
Computer Programming
Introduction. I/O functions

Robert Varga

Technical University of Cluj-Napoca
Computer Science Department

Course 1



Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 2 / 48



1. Administrative

Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 3 / 48



1. Administrative

Contact info

Course and Seminar

Robert Varga
email: robert.varga@cs.utcluj.ro
website: link

Laboratory

Vivian Chiciudean
Robert Varga

MS Teams

Homework
Announcements
preferred means of communication

Robert Varga (TUC-N) Computer Programming Course 1 4 / 48

https://users.utcluj.ro/~robert


1. Administrative

Grading

Seminar

3 verified homeworks

Laboratory

Laboratory test - grade must be above 5
40% of your final grade

Course

be present at 10 out of 14 courses = 1 point
course quizzes = 1 point
Written exam - grade must be above 5
60% of your final grade

Opportunities to gain extra grade points

Robert Varga (TUC-N) Computer Programming Course 1 5 / 48



1. Administrative

Course objectives

learn programming in the C language:

general programming concepts and techniques - applicable to
other languages
elements specific to the C language
usage of development tools

skills acquired:

basic algorithm design
implementing an algorithm as a C program
analysis and understanding of written code
debugging

Robert Varga (TUC-N) Computer Programming Course 1 6 / 48



1. Administrative

Recommended reading

Books

Kim N. King - C programming: a Modern Approach
Brian Kernighan, Dennis Ritchie - The C Programming
Language

Problems

CP laboratory and homework
infoarena - problems solved by at least 500 users
atcoder - competitive programming platform
leetcode - technical interview questions

Official language documentation

cppreference

Robert Varga (TUC-N) Computer Programming Course 1 7 / 48

https://infoarena.ro
https://atcoder.jp
https://leetcode.com
https://en.cppreference.com/w/c


1. Administrative

Course contents

Fundamental C syntax

Introduction. I/O Functions
Data Types. Expressions. Conditional Statements
Bitwise Operations. Repetitive Statements
Functions. Arrays

Higher level elements

Preprocessing Directives
Pointers 1
Pointers 2
Strings
Recursion
Structures
Files
Command Line Arguments

Robert Varga (TUC-N) Computer Programming Course 1 8 / 48



2. Definitions

Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 9 / 48



2. Definitions

Definitions

a computational problem is a description of desired output
values for a set of given input values

an algorithm specifies the required steps to transform input data
to obtain the output data

a program is the implementation of an algorithm in a
programming language

Robert Varga (TUC-N) Computer Programming Course 1 10 / 48



2. Definitions

Algorithm

it defines the required steps to transform the input data into the
output data

often described in a semi-formal language called pseudocode

characteristics:

correct - on all possible inputs
finite - it requires finite number of steps to finish
efficient - obtains the result using the minimal number of steps
economic - uses the least amount of memory

Robert Varga (TUC-N) Computer Programming Course 1 11 / 48



2. Definitions

Algorithm 1.1 - example

read x
p = 1
while p < x do
while x is divisible by p do
print p
x = x / p

end while
p = p + 1

end while

what does it achieve?

is it correct?

is it guaranteed to
finish in finite steps?

is it the most efficient?

is it economic?

Robert Varga (TUC-N) Computer Programming Course 1 12 / 48



2. Definitions

History of the C language

developed by Dennis Ritchie at Bell Labs in the 1970s

related to the Unix operating system

used in scenarios where speed and efficiency is important
(real-time systems, embedded systems)

characteristics:

imperative - it is based on commands/instructions
compiled - the source code is translated in machine code using
a compiler
high-level - abstractization from the hardware
short - uses relatively few keywords

Robert Varga (TUC-N) Computer Programming Course 1 13 / 48



3. First C program

Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 14 / 48



3. First C program

Program 1.1 - Hello World

1 // My first C program

2 #include <stdio.h>

3 int main(void)

4 {

5 printf("Hello , World!");

6 return 0;

7 }

first line is comment,
does not affect the
behavior

second line includes
the standard library
header, needed for the
print operation

the main function
starting from line 3
defines the starting
point of the program

Robert Varga (TUC-N) Computer Programming Course 1 15 / 48



3. First C program

Program 1.1 - Hello World

1 // My first C program

2 #include <stdio.h>

3 int main(void)

