
Computer Programming
Data types. Expressions. Conditional Statements

Robert Varga

Technical University of Cluj-Napoca
Computer Science Department

Course 2



Contents

1 Data types

2 Expressions

3 Conditional statements

Robert Varga (TUC-N) Computer Programming Course 2 2 / 37



1. Data types

Contents

1 Data types

2 Expressions

3 Conditional statements

Robert Varga (TUC-N) Computer Programming Course 2 3 / 37



1. Data types

Primitive data types

The primitive data types in C can separated into two classes:

integer types

char, short int, int, long long int and their unsigned versions
all of them use two’s complement (C2) for negative values

real types

float, double, long double
all of them use the sign bit, exponent bits, mantissa (fraction)
bits representation = floating point representation

Robert Varga (TUC-N) Computer Programming Course 2 4 / 37



1. Data types

Characters

characters in C are treated as integers

when printing them on the screen their value is mapped from a
number to the actual character according to the ASCII table

the order of characters is based on their integer values

we can use arithmetic operations on characters, like ’a’+1, ’a’-32

some categories:
special and whitespace characters - from 0 to 32

newline = 10
space = 32

digits - from 48 to 59
upper-case letters - from 65 to 90
lower-case letters - from 97 to 122

Robert Varga (TUC-N) Computer Programming Course 2 5 / 37



1. Data types

ASCII table

ASCII codes of important characters.
Shows character, code in decimal and code in binary in three columns

Robert Varga (TUC-N) Computer Programming Course 2 6 / 37



1. Data types

Overflow

for integer types on n bits:

if we go above the maximum limit, overflow happens
only the last n (least significant) bits of the value are retained
if we go below the minimum limit, underflow happens
the behavior is similar

for real types:

if we go above the maximum limit, overflow happens
values above the representable maximum are transformed into a
special value called infinity
values below the representable minimum are transformed into a
special value called minus infinity
there is another special value called not-a-number reserved for
cases when the result is uncertain: infinity - infinity, square root
of a negative number

Robert Varga (TUC-N) Computer Programming Course 2 7 / 37



1. Data types

Overflow - Example 1

1 // unsigned integer types

2 unsigned int a = 4294967295;

3 a = a + 7;

4 printf("%u\n", a);

a contains the largest representable value = 232 − 1

a+1 would be equal to 1 followed by 32 bits of 0 in binary

a+7 is equal to 232 + 6, bit 32 is ignored

prints 6

Robert Varga (TUC-N) Computer Programming Course 2 8 / 37



1. Data types

Overflow - Example 2

1 // signed integer types

2 int b = 2147483646;

3 b = b + 10;

4 printf("%d\n", b);

b contains the largest representable value = 231 − 1

b = 0111 1111 1111 1111 1111 1111 1111 1111C2

b + 1 = 1000 0000 0000 0000 0000 0000 0000 0000C2

prints −231 + 9

overflow behavior is not standard for signed types because older
processors used different representations for negative numbers,
but for C2 this is the expected behavior

Robert Varga (TUC-N) Computer Programming Course 2 9 / 37



1. Data types

Overflow - Example 3

1 //real types

2 float c = 1e20f;

3 c = c*c;

4 printf("%f\n", c);

c is initialized with 1020 using scientific notation

after the multiplication, c would be 1040

however, this exceeds the maximum limit for float

prints infinity

Robert Varga (TUC-N) Computer Programming Course 2 10 / 37



2. Expressions

Contents

1 Data types

2 Expressions

3 Conditional statements

Robert Varga (TUC-N) Computer Programming Course 2 11 / 37



2. Expressions

Expressions

an expression can be defined as:

a literal or a variable, like 7, or ’a’, or x
an unary operator acting on an expression, like -7 or +x
a binary operator acting on two expressions, like x+y or z*14
a ternary operator acting on three expressions, like x ? 0 : 1

a literal is a constant number, character or string

it is like a formula from mathematics

every expression has a type

most mathematical formulas can be transcribed as C expressions
almost identically

Robert Varga (TUC-N) Computer Programming Course 2 12 / 37



2. Expressions

Types of operators

arithmetic

+ - * / %
the result is a number
there is no power operator

relational

> >= < <= == ! =
the result is true (1) or false (0)
== is for checking equality, != is for checking not equal

logical

! && ∥
the result is true (1) or false (0)
! is for logical negation, && is for logical and, ∥ is for logical or

