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Abstract 
 

The medical field has recently become one of the 
most challenging application areas for data mining 
techniques. The particularities involved in mining 
medical problems, such as domain knowledge, ethical 
and social issues, data quality, complexity and 
quantity, or cost, have lead to the necessity for more 
complex approaches. This paper tries to tackle some of 
the main issues, by introducing three new systems. 
ProICET adopts a hybrid approach to reduce the costs 
involved in the diagnosis process and help avoid 
“dangerous” errors. A second system, based on a 
PANE method, is introduced to reduce the 
misdiagnoses while keeping the transparency of the 
decision process. Finally, a system which combines 
different classifier predictions is presented. The 
benefits of such an approach include the possibility of 
establishing the baseline accuracy for any dataset, and 
the capability to consider data coming from different 
sources, with different structures. 

 
1 Introduction 
 

The medical domain is considered to be one of the 
most challenging areas of application in knowledge 
discovery. The main difficulties are related to the 
complex nature of the data involved (heterogeneous, 
hierarchical, time series), its quality (possibly many 
missing values) and quantity. Although hospitals hold 
huge amounts of records belonging to past treated 
patients, part of this data is not in electronic form, and 
the idea of transferring it to a database system is 
usually regarded as time consuming. Also, it is 
common for the physicians in different hospitals to 
have slightly different investigation methods. This 
results in different structures for the data coming from 
different sources, making it impossible to combine it in 
most cases. Moreover, since human life is at stake, 
accurate diagnosis is crucial. Establishing the baseline 

accuracy for a given dataset is therefore very important 
as well. Domain knowledge or ethical and social issues 
are also of great significance. 

An essential particularity of medical problems is the 
concept of cost, which is addressed by cost-sensitive 
classification. This idea will be developed further in 
Section 2. 

This paper tries to tackle several issues involved in 
medical data mining. Section 2 introduces ProICET, a 
cost sensitive approach to the medical diagnosis 
process. The system introduced in Section 3 tries to 
improve the accuracy of symbolic classifiers, while 
keeping the diagnosis process transparent to the 
physician. Section 4 presents a system for classifier 
combination, based on the Dempster-Shafer Theory of 
evidence combination. The system can be employed to 
establish the baseline accuracy of a dataset, and to 
combine medical data coming from different sources, 
having different structure.   

 
2 ProICET – A Cost-Sensitive System 

for Medical Diagnosis 
 
2.1 Theoretical Aspects 
 

When mining a medical problem, the concept of 
cost interferes in several key points. First of all, a 
doctor must always consider the potential 
consequences of a misdiagnosis. In this field, 
misclassification costs may not have a direct monetary 
quantification, but they represent a more general 
measure of the impact each particular misclassification 
may have on human life. These costs are non-uniform 
(diagnosing a sick patient as healthy carries a higher 
cost than diagnosing a healthy patient as sick). Another 
particularity of the medical diagnosis problem is that 
medical tests are usually costly. Moreover, collecting 
test results may be time-consuming; arguably time may 
not be a ’real’ cost, but it does have some implication 
for the decision whether it is practical to take a certain 



test or not. In the real case, performing all possible 
tests in advance is unfeasible and only a relevant 
subset should be selected. The decision of performing 
or not a certain test should be based on the relation 
between its cost and potential benefits. When the cost 
of a test exceeds the penalty for a misclassification, 
further testing is no longer economically justified. 

The concept of cost is addressed in a separate area 
of machine learning, known as cost-sensitive learning. 
There are two main categories of cost-sensitive 
techniques: algorithms that are sensitive to 
misclassification costs (stratification, MetaCost, 
AdaCost), and algorithms that consider test costs 
(EG2, CS-ID3, IDX). Significantly less work has been 
done for aggregating several cost components. The 
most prominent approach in the literature is ICET, first 
developed by Peter D. Turney [11].  

