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Abstract 
 

In recent years, data mining has started to receive 

increasing interest as a method of complementing domain 

specific expertise in various spheres of human activity. 

Apart from data specific issues, a key particularity of 

many real world problems, such as medical diagnosis, 

are the costs involved, the most important being the test 

and the misclassification costs. This paper evaluates 

ProICET, a new system built around the ICET algorithm. 

The system has been previously benchmarked on classical 

medical data sets. Here, we use a real medical dataset to 

test the current version of our system. The comparative 

analysis confirms that ProICET is the best at cost 

minimization out of several successful classifiers, while 

keeping a good accuracy rate. 

 

1. Introduction 
 

In recent years, data driven analytical research has 

started to complement domain specific methods in various 

areas, such as loan decision, oil-slick detection, medical 

field, or sales and marketing. In the medical domain, the 

data driven approach has proved of valuable support 

especially in the diagnosis process. This is an area in 

which traditional methods can profit from the solutions 

provided by machine learning because, despite the boost 

in biomedical technology, the accuracy of diagnosis and 

prognosis remains in many cases rather low. The causes of 

this situation are multiple. 

First of all, it is known that medical diagnosis is 

subjective; it is influenced by the physician making the 

diagnosis (his experience, intuition and biases, or his 

psycho-physiological condition). Moreover, the amount of 

data that should be considered in order to make an 

accurate prediction is usually huge. Machine learning can 

be used to automatically infer diagnostic rules from 

descriptions of past, successfully treated patients, and, 

consequently, help specialists make the diagnostic process 

more objective and more reliable. Records of previous 

patients are gathered into hospital archives and can be 

made available through machine learning techniques; the 

classifier derived from this data provides support for 

future diagnosis and treatment and can help improve the 

physician’s speed, accuracy and reliability in establishing 

a new diagnosis. Also, it may offer very useful support in 

the training of students and for non-specialists. 

Additionally to complementing the clinical diagnosis 

process, data mining tools offer the possibility of 

extracting useful information from huge amounts of data, 

a task impossible for any doctor. This provides the 

possibility to generate new medical knowledge, which can 

then drive further the data mining approaches. 

 

2. Cost-Sensitive Medical Data Mining 
 

Whether a healthy patient is diagnosed as ill or the other 

way around has very different implications in real life. 

However, a typical classification algorithm would make 

no difference between the two. This is because such 

algorithms are only concerned with error reduction, i.e. 

minimizing the number of errors. As the previous example 

suggested, in real world problems, the cost of different 

errors is seldom the same. Consequently, for a classifier to 

be of practical use it must consider a more complex form 

for the function it needs to minimize. 

A special category of methods that address this problem 

are cost-sensitive learners, which are directed towards the 

reduction of the total cost, instead of just minimizing the 

number of misclassification errors. 

Turney [11] provides a general taxonomy of costs 

involved in inductive concept learning, the most important 

of which being misclassification costs and test costs. The 

first category encompasses the costs which are 

conventionally considered by most cost-sensitive 

classifiers; however, several solutions address the second 

category also. A brief survey of the most important cost-

sensitive classifiers, as described in the literature, will be 

provided in the following. 

A first naive approach to reducing misclassification 

costs is stratification, which changes the distribution of 

instances for each class, by including proportionally more 

examples of the classes with high misclassification costs. 

Although it has the advantage of being very simple, the 

approach has also a serious limitation: it restricts the 



  

dimension or the form of the misclassification cost matrix, 

being applicable only to two-class problems or to 

problems where the cost is independent of the predicted 

class. More complex techniques, which overcome these 

limitations, usually involve meta-learning algorithms, 

which typically are applicable to a range of base 

classifiers. In this category we include algorithms based 

on various ensemble methods, such as AdaBoost.M1 [4], 

AdaCost [3], or MetaCost [2] and those which take an 

evolutionary approach, the best-known being ICET [10]. 

Introduced by Freund and Schapire, AdaBoost.M1 [4] 

combines several weak classifiers through voting, such as 

to obtain a composite classifier with higher predictive 

accuracy than any of its components. Each distinct model 

is built, during several boosting steps, through the same 

learning mechanism, by varying the distribution of 

examples in the training set. After each boosting phase, 

the weights of the misclassified examples are increased, 

while those for the correctly classified examples are 

decreased. It has been mathematically proved that the 

error rate for the composite classifier on the un-weighted 

training examples approaches zero exponentially with an 

increasing number of boosting steps [4], [7]. Moreover, 

various experiments report that the reduction in error is 

maintained for unseen examples as well. 

