
Finding the Optimal Read Buffer Size for Grid Applications

Rodica Potolea, Alin Suciu
Technical University of Cluj-Napoca, Romania

Abstract

The concept of grid computing addresses the next
evolutionary step of distributed computing. The goal of
this computing model is to make a better use of
distributed resources, put them together in order to
achieve higher throughput and be able to tackle large
scale computation problems. Performance gain is
intended at each and every level of an application. All
grid data access is achieved by terms of local and
remote located files. We present here a study on the
optimal size of the read buffer with its implications
concerning the overall performance of grid and non-
grid applications. This paper identifies and compares
two methods of data access in a grid environment -
using the storage element (SE) and local access. The
results presented here come from a series of
benchmarks carried on our local grid (GridMOSI),
where we determine with a minimum error, the optimal
interval for the size of the read buffer.

1. Introduction

A challenging computational problem is making
resources available for those needing them sparingly,
without necessary owning them. The birth of grid
computing was very often associated with the
introduction of the electrical power grid due to certain
similarities [1]. Back in the beginning of the 20th
century, electric power generation was possible, but
the real problem was making it available worldwide
without the necessity of each home consumer to
possess an electric generator.

What once was the electrical power is now the
computational power, and what once were the
electrical generators are now high performance
computing systems with large storage capabilities.
Offering storage and computation capabilities to users
not having those resources is the ultimate goal of grid
computing. The revolutionary thing to do would be to
introduce a grid infrastructure to make computing
power and resources available to a greater extent.

Nowadays scientists are more and more concerned
with how many floating point operations per month or
per year they can extract from a computing
environment, rather than considering floating point
operations per second [2, 3]. With the introduction of
the grid concept, more attention has been devoted to
such computing environments known as High
Throughput Computing environments.

Parallelization has emerged as a need for improving
the response time – the time needed to generate the
solution to a problem. In order to achieve
parallelization of a problem there are two main
approaches [4]:

• Data parallelism – refers basically to running the
same piece of code on different pieces of input data.
The major task here is splitting the input into chunks of
data on which the same algorithm may be applied. This
may be done only when the particularity of the
problem allows it, when working on a subset of the
initial input does not alter the final solution.
Constraints may occur that can limit the overall
potential for parallelism.

• Control parallelism – refers to running different
sequences of code on the same data in order to obtain
the result. The task here is parallelizing the problem at
the algorithm level, i.e. create a parallel approach to
the solution by splitting the computing responsibilities
among several processes. This is a much more
challenging approach, as it involves handling
communication among processes which might increase
the overall running time. In order to obtain a better
performance, communication among processes must be
kept to a minimum.

No matter what approach is followed, the data still
has to be read into memory, there is no escape from
here; this is usually done by means of a read buffer
where one piece of data is read at a time. Not
surprisingly, the size of the read buffer has a dramatic
impact on the performance of the read operation,
something we know from domains such as operating
systems and databases. We already noticed that in such
domains I/O operations represent the bottleneck and
therefore the cause of limitation in increasing the
performance.

Old (and bad) habits die hard, and thus the
temptation to read one byte (character) at a time is so
powerful that a lot of people fall into it, with drastic
impact on the performance of their systems, especially
when large amounts of data are to be processed.

Therefore we embarked on a study aiming to find
the optimal size of the read buffer for grid applications,
and we performed a series of benchmarks using our
local grid (GridMOSI) and a couple of C test programs
[5]. There is no similar study to our knowledge,
although the buffer size was extensively studied in the
context of network communication, especially for the
TCP/IP protocol.

2. Grid Data Access

Before referring to the data access choices the grid
user has, we present shortly the general architecture of
a grid. So far we have discussed the concept of grid in
terms of virtual resources and capabilities. From a
physical point of view, a grids may be considered as a
series of interconnected nodes called computing
elements or simply CEs. These nodes, in the mesh
topology that they form, communicate among
themselves at high data rates. The communication lines
form the backbone of the grid. Each CE has under its
administration a number of computers which play the
role of the worker (according to the master-worker
model). These computers are called worker nodes
(WNs). They represent the raw computing power
resource behind the grid concept. Intuitively the
greater the number of WNs a CE has, the more
computing power it provides to the participating grid.