The ICET algorithm takes on a hybrid approach to 
considering costs in the learning process: it combines a 
greedy search heuristic (Eg2) with evolutionary means 
(genetic algorithms). The algorithm can be viewed as 
working at two levels: 
 

• On the bottom level, Eg2 performs a greedy 
search in the space of decision trees 

• On the top level, the evolutionary component 
performs a genetic search through a space of 
biases; the biases are used to control Eg2’s 
preference for certain types of decision trees.   

 
Some enhancements have been considered in the 

genetic component. The most important are the use of 
elitism and the single population technique, which 
allow exceptional individuals to propagate unaltered to 
future generations. Also, we used the fitness ranking 
method to compare the individuals’ strengths, in order 
to avoid the situation when only a few elements, which 
are by far stronger than the rest, have very high 
probability of being used as parents (this reduces the 
search variability). 

 
2.2 Evaluation Methodology 
 

The experiments performed on ProICET have been 
carried out in two phases. In a first phase, we wanted 
to verify whether this particular implementation of the 
ICET algorithm performed better in real cases than 
other similar algorithms; we also wanted to compare 
the results with the initial implementation of the 
algorithm. In order to do so, we planned three series of 
tests: the first one tried to solve a problem that Turney 
himself discovered, related to the asymmetry in the 
costs for rare examples; a second set of tests provided 

a more comprehensive analysis of the misclassification 
cost component; a third concern was to study the 
behaviour of ProICET in real world conditions 
(medical diagnosis problems with real costs). 

The datasets used for these tests have been obtained 
from the machine learning data repository website. All 
of them are from the medical field. Most of the 
datasets were also used in the original work on ICET 
[11]. 

In the second phase we studied the behaviour of the 
ProICET system on real prostate cancer data, and 
compared its performances with those of the 
algorithms included in the first phase.   

For both phases we used the following genetic 
parameters setup: 1000 evaluation steps, Gray coding 
for individual representation, 14 genes in a 
chromosome, 50 individuals in the population, roulette 
wheel as the parent selection method, multiple point 
crossover, with 4 random points, single point mutation, 
with one random point, and 0.2 mutation rate. Due to 
the strong heuristic component, every result has been 
averaged over 10 runs. Each run used a 70-30% split.  

In order to study the cost asymmetry and the 
misclassification cost component, we used a two class 
problem and the following cost matrix: 
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where p was varied between 0 and 1, with 0.05 
increments. 

For both phases we have employed the following 
algorithms in order to provide a comparative study: 
J4.8 (revision 8 of the C4.5 implementation found in 
Weka), AdaBoost.M1, MetaCost, and Eg2. 

In phase two we did not have any cost settings for 
the prostate cancer dataset. Consequently, we used two 
values for the test costs: 0 and 0.1, and the cost 
matrices presented in Table 1 (M stands for matrix). In 
setting the misclassification costs we experimented on 
several different values for the unbalance in the error 
costs, while keeping the same magnitude order. 

 

Table 1 – Cost matrices for the prostate 
cancer dataset 

 

M 1 lo med hi 

lo 0.0 0.5 1.0 

med 1.5 0.0 0.7 

hi 5.0 3.0 0.0  

M 2 lo med hi 

lo 0.0 0.5 1.0 
med 3.0 0.0 0.7 

hi 10.0 6.0 0.0  
M 4 lo med hi 

lo 0.0 0.5 1.0 

med 3.0 0.0 0.5 

hi 5.0 3.0 0.0  

M 3 lo med hi 

lo 0.0 0.5 1.0 

med 0.75 0.0 0.7 

hi 2.5 1.5 0.0  



 
 

Figure 1 – Stratification effect on the average 
cost of ProICET for the Wisconsin dataset 

 

 
 

Figure 2 – Stratification effect on the average 
cost of MetaCost and J4.8 for the Wisconsin 

dataset 
 

2.3 Results 
 

As mentioned above, a first concern in the initial 
evaluation stage was to check if stratification could 
improve the cost characteristic of classifiers for the 
rare, expensive cases. The method consists in altering 
the distribution of examples for each class, such as to 
include proportionally more examples of the classes 
having high misclassification costs. 