4 {

5 printf("Hello , World!");

6 return 0;

7 }

the printf function
prints the string on the
screen

the return instruction
terminates the main
function and with it
the whole program

code blocks are
delimited by { } pairs

Robert Varga (TUC-N) Computer Programming Course 1 16 / 48



3. First C program

From code to executable

Robert Varga (TUC-N) Computer Programming Course 1 17 / 48



4. Fundamental Concepts

Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 18 / 48



4. Fundamental Concepts

General properties

all statements are terminated by semicolon ;

case sensitive - lower case and upper case letters are different

indentation can and should be used to indicate the structure of
the program

whitespace characters (space, tabs, new-line) are ignored by the
compiler

Robert Varga (TUC-N) Computer Programming Course 1 19 / 48



4. Fundamental Concepts

Variables

a variable is used to store useful information during program
execution

the name reflects that it can be changed

analogous to variables or unknowns from mathematics

the C language requires us to declare all variables

declaration specifies the type and name, in this order

you can declare multiple variables of the same type by putting
commas between their names

1 char c;

2 int i, j, k;

3 float temp_celsius , temp_fahrenheit;

Robert Varga (TUC-N) Computer Programming Course 1 20 / 48



4. Fundamental Concepts

Naming

Variable names need to follow the rules:

cannot start with numbers

starting with single or double underscore is not recommended

cannot contain spaces

words can be linked with underscore: my temp variable

or we can use camel-case: myTempVariable

recommended to be short but descriptive

Robert Varga (TUC-N) Computer Programming Course 1 21 / 48



4. Fundamental Concepts

Data Types

the data type of a variable specifies its domain and the possible
operations which can be performed on it

the domain refers to the set of possible values it can take

a key element in programming is choosing the appropriate data
type

for now, we only introduce the fundamental data types:

char - character - stores a symbol (letter, digit, whitespace)
int - integer - common type for small integers
float - single precision floating point number - numbers with
decimal part
double - double precision floating point numbers
void - absence of type

Robert Varga (TUC-N) Computer Programming Course 1 22 / 48



4. Fundamental Concepts

Initialization and assignment
initialization specifies starting values for variables
variables can and should be initialized at the moment of their
declaration
in general, the C language does not guarantee initialization with
0 or any other value

1 char c = ’a’;

2 int i = 1, j = -2, k = 3;

3 float x = 1.5, y = -.4;

assignment refers to the operation of changing the value of a
variable
this happens after its declaration

1 char c;

2 c = ’a’;

3 int i = 1;

4 i = 2;

Robert Varga (TUC-N) Computer Programming Course 1 23 / 48



4. Fundamental Concepts

I/O in C

the C language does not have built-in instructions for reading
and writing data

these operations are handled by functions from the standard
library stdio.h

we will focus on the two main functions:

printf - formatted printing - prints on the screen = standard
output stdout
scanf - formatted reading - reads from the keyboard = standard
input stdin

there is an additional output stream called stderr

Robert Varga (TUC-N) Computer Programming Course 1 24 / 48



5. Output Functions

Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 25 / 48



5. Output Functions

printf function

int printf(const char* format, ...);

prints on the screen using the specified format

the format string is followed by 0 or more arguments

input parameters

format - the format string specifies how the printing should be
carried out
... - additional parameters that hold what should be printed

output value

returns the number of characters that were successfully written

Robert Varga (TUC-N) Computer Programming Course 1 26 / 48



5. Output Functions

printf function - simple examples

1 // Example 1

2 printf("hello");

3

4

5

6 // Example 2

7 int x = 7;

8 printf("%d", x);

9

10

11

12 // Example 3

13 printf("%c", 65);

prints the given string as is

no format specifier

prints the variable x as a decimal
number

we have a single format specifier that
dictates how the variable should be
shown

prints the number 65 interpreted as a
character

we have a single format specifier and a
literal which is a number

Robert Varga (TUC-N) Computer Programming Course 1 27 / 48



5. Output Functions

Format specifier

the general form of the specifier includes:

% indicator dimension precision modifier conversion

only the percent sign and the conversion are mandatory

the number of format specifiers should be equal to the number
of additional arguments supplied to the function