Another solution for reducing misclassification costs is 

MetaCost [2]. The algorithm is based on the Bayes 

optimal prediction principle, which minimizes the 

conditional risk of predicting that an example belongs to 

class i, given its attributes x. The solution requires 

accurate estimates for the class probabilities of examples 

in the training set. This distribution is obtained through an 

ensemble method, by uniform voting from individual 

classifiers. Once the conditional probabilities are 

estimated, the algorithm re-labels the examples in the 

training set, according to their optimal predictions and 

generates the final classifier, using the modified training 

set. MetaCost is applicable to a wide range of base 

classifiers. Moreover, it has the advantage of generating a 

single, understandable model, and it is efficient under 

changing costs (the conditional probabilities need to be 

computed only once, after which they can be used to 

generate models for various cost matrices). 

The second main category of cost-sensitive learners is 

represented by those that tackle the problem of test costs. 

They typically involve some alteration of the information 

gain function, as to make it cost-sensitive. Various cost 

dependent functions have been proposed in the literature, 

such as EG2, IDX or CS-ID3 [10]. 

Significantly less work has been done for aggregating 

several cost components. The most prominent approach in 

the literature is ICET, which combines a greedy search 

heuristic (decision tree) with a genetic search algorithm. 

Other possible solutions are explored in [5], [8] and [9]. 

Medical diagnosis is one field in which such an 

aggregated approach is of utmost importance. First of all, 

a doctor must always consider the potential consequences 

of a misdiagnosis. In this field, misclassification costs may 

not have a direct monetary quantification, but they 

represent a more general measure of the impact each 

particular misclassification may have on human life. 

These costs are non-uniform (diagnosing a sick patient as 

healthy carries a higher cost than diagnosing a healthy 

patient as sick). Another particularity of the medical 

diagnosis problem is that medical tests are usually costly. 

Moreover, collecting test results may be time-consuming; 

arguably time may not be a ’real’ cost, but it does have 

some implication for the decision whether it is practical to 

take a certain test or not. In the real case, performing all 

possible tests in advance is unfeasible and only a relevant 

subset should be selected. The decision on performing or 

not a certain test should be based on the relation between 

its cost and potential benefits. When the cost of a test 

exceeds the penalty for a misclassification, further testing 

is no longer economically justified. 

 

3. ProICET 
 

One of the most prominent approaches to the 

classification problem is the decision tree learner. The 

classical algorithm for generating decision trees uses a 

greedy technique. As all hill climbing algorithms, it 

suffers from the horizon effect. A better solution would be 

to perform a heuristic search in the space of possible 

decision trees, through evolutionary means. 

ICET (Inexpensive Classification with Expensive 

Tests), introduced by Peter Turney, is such a hybrid 

method. The theoretical grounds show the algorithm has 

potential, because it tackles the problem of cost-sensitive 

classification in a novel, yet sound manner: by combining 

a greedy search heuristic (decision tree) with a genetic 

algorithm [10]. 

ProICET is a new system, which has as starting point 

the ICET algorithm. A detailed description of the system 

is provided in Section 4. 

The algorithm is developed around the following idea: 

the GA evolves a population of parameters, each 

individual corresponding to a decision tree. Standard 

mutation and crossover operators are applied to the tree 

population and, after a fixed number of iterations, the 

fittest individual is returned.  

The decision tree algorithm is Eg2 – a modified version 

of Quinlan’s C4.5, which uses ICF (Information Cost 

Function) as attribute selection function [6].  

For the i
th

 attribute, ICF may be defined as follows: 

10,
)1(

2
≤≤

+
=

∆

wwhere
C

ICF
w

i

I

i

i

                (1) 



  

Here, the ICF costs are used for encoding the 

individuals in the population and not for minimizing test 

costs directly, as in Eg2. The n costs, Ci, are not true 

costs, but bias parameters. They provide enough variation 

to prevent the decision tree learner from getting trapped in 

a local optimum, by overrating/ underrating the cost of 

certain tests based on past trials’ performance. However, 

true test costs may be used when generating the initial 

population, as it has been shown to lead to some increase 

in performance [10]. 