The effects of stratification on ProICET for the 
Wisconsin dataset are presented in Figure 1. 
Wisconsin has been chosen for this experiment 
because it is one of the largest, two-class, medical 
dataset. We can observe a small decrease in 
misclassification costs for the stratified case 
throughout the parameter space. This reduction 
becomes significant at the margins, and especially in 
the left margin, where the rare expensive cases are. 

Figure 2 illustrates the effects of stratification on 
the costs obtained by J4.8 and MetaCost on the 
Wisconsin dataset. Here also we observe a significant 
reduction in the left part of the chart for the stratified 
case.  
 
 

 
Figure 3 – Misclassification cost analysis on 

the Wisconsin dataset 
 

 
Figure 4 – Misclassification cost analysis on 

the Pima dataset 
 

We conclude that stratification could be used for 
improving the cost characteristic of some classifiers. 
Further testing is required before formulating more 
general results. 

The second concern of the first evaluation phase 
was related to studying the misclassification cost 
component of several algorithms. For this we used 
two-class medical problems (Wisconsin and Pima 
datasets). 

As illustrated by Figure 3, MetaCost yields the 
poorest results on the Wisconsin dataset. ProICET 
performs slightly better than J4.8, while the smallest 
costs are obtained for AdaBoost.M1, using J4.8 as base 
classifier. The fact that AdaBoost obtains lower costs 
than ProICET can be explained by the different 
approaches taken when searching for a solution. If 
ProICET uses heuristic search, AdaBoost implements a 
procedure that is guaranteed to converge to minimum 
training error, while the ensemble voting reduces the 
risk of overfitting. 

This behaviour changes on the Pima dataset (Figure 
4), where ProICET yields slightly lower costs than 
AdaBoost.M1. The performance of MetaCost is poor 
in this case as well.  



 
 

Figure 5 – Total cost for the Pima dataset 
 

 
 

Figure 6 – Total cost for the Cleveland dataset 
 

 
 

Figure 7 – Total cost for the Bupa dataset 
 

 
 

Figure 8 – Total cost for the Bupa dataset 
 

In real world situations we expect ProICET to 
perform better than the other algorithms, since it is the 
only approach that takes into account both test and 
misclassification costs. Indeed, figures 5-8 show that 
ProICET is the best at reducing the total cost. An 
interesting result is obtained on the heart disease 
Cleveland dataset, where the relative cost reduction is 
more than 50%. This is a significant improvement to 
the initial implementation of ICET, and is probably 
owed to the alterations made to the genetic algorithm, 
which increase population variability and extend the 
ICET heuristic search. 

The second evaluation phase was concerned with 
evaluating ProICET on a real prostate cancer dataset. 
The problem of interest was to predict the class of 
postoperative PSA (low, medium, high) from 
preoperative (preoperative PSA, Gleason score, 
prostate volume, International Index of Erectile 
Function, quality of life, TNM) and operative 
parameters (surgery type, operative technique, nerve 
sparing, bleeding, operative time, a.s.o.). 

The focus here was on both the cost values and the 
accuracy rates. We expected that ProICET yield low 
costs while keeping high accuracy rates. 

The accuracy rates, averaged over the eight 
different cost settings (two different values for the test 
costs and four cost matrices), can be observed in 
Figure 9. ProICET yields the highest accuracy rates, 
together with Eg2 and J4.8. The fact that the accuracy 
is not as high as expected (around 84%), could be 
rooted in the characteristics of the dataset (relatively 
small number of instances, some missing values). A 
method for increasing the volume of the data and 
improving the quality is currently investigated. It is 
based on applying ensemble learning methods to 
artificial neural networks (more in Section 3).   

Table 2 illustrates the total costs obtained by the 
algorithms over the various cost settings considered. 
When both types of costs are involved, ProICET yields 
lowest total cost (bolded in the table). 

