
Computer Programming
Bitwise operators. Repetitive statements

Robert Varga

Technical University of Cluj-Napoca
Computer Science Department

Course 3

Contents

1 Bitwise operators

2 Repetitive statements
While loop
Do-while loop
For loop

3 Jump statements

4 Exercises

Robert Varga (TUC-N) Computer Programming Course 3 2 / 35

1. Bitwise operators

Bitwise operators

they look at and modify the binary representation of numbers

applicable to integer types

in the past, they were faster than arithmetic operations

on modern compilers there is no significant difference

they are equivalent to set operations

Robert Varga (TUC-N) Computer Programming Course 3 3 / 35

1. Bitwise operators

Bitwise operators

Symbol type name description
˜ unary one’s complement flip all bits

& binary bitwise and apply logical and on all bits
in parallel

| binary bitwise or apply logical or on all bits
in parallel

ˆ binary bitwise xor apply logical xor (exclusive or)
on all bits in parallel

<< binary left-shift left shift the left operand by
the right operand

>> binary right-shift right shift the left operand by
the right operand

CaptionRobert Varga (TUC-N) Computer Programming Course 3 4 / 35

1. Bitwise operators

Bitwise operators - more details (1)

one’s complement˜

changes the state of each individual bit, including leading zeroes
utility: two’s complement, set complement

bitwise and &

perform logical and on all bits of the two operands in parallel
logical and between two bits is one only if both are ones
utility: checking for active bits, changing bits to zero, set
intersection

bitwise or |
perform logical or on all bits of the two operands in parallel
logical or between two bits is one if at least one of them is one
utility: setting specific bits to one, set union

Robert Varga (TUC-N) Computer Programming Course 3 5 / 35

1. Bitwise operators

Bitwise operators - more details (2)

bitwise xorˆ
perform logical xor on all bits of the two operands in parallel
the xor of two bits is one if exactly one of them is one
utility: flipping specific bits, set difference

left-shift x << k
move the bits of x to the left by k positions
zeroes are added to the right
in most cases equivalent to x · 2k
utility: multiplying by powers of 2

right-shift x >> k
move the bits of x to the right by k positions
add 0 bits to the left for positive numbers
add 1 bits to the left for negative numbers
in most cases equivalent to ⌊x/2k⌋
utility: division by powers of 2

Robert Varga (TUC-N) Computer Programming Course 3 6 / 35

1. Bitwise operators

Useful identities

1 + 2 + 4 + ...+ 2k−1 = 2k − 1 = it is the number with k active bits
2k = 1 << k = it is the number with one active bit and k 0 bits

0̃ = is the number with all bits active

0|x = x , zero is neutral element for the or operator
0̃|x = 0̃, or with 0̃ is always 0̃

0&x = 0, and with zero is always zero
0̃&x = x , 0̃ is neutral element for the and operator

0ˆx = x , zero is neutral element for the xor operator
xˆx = 0, anything xored with itself gives 0

Robert Varga (TUC-N) Computer Programming Course 3 7 / 35

1. Bitwise operators

Examples

1 // bitwise operations

2 int a = 5;

3 int b = 9;

4 int c = 2;

5 printf("%d\n", a & b);

6 printf("%d\n", a ^ c);

7 printf("%d\n", a | b);

8

9 // signed vs. unsigned

10 printf("%d vs %u\n", ~0, ~0);

11

12 // shifting and overflow

13 printf("%d\n", 1 << 30);

14 printf("%d\n", 1 << 31);

15 printf("%u\n", 1 << 31);

we must view the data in
binary:

a = 0000 ... 0000 0101

b = 0000 ... 0000 1001

c = 0000 ... 0000 0010

= 0000 ... 0000 0001 = 1

= 0000 ... 0000 0111 = 7

= 0000 ... 0000 1101 = 13

-1 vs max unsigned int =
232 − 1

no overflow = 230

smallest possible int = −231

positive value if unsigned = 231

Robert Varga (TUC-N) Computer Programming Course 3 8 / 35

1. Bitwise operators

Examples

1 // bitwise operations

2 int a = 5;