Robert Varga (TUC-N) Computer Programming Course 2 13 / 37



2. Expressions

Evaluating expressions

if the expression is a literal or a single variable, evaluating it is
simple: the value is equal to the value of the literal/variable and
the type is kept

if the expression contains operands of the same type, the type is
kept

if the expression contains operands of different types, the
operands of the smaller types are automatically promoted to the
larger type

this automatic conversion is called implicit conversion

type order from small to large:
char −→ unsigned char −→ short int −→ unsigned short int −→
int −→ unsigned int −→ long long int −→ unsigned long long int −→
float −→ double −→ long double

Robert Varga (TUC-N) Computer Programming Course 2 14 / 37



2. Expressions

Evaluating expressions - special case

if all operands are integers smaller than int, they are
automatically promoted to int when they appear in arithmetic
expressions

unsigned types are promoted to unsigned int

this happens even when all operands are chars or shorts

1 char x = 120;

2 char y = 110;

3 int z = x + y;

4 printf("%d", z); //230

Robert Varga (TUC-N) Computer Programming Course 2 15 / 37



2. Expressions

Cast operator

we can explicitly convert an expression to a specific type using
the cast operator

prepend the expression with (type), where type is the desired
target type

this is called explicit conversion
Example 1: float x = 1 / (float)2;

the right operand is converted to float, before the division
operation, the left operand is promoted to float, x will store 0.5f

Example 2: float x = (float)5;

the right operand is converted to float from int
this conversion would also happen automatically

Example 3: int x = (float)1;

the right operand is converted to float and then converted to
int (implicitly)

Robert Varga (TUC-N) Computer Programming Course 2 16 / 37



2. Expressions

From float to int

a floating point value that is transformed into a integer type via
implicit or explicit conversion is truncated

truncation throws away decimals after the decimal point

this is different behavior from the whole-part or floor function
which returns the closest integer, always rounding downwards

there exists the ceil function in math.h for rounding upwards

and the round function for rounding to the nearest integer, when
fractional part is 0.5 it rounds away from 0

these 4 are all different behaviors

Robert Varga (TUC-N) Computer Programming Course 2 17 / 37



2. Expressions

From float to int - examples

x (int)x floor(x) ceil(x) round(x)
1.2 1 1 2 1
1.5 1 1 2 2
1.7 1 1 2 2
2 2 2 2 2

-1.2 -1 -2 -1 -1
-1.5 -1 -2 -1 -2
-1.7 -1 -2 -1 -2
-2 -2 -2 -2 -2

Differences between explicit conversion (truncation) and rounding
functions from math.h. Counterintuitively, functions return floating point
numbers

Robert Varga (TUC-N) Computer Programming Course 2 18 / 37



2. Expressions

Arithmetic operations - Examples

1 //unary operators

2 -a

3 +-6

4

5 // binary operators

6 int x = 6-7;

7 int y = 1/2;

8 float z = 1/2;

9 float u = 1.f/2;

10 float v = 1/2.f;

11 float w = 1/2.0;

12 float q = (float)1/2;

13

14 int a = -1/2;

15 int b = -7/4.0;

16 int c = 5%3;

17 int d = -5%3;

changes the sign of a

the + unary operator is just cosmetic

x is -1

y is 0, both operands are ints

z is still 0, conversion only after the division

u is 0.5f, right operand is promoted to float

v is also 0.5f, left operand is promoted to float

w is converted from double to float

q is 0.5f, use cast operator for conversion

a is 0

b is -1

c is 2

d is -2

Robert Varga (TUC-N) Computer Programming Course 2 19 / 37



2. Expressions

Arithmetic operations - Examples

1 //unary operators

2 -a

3 +-6

4

5 // binary operators

6 int x = 6-7;

7 int y = 1/2;

8 float z = 1/2;

9 float u = 1.f/2;

10 float v = 1/2.f;

11 float w = 1/2.0;

12 float q = (float)1/2;

13

14 int a = -1/2;

15 int b = -7/4.0;

16 int c = 5%3;