 
Figure 9 – Average accuracy rates for the 

prostate cancer dataset 



Table 2 – Total cost for the prostate cancer 
dataset 

 

Average Total Cost 

 Pro 
ICET 

Ada 
Boost 

Eg2 J48 Meta 
Cost 

Test 0 
Matrix 1 

0.28 0.284 0.269 0.269 0.293 

Test 0.1 
Matrix 1 

0.414 0.734 0.430 0.430 0.448 

Test 0 
Matrix 2 

0.561 0.52 0.52 0.52 0.65 

Test 0.1 
Matrix 2 

0.678 0.97 0.682 0.682 0.812 

Test 0 
Matrix 3 

0.146 0.166 0.142 0.142 0.145 

Test 0.1 
Matrix 3 

0.252 0.616 0.305 0.305 0.310 

Test 0 
Matrix 4 

0.213 0.44 0.44 0.44 0.502 

Test 0.1 
Matrix 4 

0.575 0.89 0.603 0.603 0.647 

 
Also, ProICET yields the lowest overall total costs, 
with an impressive 30% relative cost reduction when 
compared to AdaBoost.M1. This proves once again 
that ProICET is the best at reducing the costs involved 
in medical problems.  

A medical result obtained in this phase is related to 
the ranking of the predictor attributes. By analyzing 
the output trees of several methods involved in the 
evaluation, we found the following order: 

1. Prostate Volume 
2. Operation Technique 
3. Bleeding 
4. Gleason Score 
5. IIEF (International Index of Erectile 

Function) 
6. Preoperative PSA 

The newly discovered importance of the prostate 
volume is yet to obtain medical recognition, but its 
significance has been suspected by some physicians. 

 
3 PANE Method (Preceded by Artificial 

Neural Network) 
 
3.1 Theoretical Aspects 
 

As mentioned before, a high accuracy rate is crucial 
when employing data mining methods to support 
medical diagnosis and prognosis. Moreover, the 
decision process must be transparent enough such as to 
allow the physician to understand the rationale behind 
the verdict indicated by the system.  

Many machine learning approaches fail to meet 
both the transparency and the performance requests. 
While the symbolic techniques, such as decision trees 
and rule learners, represent knowledge in a structured 
way, easily comprehensible by the user, they don’t 
have the improved performance of the connectionist 
methods (artificial neural networks). The latter encode 
the information inside their architecture, making them 
less transparent and harder to comprehend. Besides the 
transparency issues caused by their connectionist 
nature, artificial neural networks are also unstable, that 
is small changes in the training data may result in very 
different models, thus affecting the performance on 
unseen data. [14] 

The PANE method (Preceded by Artificial Neural 
Network Ensemble) tries to address both the 
transparency and the stability problems, by using a 
neural network ensemble as a preprocessing step for a 
symbolic classifier. Ensemble learning methods are 
known to improve the generalization abilities of simple 
classifiers, therefore increasing their stability. The 
transparency is ensured by the use of a symbolic 
classifier to obtain the output model. This method tries 
to satisfy both the comprehensibility and the 
robustness needs involved in medical diagnosis and 
prognosis.  

We have implemented a system based on the PANE 
method, and evaluated it on several benchmark 
datasets. The system flow can be split into the 
following steps:  

1. Train the neural network ensemble using the 
available training data.  

2. Use the trained ensemble to classify the 
available data.  

3. [Optional] Generate some random data and use 
the trained ensemble to classify it.  

4. Run a symbolic learning algorithm on the data 
generated in steps 2 and 3.  

 

In step 1, the artificial neural network ensemble can 
be obtained in several ways: bagging with un-weighted 
majority vote, bagging with weighted majority vote, 
and boosting. For the symbolic classifier we have used 
three algorithms: C4.5 (revision 8 of the algorithm, 
found in the Weka framework – J4.8), PART (a rule 
learner) [2] and AdaBoost.M1. Although 
AdaBoost.M1 is not a symbolic classifier, we have 
included it in our work to better study the impact of the 
neural network ensemble on the performance of simple 
classifiers. Also, there exist methods for extracting 
rules from ensembles of trees, therefore making it 
practical in real situations also.   