3 int b = 9;

4 int c = 2;

5 printf("%d\n", a & b);

6 printf("%d\n", a ^ c);

7 printf("%d\n", a | b);

8

9 // signed vs. unsigned

10 printf("%d vs %u\n", ~0, ~0);

11

12 // shifting and overflow

13 printf("%d\n", 1 << 30);

14 printf("%d\n", 1 << 31);

15 printf("%u\n", 1 << 31);

we must view the data in
binary:

a = 0000 ... 0000 0101

b = 0000 ... 0000 1001

c = 0000 ... 0000 0010

= 0000 ... 0000 0001 = 1

= 0000 ... 0000 0111 = 7

= 0000 ... 0000 1101 = 13

-1 vs max unsigned int =
232 − 1

no overflow = 230

smallest possible int = −231

positive value if unsigned = 231

Robert Varga (TUC-N) Computer Programming Course 3 8 / 35

1. Bitwise operators

Program 3.1 - Shifting vs. arithmetic

1 #include <stdio.h>

2

3 int main(){

4 int x;

5 scanf("%d", &x);

6 if (x >> 31 & 1)

7 printf("%d = %d",

8 x>>1, (x-1) /2);

9 else

10 printf("%d = %d",

11 x>>1, x/2);

12 return 0;

13 }

the expression from the if
statement checks the most
significant bit of x

this is the sign bit for two’s
complement

for negative numbers shifting once
to the right is equivalent to
dividing by two and rounding
down, but truncation is a different
operator for negatives

for positive numbers shifting once
to the right is equivalent to
dividing by two and rounding down

Robert Varga (TUC-N) Computer Programming Course 3 9 / 35

1. Bitwise operators

Correspondence to sets

a number in binary can be viewed as the indicator vector of a
set: the positions with active bits correspond to elements which
are part of the set

for example, the set:
S = {1, 2, 5}

is equivalent to the following number in binary:

xS = 100110(2)

the singleton set S = {k}, containing only the element k can be
represented by the number:

xS = 1 << k = 2k

Robert Varga (TUC-N) Computer Programming Course 3 10 / 35

1. Bitwise operators

Correspondence to sets

set operations have corresponding bitwise operators:

complement =˜, intersection = &, union = |, difference =ˆ

indicator vector is also called bitmask, because it selects certain
positions

once positions are selected, operations can be applied specifically
on these positions

for example, the following flips the kth bit of the number x

x = xˆ(1 << k)

for example, the following activates the last two bits of y:

y = y |3

Robert Varga (TUC-N) Computer Programming Course 3 11 / 35

2. Repetitive statements

Contents

1 Bitwise operators

2 Repetitive statements
While loop
Do-while loop
For loop

3 Jump statements

4 Exercises

Robert Varga (TUC-N) Computer Programming Course 3 12 / 35

2. Repetitive statements While loop

While loop

typical syntax:

while(expression)

statement;

the expression is evaluated

if it is true, then the statement is executed and then the
execution returns to checking the expression

if it is false, jump to the instruction after the loop

if the statement is compound (it contains multiple instructions)
it must be inside curly brackets {}
can be read as: while the expression is true, repeatedly execute
the statement

Robert Varga (TUC-N) Computer Programming Course 3 13 / 35

2. Repetitive statements While loop

Program 3.2 - While loop

1 #include <stdio.h>

2

3 int main(){

4 int n = 10;

5 int s = 0;

6 while(n > 0){

7 s = s + n;

8 n--;

9 }

10 printf("sum = %d\n", s);

11 return 0;

12 }

calculates the sum of the first n
natural numbers

the expression from the while loop
is often called halting condition,
even though it describes the
conditions in which the statements
are repeated

what is the behavior if n = 0? if n
is negative? if n is large?