Robert Varga (TUC-N) Computer Programming Course 1 28 / 48



5. Output Functions

Format specifier - important ones

format data type explanation
specifier
%c char writes a single character corresponding

to the provided ASCII value
%d int writes an integer in base 10 (decimal)
%f float, double writes a floating point number in base 10
%s char* writes a string

Robert Varga (TUC-N) Computer Programming Course 1 29 / 48



5. Output Functions

Format specifier - extended list

format explanation
specifier
%o interpret integer in base 8 (octal)
%x %X interpret integer in base 16 (hexadecimal)
%u interpret integer as unsigned
%e %E interpret floating point number in scientific form
%g interpret floating point number in short notation
%a %A interpret floating point number in base 16
%p interpret a memory address in base 16
%n store the number of characters printed up to this symbol
%% print the symbol %

the lower-case and upper-case versions use lower-case or
upper-case characters respectively

Robert Varga (TUC-N) Computer Programming Course 1 30 / 48



5. Output Functions

Format specifier - indicator

% indicator dimension precision modifier conversion

it is optional

changes the alignment of the data

− align the data to the left

+ write the plus sign in front of positive numbers

# write the prefix 0 for numbers in octal, the prefix 0x for
numbers in hexadecimal and the decimal point for floating point
numbers

0 complete the number with leading zeros (it is ignored if − is
present)

Robert Varga (TUC-N) Computer Programming Course 1 31 / 48



5. Output Functions

Format specifier - dimension, precision

% indicator dimension precision modifier conversion

dimension

it is an integer or the * symbol
if asterisk is used it takes the previously stored value
specifies the minimal width used for printing
all characters are printed if this is exceeded
default alignment is to the right

precision

it is of the form .x or .*, where x is an integer
if asterisk is used it takes the previously stored value
specifies the number of digits to print after the decimal point

Robert Varga (TUC-N) Computer Programming Course 1 32 / 48



5. Output Functions

Format specifier - modifier

% indicator dimension precision modifier conversion

changes the size of the data

can be h (half), l (long) or L (long double)

%hhd char one byte
%hd short two bytes
%lld long long int eight bytes
%Lf long double ten bytes

Robert Varga (TUC-N) Computer Programming Course 1 33 / 48



5. Output Functions

printf function - complex example 1

1 printf("%-13.3f<<", 1.0/7);

prints the decimal digits of the number 1/7

followed by the characters <<

alignment is to the left

use a field of size 13 to print

print only 3 digits after the decimal point (rounding)

Robert Varga (TUC-N) Computer Programming Course 1 34 / 48



5. Output Functions

printf function - complex example 2

1 long long int x = 100000;

2 x = x * x;

3 printf("%+* lldxx", 20, x);

construct the number (105)2 in x

print the digits of x

followed by the characters xx

default alignment is to the right

use a field of size 20 to print, obtained after replacing asterisk
with the value of the first argument

show a plus sign in front of positive numbers

Robert Varga (TUC-N) Computer Programming Course 1 35 / 48



5. Output Functions

Escape sequence

the backslash character has a special role in strings

it introduces an escape sequence

characters following it are printed differently

\n signifies new line (enter)

\b signifies backspace

\t signifies tab

\a issues an alert sound

\” prints quotation marks inside the string

\\ prints backslash

Robert Varga (TUC-N) Computer Programming Course 1 36 / 48



5. Output Functions

puts function

int puts(const char* s);

prints the string s on the screen

puts a new-line character after the string

input parameters:

s - the string to be printed

output value

returns a non-negative number in case of success and EOF (-1)
in case of failure

Robert Varga (TUC-N) Computer Programming Course 1 37 / 48



6. Input Functions

Contents

1 Administrative

2 Definitions

3 First C program

4 Fundamental Concepts

5 Output Functions

6 Input Functions

Robert Varga (TUC-N) Computer Programming Course 1 38 / 48



6. Input Functions

scanf function

int scanf(const char* format, ...);

reads from the keyboard using the specified format

the format string is followed by 0 or more arguments

input parameters:

format - the format string specifying how the data is interpreted
for reading
... - additional parameters that hold the addresses where the
data read should be written

output value

returns the number values which were correctly read or EOF
(-1) in case of a read error