3.2 Evaluation Methodology 
 

The evaluations performed tried to confirm that the 
idea of preceding symbolic classifiers with artificial 
neural network ensembles is effective and can improve 
the performance of the symbolic classifiers, while 
keeping their transparency. A second concern is 
associated with the idea formulated in [15], regarding 
the positive impact that random data can have on the 
learning capabilities of the symbolic classifier (the 
optional step 3 in the system). The procedure presented 
there is very simple: data is generated randomly and is 
fed to the neural network ensemble, which predicts 
class labels for each feature vector. The newly 
obtained data is combined with existing, relabeled 
training set and provided to the symbolic learner for 
training. In [15] it was concluded that this was a good 
technique for increasing the accuracy of the symbolic 
classifier. 

We have used five benchmark datasets, obtained 
from the UCI Machine Learning Repository: Bupa 
liver disorder, Cars, Cleveland heart disease, Pima 
Indian diabetes and Wisconsin breast cancer. Four of 
the datasets are from the medical domain, and one is 
from the car manufacturer industry.  

Results have been averaged over 100 runs. For each 
run, 80% of the available instances have been used for 
training, and the rest of 20% have been kept for 
evaluation. The parameters of the artificial neural 
networks have been set to the following values: 1 
hidden layer, (number of attributes + number of 
classes)/2 for the number of units in the hidden layer, 
0.6 for the learning rate and 0.2-0.3 for the momentum. 
We have also used a validation set in the training of 
the neural networks, composed of instances which 
were not present in the bootstrap sample used for 
training.   
 
3.3 Results 
 

The experimental results using bagging with un-
weighted majority vote are shown in Table 3. We have 
used the following abbreviations: NE for the algorithm 
enhanced by the neural network ensemble and NNE 
for neural network ensemble alone. Significant error 
reductions can be observed for all the classifiers, on all 
the datasets. On average, PART achieves the highest 
relative error reduction (12%), with an impressive 32% 
on the Cars dataset. 

The results for bagging using weighted majority 
vote (Table 4) are quite similar to those obtained with 
un-weighted majority vote, except for the Cars dataset, 
where the improvement is not as significant as before.  

Table 3 – Error rates obtained with bagging 
using un-weighted majority vote 

 

Algorithm Bupa 
(%) 

Cleve
land 
(%) 

Pima 
(%) 

Wisco
nsin 
(%) 

Cars 
(%) 

C4.5 39.38 47.35 26.58 5.81 8.85 
C4.5 NE 36.70 45.56 24.88 5.11 7.20 

PART 38.45 48.83 27.07 4.32 4.87 
PART NE 36.16 45.11 25.10 4.00 3.31 
AdaBoost 39.44 47.46 27.22 3.48 4.87 
AdaBoostNE 36.02 44.42 23.94 3.35 4.86 

NNE 35.25 42.02  23.73 3.31 0.66 

 
Table 4 – Error rates obtained with bagging 

using weighted majority vote 
 

Algorithm Bupa 
(%) 

Cleve
land 
(%) 

Pima 
(%) 

Wisco
nsin 
(%) 

Cars 
(%) 

C4.5 39.69 48.13 26.67 5.20 8.85 
C4.5 NE 36.55 45.39 25.05 4.72 8.77 

PART 38.36 47.61 27.37 5.94 4.99 
PART NE 36.20 45.93 25.32 5.91 4.91 

AdaBoost 38.55 49.56 25.65 4.66 5.91 
AdaBoostNE 34.30 49.50 24.32 4.55 5.59 

NNE 34.85 42.18  24.07 3.58 0.73 
 

Table 5 – Error rates obtained with boosting 
 

Algorithm Bupa 
(%) 

Cleve
land 
(%) 

Pima 
(%) 

Wisc
onsin 
(%) 

Cars 
(%) 

C4.5 40.36 47.25 26.68 5.45 8.82 

C4.5 NE 38.30 44.70 25.69 4.66 20.29 
PART 38.27 48.23 27.20 4.60 5.04 

PART NE 36.38 43.77 25.30 4.07 16.13 
AdaBoost 38.26 48.36 25.49 5.05 5.24 
AdaBoostNE 35.88 45.89 24.96 3.76 29.34 

NNE 35.16 42.60 24.62 3.77 2.35 
 

Table 5 shows the results obtained using boosting 
as the method for constructing the neural network 
ensemble. The overall relative reduction in the error 
rate is about 8%. An important remark should be made 



here about the poor performance of the PANE method 
on the Cars dataset. 

