<term> ::= ’<frame name>’ |
 (‘?’ | ‘?_’) <Prolog variable> |
 <Prolog constant>

<poql-op> ::= ‘isa’ | ‘sub’ | ‘:’ |
‘::’

<relational-op> ::= ‘=’ | ‘>=’ |

‘=<’ | ‘<’ | ‘>’ | ‘\==’

<logical-op> ::= ‘,’ | ‘;’

The <poql-op> operators correspond to the
relations between frames:
isa direct instance-class relation;
: transitive closure of isa relation;
sub direct inheritance relation;
:: transitive closure of sub relation.

The name of a frame may be simple, referring
directly a frame of the knowledge base, or it
may be a path. A path is a concatenation of slots
s1, s2, ..., sn, written o.s1.s2....sn, where o is the
frame slot s1 belongs to (class or instance), o.s1
refers the frame slot s2 belongs to and so forth.
Such expression has within itself a truth value
given by the (non)existence of the path.

The queries’ semantic is specified by a meta-
interpreter [3] for Prolog with freeze, in a
compositional manner [11]. For this
computational model in [3] it is proven the
soundness and the safety of negation as failure
(see Appendix A). For the <logical-op> we
define:

semantic(Q1 <l-op> Q2) →
sem_freeze(Q1) <l-op> sem_freeze(Q2)

where

sem_freeze(Q) →
semantic(Q), sem_queue.

For the atomic query QA with <poql-op> we
define:

semantic(QA) → postpone(QA)

where

postpone(X <poql-op> Y) →

freeze((X,Y), X <poql-op> Y)

From the above definition follows that the
atomic queries are postponed through the freeze
predicate until at least one of its variables
becomes instantiated. Postponed atomic queries
are resumed by the sem_queue predicate.

The following equivalences hold true:

Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITEHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol. 47 (61), 2002, ISSN 1224-600X

 3

a <poql-op> B ↔
forall(X, a <poql-op> X , Lx),
member(B, Lx)

forall(X,a <poql-op> X,Lx) ↔
api(<poql-op>)(a,Lx)

where api(<poql-op>)(a,Lx)represents an
API call specific to the ontology representation.
These equivalences allow the definition of the
semantic for the postponed atomic queries

through the correspondent ontology program
interface:

semantic(a <poql-op> B) →

api(<poql-op>)(a,Lx),member(B, Lx)

This renders the Prolog search strategy
independent of the actual representation of the
queried ontology (Fig. 1).

IV. POQL ARCHITECTURE AND
IMPLEMENTATION

The architecture of POQL is shown in Fig.1.
A query is entered in a Prolog like logical form,
using the interface we have developed.
Subsequently, a parser performs syntax and
name checking, converting the query to a string
of our convenience which is further passed to
the metainterpreter of Prolog with freeze. It
ensures, among other, the correct order of
execution for the atoms of complex queries. We
have used a Prolog like strategy of searching
through the entire solution space, thus obtaining
all the solutions for our query.

The resolution of the atomic queries is handled
by methods specific to the ontology
representation (API). The result of each such
atomic query is asserted as a Prolog fact and
further used by the solving algorithm.

The current implementation of POQL ensures
queries’ independence of the representation of
queried ontologies. Furthermore, the system is
subject to further developments, so that it may
simultaneously query two distinct ontologies
with different representations. This feature will
eventually make possible the integration of an
ontology merging theory [10]. Meanwhile, the
user interaction is to be enriched with a NLI.

Metainterpreter
Searching the
Solution Space

Query
Parser

Query Tab

Query

KNOWLEDGE BASE 1

Ontology
API for
 Atomic
Queries

Assertion
of results

Atomic
queries

Parsed
query

Solutions

Name
checking

KNOWLEDGE BASE 2

Ontology
Merging
Theory

Natural
Language
Interface

Fig. 1 System Architecture

Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITEHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol. 47 (61), 2002, ISSN 1224-600X

 4

V. EXPERIMENTAL RESULTS

We chose to test POQL with ontologies built in
Protégé 2000 [5], [9], a widespread knowledge
base creational environment. Our decision was
based on the fact that, among other, Protégé
2000 presents the advantage of integrating the
OKBC model.

For the implementation, we have used two
programming languages: Java and XSB Prolog.
The reason for using Java is that Protégé is a
Java based environment which provides an API
for easy access to both the representation of the
ontology and interface development. The
implementation of the metainterpreter is written
in XSB Prolog, which gives a direct mapping
between the logical form of the query and the
solving strategy.

In Appendix B are shown some results for three
existing ontologies and various complexity
queries, obtained on Athlon XP 1800+.