The individuals are represented as a bit string of n + 2 

numbers, represented in Gray code. The first n numbers 

represent the bias parameters, ’alleged’ test costs in the 

ICF function. The last two stand for the algorithm’s 

parameters CF and w; the first controls the level of 

pruning, as defined for C4.5, while w is needed by ICF. 

The fitness function for an individual is computed by 

evaluating the average cost of classification of the 

corresponding tree, built by randomly dividing the 

training set in two subsets, the first used for the actual tree 

induction and the second for error estimation. The average 

cost of classification is the total cost, obtained by 

summing the test and misclassification costs, normalized 

to the training set size.  

Test costs are specified as attribute - cost value pairs. If 

the same attribute is tested twice along the path (numeric 

attribute), the second time its cost is 0. The classification 

costs are defined by a cost matrix (Cij)nxn, where Cij is the 

cost of misclassifying an instance of class j as being of 

class i. 

 

4. Implementation Issues 
  

ProICET uses as a starting point the implementation of 

the C4.5 algorithm, revision 8, provided by Weka [13] 

(referred to as J4.8), and standard genetic mechanisms 

supplied by GGAT [1], both written in java. 

The Eg2 algorithm was developed from J4.8 by 

modifying the information gain function to consider the 

cost associated to each attribute, as specified by equation 

(1), similarly to the implementation presented in [10]. 

We also had to consider a new evaluation procedure, 

sensitive to both test and misclassification costs. This was 

important for both the algorithm itself, in computing the 

fitness score, and for the methodology of evaluating the 

new system against well known classifiers, such as 

MetaCost, AdaBoost, Eg2, or J4.8. 

The most important changes from the initial ICET 

algorithm [10] affected the evolutionary component, 

where several enhancements have been considered. We 

employed GGAT [1] – General Genetic Algorithm Tool – 

as a starting point to build the improved genetic 

component within ProICET. 

Instead of generating new populations at each iteration, 

we employed the single population technique for evolving 

a new generation, which directly implements elitism (the 

best individuals of the current generation can survive 

unchanged in the next generation). Another prominent 

feature of ProICET is the use of ranking in the fitness 

function estimation. The individuals in the population are 

ordered according to their fitness value, after which 

probabilities of selection are distributed evenly, according 

to their rank in the ordered population. Ranking can be a 

very effective mechanism for avoiding the premature 

convergence of the population, which can occur if the 

initial pool has some individuals which dominate, having 

a significantly better fitness than the others. 

For each individual, the n+2 chromosomes were 

defined (n being the number of attributes in the data set, 

while the other two correspond to parameters w and CF); 

each chromosome is represented as a 14 bits binary string. 

The population size is 50 individuals. The roulette wheel 

technique was used for parent selection; as recombination 

techniques, we have employed single point random 

mutation with mutation rate 0.2, and multipoint crossover, 

with 4 randomly selected crossover points. 

The number of the evaluation steps used in [10] is 

rather low. Therefore, in ProICET, the algorithm is run 

for 1000 fitness evaluation steps. Due to the fact that a 

new generation is evolved using single population, the 

final result yielded by the procedure is the best individual 

over the entire run, which makes the decision on when to 

stop the evolution less critical. 

 

5. Evaluation on a Real Medical Problem 
 

The work performed on the ICET algorithm was 

concerned with evaluating the hybrid approach against 

algorithms that are sensitive to test costs, therefore lacking 

both a comprehensive evaluation of the misclassification 

cost component, and a study of the behavior in medical 

problems with both types of costs involved. The work 

carried out in [12] tries to fill in this gap, by comparing 

the new system (ProICET) with some of the best-known 

classifiers – either cost sensitive, or very good at error 

reduction. The results obtained there illustrate that besides 

better costs, ProICET achieves very high accuracy rates 

(94-99%) on large medical benchmarks (Wisconsin breast 

cancer, Thyroid) [12], higher than those of the algorithms 

considered. 