Robert Varga (TUC-N) Computer Programming Course 3 14 / 35

2. Repetitive statements Do-while loop

Do-while loop

typical syntax:

do

statement;

while(expression)

the statement is executed, then the expression is checked

if it is true, then the execution returns to the statement

if it is false, jump to the instruction after the loop

if the statement is compound (it contains multiple instructions)
it must be inside curly brackets {}
can be read as: execute the statements, if the expression is true,
then repeat

Robert Varga (TUC-N) Computer Programming Course 3 15 / 35

2. Repetitive statements Do-while loop

Program 3.3 - Do-while loop

1 #include <stdio.h>

2

3 int main(){

4 int n = 10;

5 int b = 2;

6 int nd = 0;

7 do{

8 nd++;

9 n /= b;

10 }while(n>0);

11 printf("digits = %d\n", nd);

12 return 0;

13 }

determines the number of
digits of n in base b

the statements from the
loop are executed at least
once

what is the behavior if
n = 0? if n is negative? if
n is large?

Robert Varga (TUC-N) Computer Programming Course 3 16 / 35

2. Repetitive statements For loop

For loop

typical syntax:

for(expr_init; expr_run; expr_change)

statement;

the first expression is evaluated once at the beginning

the run condition is checked (2nd expression)

if true, the statement is executed and then the last expression
followed by checking the run condition again (in a loop)

if false, the execution resumes with statements after the loop

if the statement is compound (it contains multiple instructions)
it must be inside curly brackets {}
can be read as: starting from expr init, while expr run, execute
statement and expr change repeatedly

Robert Varga (TUC-N) Computer Programming Course 3 17 / 35

2. Repetitive statements For loop

For loop

typical syntax:

for(expr_init; expr_run; expr_change)

statement;

equivalent to the following while syntax:

expr_init;

while(expr_run){

statement;

expr_change;

}

typically used when the required iterations is known beforehand

most often employs a counter or index variable

Robert Varga (TUC-N) Computer Programming Course 3 18 / 35

2. Repetitive statements For loop

For loop - idioms

counting up from 0 to n-1:

for(int i=0; i<n; i++)

counting up from 1 to n:

for(int i=1; i<=n; i++)

counting down from n-1 to 0:

for(int i=n-1; i>=0; i--)

counting down from n to 1:

for(int i=n; i>0; i--)

0-indexing is preferred in most cases

declaring i inside the for loop is good practice, available only
since standard C99

Robert Varga (TUC-N) Computer Programming Course 3 19 / 35

2. Repetitive statements For loop

Program 3.4 - Simple for loop

1 #include <stdio.h>

2

3 int main(){

4 int n = 10;

5 int sum = 0;

6 for(int i=1; i<=n; i++)

7 sum += i;

8 printf("sum = %d\n", sum);

9 return 0;

10 }

sums the first n natural
numbers

we use a temporary
counter variable to iterate

what is the behavior if
n = 0? if n is negative? if
n is large?

Robert Varga (TUC-N) Computer Programming Course 3 20 / 35

2. Repetitive statements For loop

Program 3.5 - Advanced for loop

1 #include <stdio.h>

2

3 int main(){

4 int n = 10;

5 int sum = 0;

6 for(; n>0; sum += n, n--);

7 printf("sum = %d\n", sum);

8 return 0;

9 }

some expressions can be
absent from the for loop

but the two semicolons
must appear

multiple update
expressions can be used,
separated by commas

what is the behavior if
n = 0? if n is negative? if
n is large?

Robert Varga (TUC-N) Computer Programming Course 3 21 / 35

3. Jump statements

Contents

1 Bitwise operators

2 Repetitive statements
While loop
Do-while loop
For loop

3 Jump statements

4 Exercises

Robert Varga (TUC-N) Computer Programming Course 3 22 / 35

3. Jump statements

Jump statements

they permit jumping to a different position in the code

they are considered more low-level than loops

ultimately, loop statements are translated into jump instructions

usually, they produce code that is hard to read

list of jump statements:

continue, break, goto, exit (function)

Robert Varga (TUC-N) Computer Programming Course 3 23 / 35

3. Jump statements

Continue statement

can be used only inside loops

jumps to the line which evaluates the run condition

in case of a for loop, the update expression is evaluated first

it is paired with the closest loop

Robert Varga (TUC-N) Computer Programming Course 3 24 / 35

3. Jump statements

Break statement

can be used only inside loops or switch statements

jumps to the line which is after the loop (or switch)

it is paired with the closest loop

Robert Varga (TUC-N) Computer Programming Course 3 25 / 35

3. Jump statements

Goto statement

can be used inside functions

jumps to the line with the given label

labels can be defined using a name followed by the colon symbol
(name:)