VI. CONCLUSIONS AND FURTHER
DEVELOPMENT

We have described in this paper our approach
regarding the development, implementation and
usage of POQL, a new language for describing
investigations of a portable knowledge base. It
presents several advantages over other querying
tools:

• it allows a query syntax that follows
the Prolog logical form, therefore
enabling the further development of
interfaces that would communicate
with our tool (i.e. Natural Language
Interfaces, which permit users that are
not familiar with the given ontologies
to ask them queries.);

• the use of a Prolog meta-interpreter
brings the possibility of generating
complex queries; the solutions are
computed taking advantage of the
backtracking mechanism and
postponing technique;

• queries are introduced in the interface
in a Prolog like manner, without being
restricted to certain patterns, which
leads to increased flexibility in
searching the solution space;

• queries are parsed before sending them
to the Prolog resolution mechanism,

thus eliminating syntactic errors and
ensuring the use of frame names
belonging to the knowledge base
space, before calling the Prolog solver;

• it contains a user friendly interface,
integrated in the Protégé environment
which takes full advantage of the
possibilities of the described query
language.

POQL conforms to the Prolog logical form, thus
being independent towards any specific
knowledge base creational environment. Its
independence renders it fit for usage in other
such environments and for further developments
of interfaces that would communicate with
POQL. Our implementation allows further
developments for ontologies merging theory
support (by using axiom-predicate as defined in
section 3).

 ACKNOWLEDGEMENTS

This paper is part of the research joined project
of DaimlerChrysler AG and Computer Science
Department of Technical University of Cluj-
Napoca.

REFERENCES

[1] H. Eriksson, R. W. Fergerson, Y. Shahar, & M. A.

Musen. (1999). Automatic Generation of Ontology
Editors. Twelfth Banff Knowledge Acquisition for
Knowledge-based systems Workshop, Banff, Alberta,
Canada

[2] H. G. Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, & J.
Widom (1997). The TSIMMIS approach to mediation:
Data models and Languages. Journal of Intelligent
Information Systems.

[3] T. Muresan, R. Potolea, S. Muresan, (1998),
Amalgamating CCP with Prolog, Scientific Journal of
Technical University Timisoara, Vol.43,57, no.4, 1998,
Special Issue Dedicated to Third International
Conference on Technical Informatics, CONTI’98,
Romania, pag.47 - 58

[4] M. A. Musen, R. W. Fergerson, W. E. Grosso, N. F.
Noy, M. Crubezy, & J. H. Gennari. (2000). Component-
Based Support for Building Knowledge-Acquisition
Systems. Conference on Intelligent Information
Processing (IIP 2000) of the International Federation
for Information Processing World Computer Congress
(WCC 2000), Beijing, 2000.

[5] N. F. Noy, R. W. Fergerson, & M. A. Musen. (2000).
The knowledge model of Protege-2000: Combining
interoperability and flexibility. 2th International
Conference on Knowledge Engineering and Knowledge
Management (EKAW'2000), Juan-les-Pins, France

Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITEHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol. 47 (61), 2002, ISSN 1224-600X

 5

[6] Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P. D. and
Rice, J. P. (1998), OKBC: A Programmatic Foundation
for Knowledge Base Interoperability. In: Proceedings
of the Fifteenth National Conference on Artificial
Intelligence (AAAI – 98), Madison, Wisconsin, AAAI
Press

[7] N. F. Noy, M. A. Musen. An Algorithm for Merging
and Aligning Ontologies: Automation and Tool
Support. Sixteenth National Conference on Artificial
Intelligence (AAAI-99), Workshop on Ontology
Management, Orlando, FL, 1999.

[8] Gruber, T.R. (1991). A translation approach to portable
ontology specifications. Knowledge Acquisition, 5, 199-
220.

[9] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu
and M. Musen. Knowledge Modeling at the Millenium
(The Design and Evolution of Protégé-2000), Stanford
University.

[10] N. F. Noy, M. A. Musen Anchor-PROMPT: Using
Non-Local Context for Semantic Matching In the
Proceedings of the Workshop on Ontologies and
Information Sharing at the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-
2001), Seattle, WA, August 2001.

[11] T Janssen. Compositionality. In J. van Benthem and A.
ter Meulen, editors, Handbook of Logic and
Language,and Linguistics, pages 417-473. Elsevier
Science, 1997.

APPENDIX A

SOUNDNESS FOR PROGRAMS WITH
FREEZE

A SLD refutation procedure for a logic program
P and a goal G uses a computation rule and a
search strategy (rule). The computation rule
chooses a subgoal from the sequence of goals
to perform the derivation step. A SLD
derivation is (said to be) fair if it ensure any
subgoal selection in a finite number of steps (the
depth first search strategy of Prolog is unfair).
 The soundness and completeness of a
fair SLD refutation has been proved, that is the
equivalence between the logical consequence
(P ╞ G) and SLD refutation (P ├ G) .

(P ╞ G) ↔ (P ├ G)

 If the negation as failure is taken into
consideration, a SLDNF computation rule is
said to be safe if it selects only ground negative
literals and it does not interrupt the
coresponding SLDNF finite failure subtree
building.
 If comp(P) is the Clark completion of
a program P, and the SLDNF rule of
computation is safe, the soundness and
completeness of SLDNF refutation hold true.