17 int d = -5%3;

changes the sign of a

the + unary operator is just cosmetic

x is -1

y is 0, both operands are ints

z is still 0, conversion only after the division

u is 0.5f, right operand is promoted to float

v is also 0.5f, left operand is promoted to float

w is converted from double to float

q is 0.5f, use cast operator for conversion

a is 0

b is -1

c is 2

d is -2

Robert Varga (TUC-N) Computer Programming Course 2 19 / 37



2. Expressions

Assignment and incrementation

the result of an expression x = y is the value assigned to x

the C language defines the pre- and post-increment operators

++i increases i by one and evaluates to the new value

i++ increases i by one and evaluates to the old value

there exist pre- and post-decrement operators, defined similarly
(--i and i--)

most arithmetic operators can be compounded with the
assignment

example: x += 5 signifies x becomes x + 5

Robert Varga (TUC-N) Computer Programming Course 2 20 / 37



2. Expressions

Division by zero

it is not possible to divide integers by 0

this will result in a run-time error

it is possible to divide floating-point numbers by 0

this will result in ±∞
operations for which the value cannot be determined are
evaluated to not-a-number

examples: infinity - infinity, infinity / infinity, square root of
negative number

Robert Varga (TUC-N) Computer Programming Course 2 21 / 37



2. Expressions

Priority and associativity

every operator has a priority or precedence

when evaluating complicated expressions, the operators with the
lowest priority are evaluated first

if there are multiple operators with the same priority, their order
of evaluation is determined by their type of associativity: from
left to right or from right to left

evaluation order can be changed by employing parentheses ()

when using uncommon operators the it is best practice to
enforce evaluation order with parentheses

the priority makes sense: first do simple operations like ++,
then arithmetic multiplication, then arithmetic addition, then
comparisons, then logical and end with assignment

Robert Varga (TUC-N) Computer Programming Course 2 22 / 37



2. Expressions

Priority and associativity - simplified table

Priority Operators Associativity
1 post ++ −− −→
2 pre ++ −− (type) unary + - ←−
3 * / % −→
4 binary + - −→
6 < <= > >= −→
7 == != −→
11 && −→
12 ∥ != −→
14 = and its compound versions ←−

Some operators have been omitted.
A complete table can be found here.

Robert Varga (TUC-N) Computer Programming Course 2 23 / 37

https://en.cppreference.com/w/c/language/operator_precedence.html


2. Expressions

Relational and logical operators

the C language originally had no primitive type for boolean1

every non-zero value is considered true and all types of 0 are
considered false

the relational (comparison) and logical operators return true (1)
or false (0)

the logical operators && and ∥ implement short-circuiting:

e1 ∥ 1 ∥ e3 ∥ e4 ... - is evaluated as true, and the expressions
e3 and those after it are not evaluated at all
e1 && 0 && e3 && e4 ... - is evaluated as false, and the
expressions e3 and those after it are not evaluated at all

1the C99 standard introduces the Bool type and aliases bool, true, false in
the stdbool.h header
Robert Varga (TUC-N) Computer Programming Course 2 24 / 37



2. Expressions

Common mistakes

1 float x = 1/2;

2

3

4 int a = 2;

5 float y = 1 / 2.0 * a;

6

7

8 int a = 5, b;

9 int c = -(a = 1) + (b = a + 2);

x will hold 0, the
conversion happens
after integer division

y will hold a/2, first,
one is divided by two,
then the result is
multiplied by a

c most likely will hold
6, avoid expressions
that have secondary
effects (change other
variables)

Robert Varga (TUC-N) Computer Programming Course 2 25 / 37



3. Conditional statements

Contents

1 Data types

2 Expressions

3 Conditional statements

Robert Varga (TUC-N) Computer Programming Course 2 26 / 37



3. Conditional statements

Conditional statements

conditional or selection statements allow the program to select a
particular execution path from a set of alternatives

on a lower level this is achieved by jumping to specific lines from
the code

along with repetitive (iteration) and jump statements, they
permit the implementation of any algorithm

Robert Varga (TUC-N) Computer Programming Course 2 27 / 37



3. Conditional statements

If statement

the if statement checks the true-value of an expression and
enters a branch if it is true

an optional alternative branch can be given via the else
statement in case the expression is false

code execution continues normally after the if statement

if a branch consists of multiple instructions they need to be
grouped using {}

if(expression)

statements_true;

else

statements_false;

Robert Varga (TUC-N) Computer Programming Course 2 28 / 37



3. Conditional statements

Program 2.1 - Simple if statement

1 #include <stdio.h>

2

3 int main() {

4 int x;

5 scanf("%d", &x);

6 if (x%2)

7 printf("odd");

8 else

9 printf("even");

10 return 0;

11 }

the expression from the if
is true when it is different
from 0 = when the
remainder is one = when
x is odd

in C any value different
from zero is considered
true

Robert Varga (TUC-N) Computer Programming Course 2 29 / 37



3. Conditional statements

Program 2.2 - Cascaded if statements

1 #include <stdio.h>

2

3 int main() {

4 char c;