Figure 1. Simplified view of the RO-09-UTCN grid

node

These WNs are not designed to be accessed
publicly by any user, nor they are individually
accessible from a remote site. They are meant to be
administrated solely by the CE to which they
subscribe. Even though physically it is possible to
assign these WNs other duties (such as laboratory
equipment in an university) it is not recommended to
do so. Their only role is defined in the context of a
grid. Each WN of our grid has a Pentium IV class
processor, at 3GHz, with 1GB of RAM and 160 GB of
secondary storage, running Scientific Linux 3.0.8 and
gcc 3.2.3.

As stated above, access to the resources (the WNs)
is achieved transparently with the help of the local CE.
Generally speaking, the tasks that we submit to a grid
are called jobs. In order to be allowed to submit a job
in the grid, one must be authorized to do that, as the
grid is a privately managed computing environment,
not made publicly available but open to users from the
scientific community.

At each site where there is a computing element,
along with the corresponding worker nodes, there is
also a storage element(SE). This gives the storage
resource of the local site. Grids that are focused on
high throughput computing give a unitary view of all
SEs present in the grid. These grids are called data
grids. Even though this unitary view of storage is not
present on all grids, communication and – more
importantly – data transfer among SEs is very well
designed, conferring an easy, secure and reliable
environment.

From what we have presented so far, one can
imagine a straightforward method for data access on a
grid: placing the data files on a storage element, and
retrieving them during the execution of the job. The
second way to access data is locally: this implies that
along with the job we send the necessary input data.
All these are packed together and sent as a unit called
input sandbox.

We developed a test application that reads chunks
of data having various sizes from a file. In order to
determine an optimal read buffer size for grid
applications we considered both methods for data
access.

3. Reading from the Storage Element

As stated before, this access method involves the
presence of a SE. In our case we used our SE from
Technical University of Cluj Napoca
(se01.mosigrid.utcluj.ro), part of the GridMOSI virtual
organization.

In order to be able to run a job on the grid, the user
must provide the necessary information about that job.
This is done by using a Job Description Language.
The description file (.jdl) is the one that is actually
submitted to the scheduler. Below is an example of a
job description file:

Type = "job";
Executable = "readFromSE";
VirtualOrganisation = "gridmosi.ici.ro";
StdOutput = "std.out";
StdError = "std.err";
InputSandbox = {"readFromSE"};
OutputSandbox = {"std.out","std.err"};
Arguments =
"gsiftp://se01.mosigrid.utcluj.ro/home/seegrid
008/TestFile";

Initially the test file had to be copied on the SE.

This action can be done only by a certificated user as
in the case of job submission, as authentication is
required for file transfer. This restriction has imposed
the introduction of a transfer protocol (gridftp) that is
based on the general file transfer protocol and in
addition checks the needed credentials.

For the first phase of our tests, we chose medium
size files and accessed them by using the storage
element. Initially the buffer’s size was considered to be
measured in bytes, in steps of one size order, just to
draw a rough conclusion. As it can be seen from
Figure 2, a relatively minimum can be spotted in the
vicinity of value 100,000. After this value, the read
time increases in the proximity of 500 milliseconds.

Figure 2. Variation of time needed to read a file
depending on the read buffer size

The next step in our attempt to determine the buffer

size for which the optimal performance is achieved
was to refine the previous test. For this second test we
made two changes: the buffer size was considered in
increments of 10,000 and in the rage [10,000;

500,000], and also we performed our test on larger
files to have a better view over the actual read process.

SE Read - refined

8.8
9

9.2
9.4
9.6
9.8
10

10.2
10.4
10.6
10.8

10
00

0
50

000
90

00
0

130000

170000

210000

250000

290000

330000

370000

410000

450000

490000

Buffer Size (bytes)

Re
ad

 T
im

e
(s

)

FileSize = 600 MB
FileSize =600MB
Median

Figure 3. SE read test for larger files

The test results on larger files are influenced by the

network traffic at the moment of the test. This
interference is due to the nature of the actual read
process when this is performed on the SE. The general
process when submitting a job to the grid scheduler is:
the manager identifies a CE that can satisfy the job
requirements, assigns the job to the CE manager. The
CE then identifies the free WNs which may start
executing the job and delivers them the executable
files.