This happens because the boosting process stops 
when the error goes below a given threshold (1%). On 
the Cars dataset, the neural network ensemble reaches 
this threshold in 1-2 iterations. Thus, the ensemble will 
only have 1-2 members, its generalization ability being 
therefore affected. This proves once again the idea 
formulated in the “No Free Lunch” theorem, which 
states that there is no algorithm which performs better 
than all the other algorithms, on all the existing 
problems. This issue will be further addressed in 
Section 4. An interesting result would be to find a rule 
for setting the error threshold automatically, such as to 
maintain the ensemble diversity, but still avoid 
overfitting. 

The impact that additional random data has on the 
performance of C4.5 used with bagging (un-weighted 
majority vote) can be observed in figures 10-13. The 
values on the x axis represent the size of the randomly 
generated data, being a multiple of the initial set size. 

A first remark is that additional training data can 
reduce the error rate of the symbolic classifier. The 
value of the ratio of additional data for which the best 
performance is obtained depends on the dataset. We 
observed that increasing the data with an amount equal 
to 4 or 5 times the initial dataset size usually leads to a 
significant relative error reduction (up to 70% for the 
Cars dataset). However, increasing this ratio further 
may not lead to improved performance. 
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Figure 10 – Error variation for different sizes of the 
additional data on Bupa 
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Figure 11 – Error variation for different sizes 
of the additional data on Cars 
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Figure 12 - Error variation for different sizes of the 
additional data on Cleveland 
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Figure 13 – Error variation for different sizes 
of the additional data on Pima 

 
Since the neural network ensemble generally yields 

lowest error rates, and the addition of random data has 
proved to be beneficial, neural network ensembles and 
the method of generating data could be used to 
increase the volume of the available data and improve 
its quality.  

 
4 Classifier Combination through the 

Dempster-Shafer Theory 
 

Besides the accuracy and data-related issues, 
specific to the medical domain, this section addresses 
some issues of machine learning algorithms which use 
a single hypothesis. They are known to suffer from 
several drawbacks: the statistical problem, or high 
variance, which occurs when the hypothesis space is 
too large for the available training data; the 
computational problem, or computational variance, 
which occurs when the learning algorithm cannot 
guarantee to find the best hypothesis within the 
computational space; and the representation problem, 
or high bias, which occurs when none of the 
hypotheses in the search space is a good enough 
approximation of the truth. 

While ensemble methods can reduce both the bias 
and the variance of learning algorithms, they do not 
solve the problem of failing to choose a classifier that 
will perform best for a given dataset. In addition, there 



is also the problem of establishing a lower bound to the 
accuracy on a certain problem. This is what we try to 
achieve with the classifier fusion method proposed by 
the mathematical theory of Dempster and Shafer. 

The Dempster-Shafer Theory is a theory of 
evidence, based on belief functions and plausible 
reasoning. Its main feature is that it combines several 
pieces of information in order to compute the 
probability of an event. Moreover, it allows for directly 
representing the uncertainty of system responses: the 
imprecise input can be modeled by a set or an interval, 
and the output is a set or an interval. Initial efforts for 
developing the theory were made by A. Dempster 
(1967), but the theory was completed by the seminal 
work performed by G. Shafer (1976) [10]. 

The system is intended to provide a reference 
accuracy value when choosing a classifier for any 
specific dataset. Due to the advantages provided by the 
fusion technique, the risk is minimized and the 
accuracy obtained by applying the combined classifier 
on any data is surely among the highest possible. The 
classifiers used in the combination are the Bayesian 
Classifier, k-Nearest Neighbour and Decision Tree 
learner. 

There are three main steps in designing the system, 
namely belief extraction from the three classifiers, 
uncertainty computation, and belief combination: 

 

1. Extracting beliefs from the three classifiers – 
takes into account the nature of each classifier. 
The following approaches have been used: 
• For the Bayesian classifier, the posterior 

probability function is used for belief 
evaluation. 