The results presented there have confirmed that the 

methodology introduced by the algorithm is promising, 

but did not tackle the problem of evaluating the system on 

real data. This is what we try to achieve here, by 

evaluating our new implementation on a dataset 

containing records of patients that have been diagnosed 

with prostate cancer. The dataset contains 16 attributes, 



  

representing both preoperative and operative data. The 

class attribute is postoperative PSA, pre-discretized such 

as to obtain three possible values (‘low’ – for PSA < 0.1, 

‘medium’ – for PSA between 0.1 and 1, and ‘high’ – for 

PSA > 1).  

The medical question was to try and predict the value of 

postoperative PSA from preoperative and operative data 

(pre-op PSA, quality of life, nerve sparing, operation time, 

bleeding, operation type, technique, etc). A secondary 

issue was related to finding the best predictor attributes in 

this case. 

In what the evaluation procedure is concerned, because 

the algorithm involves a large heuristic component, it 

assumes averaging the costs over 10 runs. Each run uses a 

pair of randomly generated training-testing sets, in the 

proportion 70% - 30%; the same proportion is used when 

separating the training set into a component used for 

training and one for evaluating each individual (in the 

fitness function). 

One of the main issues when applying a cost-sensitive 

approach, especially in the medical field, is setting the 

costs. If the test costs are relatively easier to quantify (by 

limiting to their economical aspect), when building the 

misclassification cost matrices we come across a more 

serious matter: how can we measure the value of human 

life? This is still an open question, and many doctors are 

reluctant to set a value to different misclassification 

errors. Perhaps a good approach is to use several cost 

matrices, and compare the outcomes. Following this idea, 

we used two different values for the test costs - 0 and 0.1 - 

and four different cost matrices. The four matrices are 

shown in Table 1, where for each matrix, the line indices 

represent the predicted class, and the columns represent 

the actual class. The idea was to experiment on a few 

variants of the unbalance in the errors' cost, while keeping 

a reasonable ratio. 

The various costs considered result in eight different 

batches; in each batch we evaluated five algorithms: 

ProICET, Eg2, AdaBoost, J4.8 and MetaCost. The last 

three were provided by the Weka framework, and for Eg2 

we used the component we implemented for ProICET. 

The average total costs obtained are shown in Table 2. 

 

Table 1 Table 1 Table 1 Table 1 –––– Cost Matrices Cost Matrices Cost Matrices Cost Matrices (M (M (M (M    ––––    Matrix)Matrix)Matrix)Matrix)    
    

M 1M 1M 1M 1    lo med hi 

lo 0.0 0.5 1.0 

med 1.5 0.0 0.7 

hi 5.0 3.0 0.0  

M 2M 2M 2M 2    lo med hi 

lo 0.0 0.5 1.0 

med 3.0 0.0 0.7 
hi 10.0 6.0 0.0  

M 3M 3M 3M 3    lo med hi 

lo 0.0 0.5 1.0 

med 0.75 0.0 0.7 

hi 2.5 1.5 0.0  

M 4M 4M 4M 4    lo med hi 

lo 0.0 0.5 1.0 

med 3.0 0.0 0.5 

hi 5.0 3.0 0.0  
    

Table 2 Table 2 Table 2 Table 2 –––– Average Total Cost Average Total Cost Average Total Cost Average Total Cost    
(TC(TC(TC(TC    –––– Test Cost; CM  Test Cost; CM  Test Cost; CM  Test Cost; CM –––– Cost Matrix) Cost Matrix) Cost Matrix) Cost Matrix)    

    

Average Average Average Average 
Total CostTotal CostTotal CostTotal Cost 

Pro Pro Pro Pro 
ICETICETICETICET    

Ada Ada Ada Ada 
BoostBoostBoostBoost    

Eg2Eg2Eg2Eg2    J4J4J4J4....8888    Meta Meta Meta Meta 
CostCostCostCost    

C:0; TM:1 0.28 0.284 0.269 0.269 0.293 

TC:0.1; TM:1 0.4140.4140.4140.414    0.734 0.430 0.430 0.448 

TC:0; TM:2 0.561 0.52 0.52 0.52 0.65 

TC:0.1; TM:2 0.6780.6780.6780.678    0.97 0.682 0.682 0.812 

TC:0; TM:3 0.146 0.166 0.142 0.142 0.145 

TC:0.1; TM:3 0.2520.2520.2520.252    0.616 0.305 0.305 0.310 

TC:0; TM:4 0.213 0.44 0.44 0.44 0.502 

TC:0.1; TM:4 0.5750.5750.5750.575    0.89 0.603 0.603 0.647 

    