When specifying in a .jdl file that the reading is to
be performed from the SE, the input data is not copied
locally on each WN (along with the executable files),
so when performing a read operation, the WN sends a
read request to the SE. The SE identifies the file to be
read, reads the amount of information needed and
sends it back to the WN that issued the request. All this
data exchange is performed on the local network, so
having a read performance graph influenced by the
network traffic is obvious and inevitable.

Even though the results are influenced by network
traffic, a general trend may be observed from the
graphical representation (Figure 3), which may be
roughly viewed in a parabolic shape, with the
minimum situated in the interval [150,000; 300,000].

4. Local Read

This is the second method for data access in a grid

environment. The input files are not remotely placed
on the SE, they are copied locally, on each WN local
disk. This implies the existence of several replicas in
case the job is intended to be run on multiple WNs (as
in the case of MPI jobs). In case the input data is of
significant amount it is not advisable to store multiple
replicas, a lot of storage space would be wasted.

The concept of data grid, described earlier, works
on huge data and it is not uncommon for a job to need
access to hundreds of GB of data. Not even the
distribution of such data would be extremely
expensive, but WNs are simple computers,
workstations with simple architecture where the
storage of such an amount of data may be impossible.
As a consequence, it has been imposed a limit on the
amount of data that can be transferred in one input
sandbox, and this is 10 MB. Due to this limitation our
tests had to be done on files smaller than this
maximum value.

Local Read

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000

Buffer Size (bytes)

lo
g(

Re
ad

 T
im

e
(m

s)
)

FileSize = 8 MB
FileSize = 10MB
FileSize = 5 MB

Figure 4. Time variation for local read

It can be noted from the graphic above (Figure 4)

that the best response times are obtained with a buffer
size of approximately 200,000 bytes. Due to the fact
that file size is limited, the refinement process, applied
to the read from SE method, is not applicable here.

Local Read - Refined

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

10000
50000

90000
130000

170000
210000

250000
290000

330000
370000

410000
450000

490000

Read Buffer (bytes)

R
ea

d
tim

e
(s

)

File Size = 450 MB
File Size = 600 MB

Figure 5. Refined local read test

In its essence the local read mechanism on the grid,

is the same as any local read on a standalone station.

This analogy has allowed us to extend the
refinement process for the local read to a standalone
computer. (Figure 5).

The general behavior observed when using smaller
files is maintained when using larger files. There is a
massive improvement until buffer reaches size 50,000
and then the read time remains at a fairly constant
value in the interval [130,000; 290,000].

5. Conclusions

We have analyzed the two methods for data access
in a grid environment. Based on the results obtained
we have reached the conclusion that the optimal read
buffer size is situated in the interval [130,000;
290,000] for local read method, and [150,000;
300,000] for the SE read method. In order to make the
design of an application uniformly, to have the same
access parameters in both cases, we propose a buffer
size of 200,000 bytes. This value was chosen so that to
be at a relative equal distance from the limits of both
intervals, and also to have a greater recall factor (to be
easy to remember).

In this paper we have presented the benefits of grid
computing, the novelty it brings to the local academic
community, with its presence at the Technical
University of Cluj Napoca, namely GridMOSI. The
results obtained from this study are used in the
implementation of our GridMOSI library [6] and have
a major impact in improving the performances of the
methods implemented so far.

6. References

[1] I. Foster, C. Kesselman and S. Tuecke, "The
Anatomy of the Grid", International J. Supercomputer
Applications, 15(3), 2001.

[2] Ian Foster, "The Grid: A New Infrastructure for
21st Century Science", Physics Today, 55(2): 42-47,
February 2002.

[3] I. Foster and C. Kesselman, "The Grid:
Blueprint for a New Computing Infrastructure",
Morgan Kaufmann Publishers, 1st edition, 1998.

[4] L. Ferreira and V. Berstis, "Fundamentals of
Grid Computing", IBM Redpaper, 12 November 2002,
IBM Form Number REDP-3613-00.

[5] B. W. Kernighan, D. M. Ritchie. "The C
Programming Language, Second Edition". Prentice
Hall, Inc., 1988, ISBN 0-13-110362-8.

[6] R. Potolea, A. Suciu, A. Mascasan.
"Benchmarking the GridMOSI Library". Echallenges
Conference, 2007, The Hague, Netherlands,
(accepted).

	1. Introduction
	2. Grid Data Access
	3. Reading from the Storage Element
	4. Local Read
	5. Conclusions
	6. References