• For k-Nearest Neighbour, a distance function 
is used to evaluate basic beliefs. 

• For the decision tree, the confidence is the 
measure for evaluating beliefs. 

2. Computing the uncertainty for the classifiers – 
evaluate the distance between the belief value 
and the value 1/K (where K is the number of 
classes). Uncertainty is then computed as the 
normalized sum of the square of these distances; 
the closer the sum is to zero, the higher the 
uncertainty.  

3. Combining the evidence - combine the belief and 
the uncertainty obtained in the previous steps, 
such as to arrive at the final decision. 

 

In our implementation, the Bayesian classifier is 
first combined with the kNN classifier, and then the 
resulting classifier is combined with the decision tree 
learner. The combination takes advantage of the fact 

that one classifier may be more accurate in handling 
records corresponding to a certain class than the other. 

 
4.1 Evaluation Methodology 
 

The evaluation focused on obtaining validation that 
the combination of the classifiers using the Dempster-
Shafer theory is robust and stable and can be used to 
asses baseline accuracies for any dataset.  

For this, we have used four benchmark datasets, 
obtained from the UCI Machine Learning Repository: 
Cars, Cleveland heart disease, Pima Indian diabetes 
and Wisconsin breast cancer.  

The testing methodology assumed averaging the 
accuracy over 100 runs; for this, each dataset was used 
to generate 100 random pairs of training/testing 
datasets (using 80/20 percentage split). We have 
performed tests for each of the three classifiers 
separately, on all datasets; then, the combined 
classifier was tested on the datasets and the results 
were compared.  

For a better validation of the system, comparisons 
with ensemble learning methods have been carried out 
(bagging and boosting in combination with the three 
classifiers involved in the evaluation). 
 
4.2 Results 

 
As Table 6 shows, the individual classifiers are not 

stable with respect to the datasets. While Naïve Bayes 
seems to classify the instances in the Wisconsin dataset 
most accurately, it performs poorly on the Cars 
dataset, where it produces the lowest accuracy among 
the three classifiers.  

 
Table 6: Individual classifiers accuracies 

Dataset Bayes kNN J4.8 
Cars 85.43% 92.30% 91.50% 
Cleveland 55.73% 56.91% 52.60% 
Pima  75.44% 73.38% 73.88% 
Wisconsin  96.24% 95.35% 94.41% 

 
Table 7: Comparison between the accuracy of 

the combined classifier and the average 
accuracy of the three classifiers 

 

Dataset Average DST combined 
classifier 

Cars 89.74% 91.55% 
Cleveland 55.08% 55.81% 
Pima  74.23% 74.85% 
Wisconsin 95.33% 96.16% 



Similar remarks can be done for the other two 
classifiers. Another remark is related to the fact that 
the differences in accuracy between the three 
classifiers are high, especially in the case of Cars 
datasets, which proves the high value of the risk 
involved in choosing a certain classifier for a certain 
dataset. 

From Table 7 we can observe that the combined 
classifier is more accurate than the average of the three 
classifiers. Even if a classifier performs better on a 
certain dataset than the combined classifier, the same 
classifier will perform poorly on other datasets. For 
example, in the case of the Wisconsin dataset, the 
Bayesian classifier yields highest accuracy, while on 
the Cars dataset it achieves the poorest performance 
among the three classifiers. These results are in strong 
connection with the “No Free Lunch” theorem. 

Tables 8-10 present the results obtained by bagging 
and boosting (tables 8 and 9) and the comparison with 
the combined classifier (Table 10). It can be observed 
that even though the ensemble learning methods 
improve the accuracy, the problem of the differences 
between the classifiers’ predictions on a dataset still 
persists, especially in the case of bagging. The same 
observation can be made about the problem of a 
classifier being the best predictor on one dataset and 
the worst on another. 