Table 3 Table 3 Table 3 Table 3 –––– Average Accuracy Average Accuracy Average Accuracy Average Accuracy    
(TC (TC (TC (TC –––– Test Cost; CM  Test Cost; CM  Test Cost; CM  Test Cost; CM –––– Cost Matrix) Cost Matrix) Cost Matrix) Cost Matrix)    

    

Average Average Average Average 
Accuracy Accuracy Accuracy Accuracy 
Rate (%)Rate (%)Rate (%)Rate (%) 

Pro Pro Pro Pro 
ICETICETICETICET    

Ada Ada Ada Ada 
BoostBoostBoostBoost    

Eg2Eg2Eg2Eg2    J4J4J4J4....8888    Meta Meta Meta Meta 
CostCostCostCost    

TC:0; TM:1 84.18 

TC:0.1; TM:1 83.77 
84.18 

TC:0; TM:2 83.87 

TC:0.1; TM:2 84.07 
83.26 

TC:0; TM:3 84.28 

TC:0.1; TM:3 84.07 
84.38 

TC:0; TM:4 84.07 

TC:0.1; TM:4 83.77 

79.18 84.07 84.07 

83.36 

 

A first remark should be made about the fact that 

ProICET yields the lowest total cost in all the tests where 

both types of costs are considered. Moreover, Figure 1 

shows that when the average cost over the eight different 

tests is considered, ProICET achieves again the smallest 

value. 

In what the accuracy is concerned, we remark that the 

five algorithms attain similar rates (Table 3), with 

AdaBoost being the last. Since AdaBoost and J4.8 are not 

cost-sensitive learners, their accuracy rate is not affected 

by the shift in misclassification costs, or test costs.  
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Moreover, the balanced test costs have no influence on the 

accuracy rate of the Eg2 algorithm (sensitive to test costs 

alone), therefore Eg2 achieves the same accuracy rate as 

J4.8. Finally, since MetaCost is only sensible to 

misclassification costs, its accuracy rate is influenced only 

by the cost matrices. 

The relatively low overall classification rate of our 

medical dataset is mostly owed to its small size. The 

comparative evaluation performed in [12] supports this 

conclusion, since the results obtained in our previous 

study show that ProICET yields lowest costs while 

maintaining high accuracy rates. 

 

6. Conclusions and Future Development 
 

In recent years, data driven analytic methods have 

started to gain increasing interest as complementing 

traditional methods in various applicative fields, such as 

oil slick detection, loan decisions, or medical diagnosis 

and prognosis. 

Due to the particularities of the medical field, the cost-

sensitive approach is particularly suited for medical data 

mining. One of the most prominent cost-sensitive 

algorithms that tackle both types of costs is ICET. By 

combining two well-known machine learning techniques, 

ICET manages to optimize overall costs by performing a 

genetic search. 

Starting from the assumption that ICET’s theoretical 

basis should provide a good starting point for a robust 

practical tool, we developed ProICET, a new system for 

medical diagnosis. ProICET implements the concept of 

performing a genetic search in the space of decision trees 

explored through greedy means. At the same time, it 

attempts to provide improved features in the genetic 

component, when compared to [10]. Due to our 

enhancements, ProICET managed to achieve lower costs 

than other powerful algorithms, such as MetaCost, Eg2, 

AdaBoost, or J4.8, when evaluated on classical medical 

benchmarks [12]. Moreover, the small values of the 

misclassification cost component achieved in [12] confirm 

very high accuracy rates. 

Following the good results obtained by ProICET on 

classical medical datasets, we evaluated the system’s 

performance on a real medical dataset, with records of 

patients that have been diagnosed with prostate cancer. 

The results obtained on this real medical data show that 

ProICET yields the lowest costs (out of the same systems 

we compared it with in [12]), while maintaining 

acceptable accuracy rates. The main reason why the 

accuracy rates are not at higher levels is rooted in the 

dataset: unbalanced, rare cases are very hard to learn 

because they are poorly represented. Moreover, since on 

larger medical problems the accuracy rates are higher 

[12], we estimate that, by increasing the size of the 

dataset, the system will achieve better results. 

All in all, the results obtained so far confirm that 

ProICET is a robust system, achieving both low total costs 

and high accuracy rates. 
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