Robert Varga (TUC-N) Computer Programming Course 1 39 / 48



6. Input Functions

scanf function - simple examples

1 // Example 1

2 int x;

3 scanf("%d", &x);

4

5

6

7 // Example 2

8 char c = ’a’;

9 scanf("%c", &c);

10

11

12

13 // Example 3

14 char s[100];

15 scanf("%s", s);

read a number in base 10 (decimal)

store it in the variable x

note, x is initialized before the read
operation

reads a single character

store it in the variable c

the previous value from c is overwritten
in case of a successful read

declare an array of characters = string

read the whole string

Robert Varga (TUC-N) Computer Programming Course 1 40 / 48



6. Input Functions

scanf function - format specifier

uses the same format specifiers as printf

exception: double type requires %lf instead of %f

dimension here dictates the number of characters read

if the input contains a character which does not match the
specifier, reading is terminated

all unread characters remain in the input buffer

additional characters in the format string that are not part of
any format specifier must appear in the input

space in the format string matches with any whitespace
character from the input

Robert Varga (TUC-N) Computer Programming Course 1 41 / 48



6. Input Functions

scanf function - complex example 1

1 int a, b;

2 scanf("%d/%d", &a, &b);

reads a fraction given in the form a/b

the numbers must be next to the / symbol

the two components are correctly extracted and saved in
variables a and b

Robert Varga (TUC-N) Computer Programming Course 1 42 / 48



6. Input Functions

scanf function - complex example 2

1 int a, b;

2 scanf("%d / %d", &a, &b);

reads a fraction given in the form a/b

because of the additional space in the format string there can be
0 or more spaces between the numbers and /

all these inputs are accepted: 1/2, 1 /2, 1/ 2, 1 / 2

Robert Varga (TUC-N) Computer Programming Course 1 43 / 48



6. Input Functions

scanf function - complex example 3

1 char s[100];

2 scanf("%[^\n]", s);

use a format specifier based on a regex which reads until the
newline character

this is needed because the default format specifier for strings %s
stops at the first whitespace

notice, strings are different from simply data types, and no & is
required before the variable name

[abc] reads characters matching the ones from the bracket

[ˆabc] reads characters different from the ones from the bracket

Robert Varga (TUC-N) Computer Programming Course 1 44 / 48



6. Input Functions

Important distinctions between printf/scanf

all variables in scanf should be preceded by the symbol &

this returns the address of the variable
more details in the course about pointers
omitting the symbol leads to run-time errors
for string-type variables the symbol should not be used

for basic read operations the format string for scanf should
contain only the format specifiers

double type uses the %lf format specifier for scanf

Robert Varga (TUC-N) Computer Programming Course 1 45 / 48



6. Input Functions

gets function

int gets(char* s);

reads a string from the keyboard until new-line is typed

it is saved in the provided string variable s

the new-line character is not saved in the string s

input parameters:

s - the string s which will store the data

output value

returns s in case of success and the NULL pointer in case of an
error

useful for reading strings containing spaces

remark: this version of the function is not secure because it does
not protect against reading longer strings than the size of s

Robert Varga (TUC-N) Computer Programming Course 1 46 / 48



6. Input Functions

Common beginner I/O mistakes

1 // Example 1

2 char c;

3 scanf("%c", c);

4

5

6 // Example 2

7 int a = 42;

8 printf("%f", a);

9

10

11 // Example 3

12 printf("%d");

missing & operator in front of the
variable

wrong format specifier

number of variables is not equal to the
number of format specifiers

Robert Varga (TUC-N) Computer Programming Course 1 47 / 48



6. Input Functions

Program 1.2 - Basic I/O

1 #include <stdio.h>

2

3 int main(){

4 char name [100];

5 puts("What’s your name?");

6 gets(name);

7 printf("Hello , %s!\n", name);

8 int age;

9 puts("Your age?");

10 scanf("%d", &age);

11 printf("Your age in base 8 is

%o\n", age);

12 return 0;

13 }

declare a variable of
string type

read with gets
because it can
contain spaces

use %o format
specifier to output in
base 8

Robert Varga (TUC-N) Computer Programming Course 1 48 / 48


	Administrative
	Definitions
	First C program
	Fundamental Concepts
	Output Functions
	Input Functions