Robert Varga (TUC-N) Computer Programming Course 3 26 / 35

3. Jump statements

exit function

void exit(int exit code)

can be used inside functions

terminates the program with a given error code (integer)

equivalent to the return statement from the main function

mostly used when an error is encountered from which there is no
possible recovery (missing file, failed memory allocation)

it is a function from stdlib.h but has similar behavior to jump
statements

Robert Varga (TUC-N) Computer Programming Course 3 27 / 35

3. Jump statements

Structural programming

programs which use the 3 main elements: sequential, conditional
and repetitive statements

such programs can calculate any computable function

promoted by Edsger Dijkstra in 1968

avoid jump statements = they make the execution hard to follow
for humans

still, in some cases jump statements produce clean code

Robert Varga (TUC-N) Computer Programming Course 3 28 / 35

4. Exercises

Contents

1 Bitwise operators

2 Repetitive statements
While loop
Do-while loop
For loop

3 Jump statements

4 Exercises

Robert Varga (TUC-N) Computer Programming Course 3 29 / 35

4. Exercises

Program 3.6 - bug hunt

1 #include <stdio.h>

2 int main(){

3 int a, b;

4 scanf("%d%d", &a, &b);

5 int mn = a;

6 if (b < a)

7 mn = b;

8 int d;

9 for(int i = mn; i>0; i--){

10 if (a%i == 0 && b%i == 0){

11 d = i;

12 break;

13 }

14 }

15 printf("(%d, %d) = %d\n", a, b, d);

16 return 0;

17 }

code
purpose?

find the
bug

Robert Varga (TUC-N) Computer Programming Course 3 30 / 35

4. Exercises

Program 3.7 - slow gcd

1 #include <stdio.h>

2 int main(){

3 int a, b;

4 scanf("%d%d", &a, &b);

5 int mn = a;

6 if (b < a)

7 mn = b;

8 int d = mn;

9 while(d > 0 && (a % d || b % d)){

10 d--;

11 }

12 printf("(%d, %d) = %d\n", a, b, d);

13 return 0;

14 }

compare with
previous

is the bug
gone?

Robert Varga (TUC-N) Computer Programming Course 3 31 / 35

4. Exercises

Study problem - High IQ

What are the chances that among n people someone has an IQ
higher than x?

Robert Varga (TUC-N) Computer Programming Course 3 32 / 35

4. Exercises

Study problem - High IQ

we will assume the distribution of IQ is normal with mean 100
and standard deviation 15

the probability that a single person has an IQ less than x can be
calculated as:

p =
1

15
√
2π

∫ x

−∞
e−

(t−100)2

2·152 dt

Robert Varga (TUC-N) Computer Programming Course 3 33 / 35

4. Exercises

Study problem - High IQ

for simplicity, we will ask for this probability p as input

the ”at least one person” = someone is hard to handle

calculate the probability of the complementary event: none of
the persons have IQ higher than x

this is just the probability of one person having IQ over x, raised
to the nth power

print the complementary probability

Robert Varga (TUC-N) Computer Programming Course 3 34 / 35

4. Exercises

Program 3.8 - High IQ

1 #include <stdio.h>

2

3 int main(){

4 int n;

5 double p;

6 puts("Nr. people?");

7 scanf("%d", &n);

8 puts("Probability of IQ <= x?");

9 scanf("%lf", &p);

10 p /= 100;

11 double ans = 1;

12 for(int i=0; i<n; i++)

13 ans = ans * p;

14 printf("Probabilitaty of IQ over x: %.2f %%\n",

15 (1-ans) * 100);

16 return 0;

17 }

Robert Varga (TUC-N) Computer Programming Course 3 35 / 35

	Bitwise operators
	Repetitive statements
	While loop
	Do-while loop
	For loop

	Jump statements
	Exercises