5 scanf("%c", &c);

6 if (’a’ <= c && c <= ’z’)

7 printf("lower -case");

8 else if (’A’ <= c && c <= ’Z’)

9 printf("upper -case");

10 else

11 printf("other");

12 return 0;

13 }

cascaded if statements

used when we have
more than two
different branches

we can compare
characters directly

the last else ensures
that one of the
branches executed

each else matches with
the previous if
statement

Robert Varga (TUC-N) Computer Programming Course 2 30 / 37



3. Conditional statements

Common mistakes

1 if (a = 1)

2 printf("true")

3

4

5

6 if (a = 0)

7 printf("false")

8

9

10

11 if (a == 1);

12 printf("after if")

the expression inside the if
does not check equality, it
assigns the value 1 to a and
evaluates to 1 (true)

the expression inside the if
does not check equality, it
assigned the value 0 to a and
evaluates to 0 (false)

putting a semicolon after the
expression terminates the if
statement

the last print statement will
always execute

Robert Varga (TUC-N) Computer Programming Course 2 31 / 37



3. Conditional statements

Ternary operator - mini if

the C language has a ternary conditional operator

it requires three operands:

expression_test ? expression_true : expression_false

this works just like an if statement: if the test expression is true
the whole expression takes on the value from the first branch
(between the ? and : symbols), otherwise the whole expression
takes on the value of the second branch (after the :)

equivalent to
if (expression_test)expression_true else expression_false

it is recommended only when the instructions are short and the
code remains easy to follow

example: mx = x > y ? x : y;

Robert Varga (TUC-N) Computer Programming Course 2 32 / 37



3. Conditional statements

Switch statement
the switch statement compares an integer expression against
possibly multiple values and branches on match

it can be implemented with cascaded if statements, but in some
cases it can produce more compact and readable code

the statements are executed starting from the first constant
expression that matches the expression

default is optional, it matches with any expression, it is checked
last

switch(expression){

case constant-expression_1 : statements_1; [break;]

...

case constant-expression_n : statements_n; [break;]

default: statements;

}

Robert Varga (TUC-N) Computer Programming Course 2 33 / 37



3. Conditional statements

Program 2.3 - Switch statement example

1 #include <stdio.h>

2

3 int main() {

4 char c;

5 scanf("%c", &c);

6 switch(c){

7 case ’a’:

8 case ’e’:

9 case ’i’:

10 case ’o’:

11 case ’u’: puts("vowel"); break;

12 default: puts("consonant");

13 }

14 return 0;

15 }

switch works with
integral types,
char is one of
them

all statements are
executed after the
first matching
case, unless break
is called

what does this
print if c is a digit?

Robert Varga (TUC-N) Computer Programming Course 2 34 / 37



3. Conditional statements

Study problem - Interval intersection

you are given two intervals on the real line

determine the size of the interval that is their intersection

let [A, B] and [C, D] denote the two intervals

we want to find the length of the common portion

there is always a valid answer

if the intervals do not intersect, the length of their intersection is
0

Robert Varga (TUC-N) Computer Programming Course 2 35 / 37



3. Conditional statements

Study problem - Interval intersection

the endpoints of the intervals can be arranged in different orders:

24 = 4! ways - in general
6 =

(4
2

)
ways - if we impose A <= B and C <= D

the left starting point of the intersection must be the larger of A
and C

the right ending point of the intersection must be the smaller of
B and D

if these two values are in the wrong order there is no intersection

Robert Varga (TUC-N) Computer Programming Course 2 36 / 37



3. Conditional statements

Program 2.4 - Interval intersection

1 #include <stdio.h>

2

3 int main()

4 {

5 float A, B, C, D;

6 scanf("%f%f", &A, &B);

7 scanf("%f%f", &C, &D);

8 float L = A;

9 if (C > L)

10 L = C;

11 float R = B;

12 if (D < R)

13 R = D;

14 printf("%f\n", R>L ? R-L : 0);

15 return 0;

16 }

let L denote the left
starting point of the
intersection = the
maximum of A and C

let R denote the right
ending point of the
intersection = the
minimum of B and D

the length is R-L if
they are in the correct
order, otherwise 0 -
use the ternary
conditional operator

Robert Varga (TUC-N) Computer Programming Course 2 37 / 37


	Data types
	Expressions
	Conditional statements