(comp(P) ╞ G) ↔ (P ├ G)

 Moreover, the soundness and
completeness of a SLD refutation is

independent of the chosen computation rule
(e.g. the current subgoal selection).
 In this paper we consider Pf the logic
program obtained from P, by enclosing any
subgoal Gi of a clause into a freeze(Var,Gi)
predicate, where Var belongs to the set of Gi
variable, Var ∈ SetVar(Gi).
 If

H:- B1,..,Bi ,..,Bn ∈ P,

then

H:-B1,..,freeze(Var, Bi),..,Bn ∈ Pf .

A subgoal freeze(Var, Bi) is not selected as
long as Var is unbound. On it’s selection the
equivalence

freeze(Var, Bi) ↔ Bi

takes place.
 A fair SLD refutation for a program Pf
and a goal G is achieved if the empty clause
may be derived in a finite number of steps. This
means that all the subgoals freeze(Var, Bi)
have been actually selected. Taking into
consideration the independence of the choice of
the computation rule and the logic equivalence
between freeze(Var, Bi) and Bi in the
moment of the selection, we have:

Lemma :

(Pf ├ G) → (P ├ G)
and

Corollary: (Soundness of SLD refutation for
programs with freeze.)

(Pf ├ G) → (P ╞ G)

 The soundness of Pf programs makes
possible the use of Prolog with freeze as target
language for queries interpretation.
 Even if the Prolog strategy is an unfair
and incomplete one, freeze does not introduce
new exceptions from the theoretical model
(comparing with those of standard Prolog).
Moreover, freeze may improve the Prolog
programs behaviour, making safe the negative
literals selection (safety of SLDNF refutation).
However, the Prolog strategy makes
incompatible the use of freeze together with the
cut (‘!’), without imposing special restrictions.

Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITEHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol. 47 (61), 2002, ISSN 1224-600X

 6

APPENDIX B

EXPERIMENTAL RESULTS

Ontology & Query

No. of
Atomic
Queries

No. of
Variables

No. of
Solutions

Time
(s)

I. Private Ontology: 331 frames

?A sub 'EveryThing', 'smallDieselMotor-1' : ?A 2 1 1 0.045

?A sub 'EveryThing', 'smallDieselMotor-1' : ?A, ?B : 'EveryThing' 3 2 6 0.065

(?A sub 'EveryThing', 'smallDieselMotor-1' : ?A) , (?B = 'drive' . ':hasPart') 3 2 1 0.040

?A sub 'EveryThing', ?B sub ?A, ?C sub ?B, ?D sub ?C, 'SaloonBody-1' isa ?D 5 4 1 0.290

?A :: ':DCX_CF_SYSTEM_CLASS', ?B :: ':DCX_CF_SYSTEM_CLASS', ?A

\==?B, ?C sub ?A, ?D sub ?B
5 4 10 2.450

?A :: ':DCX_CF_SYSTEM_CLASS', ?B :: ':DCX_CF_SYSTEM_CLASS', ?A

\==?B, ?C sub ?A, ?D sub ?B, ?A sub ?E, ?B sub ?E
7 5 1 4.950

II. Newspaper-querie Ontology: 187 frames (http://protege.stanford.edu/ontologies.html)

?A : 'Employee', ?B = ?A.'responsible_for'.'current_job_title', ?B =="sports

reporter"
3 2 1 0.110

?A=?_B.'sections', ?_B=?C.'responsible_for', ?C isa 'Editor' 3 2 4 0.060

(?A isa 'Personals_Ad'; (?B isa 'Article', ?B.'containing_section'=?C,

?C.'section_name'\=="Lifestyle")), ?B.'published_in'=?A, ?A.'number_of_pages' >35
4 3 4 0.220

III. Organizational_Model Ontology: 163 frames (http://protege.stanford.edu/ontologies.html)

?A sub 'Organizational_Model_Entity', ?A.'participant_name' 2 1 5 0.040

?A sub 'Diagram_Entity', ?B isa ?A, ?B.'upper_left_corner' =?C, ?C \==[] 4 3 8 0.261

?A isa 'Point', ?A.'x'=130, ?A.'y'=?B, ?C isa 'ObjectLocation', ?C.'location'=?D,

(?D.'lower_right_corner'=?A ; ?D . 'upper_left_corner '=?A)
7 4 2 0.250

IV. REA sample: 138 frames (http://protege.stanford.edu/ontologies.html)

?A sub 'ExchangeElement', ?B isa ?A, ?B.'association'=?C, ?C : ?D 4 4 30 0.380

?A isa 'AgentType', ?A.'participates'.'classifies'=?B 2 2 4 0.050

?A isa 'Agent', ((?A.'custody'=?B, ?B isa ?C);(?A .'association'=?B, ?B isa ?C)) 5 3 8 0.110

?A sub ':THING', ?B sub ?A, ?C sub ?B, ?D sub ?C, 'REA_00002' isa ?D 5 4 1 0.570