 
Table 8: Accuracy rates for bagging 

 
 

Dataset Bagging 
+Bayes 

Bagging 
+kNN 

Bagging 
+J4.8 

Cars 85.14% 93.10% 92.71% 
Cleveland 55.91% 58.01% 54.26% 
Pima  75.38% 73.48% 75.11% 
Wisconsin  97.40% 95.61% 95.33% 

 
Table 9: Accuracy rates for boosting 

 

Dataset Boosting 
+Bayes 

Boosting 
+kNN 

Boosting 
+J4.8 

Cars 90.35% 92.30% 95.21% 
Cleveland 55.73% 53.55% 53.18% 
Pima  75.61% 73.33% 72.31% 
Wisconsin  95.68% 95.23% 96.24% 

  
Table 10: Accuracies for the combined 

classifier and the ensemble learning methods 
 

Dataset Bagging Boosting DST Combined 
classifier 

Cars 90.32% 92.62% 91.55% 
Cleveland 56.06% 54.15% 55.81% 
Pima  74.66% 73.75% 74.85% 
Wisconsin 96.11% 95.72% 96.16% 

 
Figure 14 – Accuracy baseline determination 

for the Wisconsin dataset 
 

The combined classifier outperforms bagging on 
three datasets and boosting on other three datasets, 
being slightly less accurate than one of the three 
classifiers on one dataset. This proves yet again the 
risk minimization displayed by the combined classifier. 

The chart in Figure 14 illustrates the idea of using 
the combined classifier to set the baseline accuracy for 
a certain dataset. As the chart shows, only three 
classifiers outperform the combined classifier: Naïve 
Bayes, bagging with the Bayesian classifier and 
boosting with the decision tree classifier. Also, the 
improvement is not always significant enough. 
Moreover, there is no guarantee that the same 
classifiers will perform equally well on another 
dataset. 

The combination method proposed by the 
Dempster-Shafer theory has another advantage: it can 
combine data coming from different sources, with 
different structures. This cannot be achieved through 
bagging or boosting. As mentioned before, being able 
to combine data coming from separate sources is 
particularly useful in the medical domain, where 
hospitals may have slightly different investigation 
methods.  

 
5 Conclusions 
 

Among the diverse domains in which data mining 
methods have been applied to support the decision 
process, the medical field poses some the most 
challenging particularities. Some are data related; some 
refer to domain knowledge and ethical and social 
issues. A high accuracy rate is essential for any 
diagnosis. The concept of cost is also of great 
importance.  

This paper tries to address some of these issues, by 
proposing several systems. A hybrid, cost-sensitive 



approach has been adopted for ProICET. The 
evaluations performed confirmed ProICET achieves 
lowest total costs, while keeping high accuracy rates. 
This could provide valuable support to reducing the 
economical and time-related costs involved in the 
diagnosis process, and help avoid “dangerous” 
misclassifications. 

A second system implements a PANE method to 
achieve both high accuracy rates and improved 
comprehensibility. The low error rates achieved by the 
neural network ensemble, and the promising results 
obtained by the method used to artificially increase the 
volume of the data have lead to the initiative of using 
these methods to improve the data quantity and quality. 
Currently we are investigating a procedure for 
enhancing medical data, following this idea.  

A method for combining classifiers, based on the 
data fusion principles, is employed to build a third 
system. This idea has proved to be beneficial for 
several reasons. First of all, the system can be used to 
provide the baseline accuracy for any dataset, thus 
reducing the risk of choosing an inappropriate 
classifier. Only methods which yield higher accuracy 
rates than the combined classifier are considered 
proper for the dataset at hand. Secondly, the theoretical 
basis of the method allows for data coming from 
different sources to be combined. This is particularly 
important in the medical domain, since it could unify 
data coming from different hospitals, having slightly 
different structures. Evaluations are being conducted to 
validate this idea as well. 

Our present work focuses on combining data 
coming from different sources, increasing the volume 
of the data, and predicting missing values for the 
attributes. The development of a system dealing with 
these issues is currently under research. 

A future goal is to integrate the systems presented 
here, as well as future components, into a cohesive 
framework, to support medical data collection, 
processing, interpretation and the decisions involved in 
the diagnosis process.  
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