Computer Programming

Command line

Robert Varga

Technical University of Cluj-Napoca
Computer Science Department

Course 12

Contents

@ Command line arguments

© Command line system calls

Robert Varga (TUC-N) Computer Programming

Course 12

2/13

1. Command line arguments

up

Command line arguments

@ C programs can receive input arguments from the command line
@ these are input arguments to the main function
@ it is an alternative way to provide input data

@ most often employed in utility applications where we want to
avoid user interaction and encourage automatization

Robert Varga (TUC-N) Computer Programming Course 12 3/13

1. Command line arguments

up

Alternative form of the main function

int main(int argc, char** argv)
or equivalently
int main(int argc, char* argv[])
@ argc - refers to argument count
e the number of input arguments sent
e includes the default first argument
@ argv - refers to argument values
e an array of strings
o argv[0] = first argument is always the name of the executable
e the array contains an additional element equal to NULL
marking the end of it
e argclargv] = NULL

Robert Varga (TUC-N) Computer Programming Course 12 4 /13

1. Command line arguments

up

Conversions

@ since arguments are sent as strings, they most likely need to be
converted to the correct type, since they are sent as strings
e employ atoi/atof/atoll or sscanf for conversion
@ arguments are separated by spaces
e if we want to include the white-space characters in our

arguments, they must be given between quotation marks in the
command line, like " Program Files”

@ the command line has special characters

o all these must be introduced and handled differently
e depends on the command line interpreter

Robert Varga (TUC-N) Computer Programming Course 12 5/13

1. Command line arguments

up

Program 12.1 - Simple calculator

1 #include <stdio.h>
2 #include <stdlib .h>

3 #include <math.h> 18 double rez;

4 19 switch (op){

5 int main(int argc, 20 case '+': rez = x+y; break;

6 char** argv) 21 case '—': rez = x—y; break;

7 { 22 case 'x': rez = xxy; break;

8 if (arge !'= 4){ 23 case '/': rez = x/y; break;

9 printf(” Provide 3 24 case '"': rez = pow(x,y);
arguments”); break;

10 return —1; 25 default: rez = 0;

11 } 26 }

12 27

13 double x, vy; 28 printf("%f", rez);

14 char op; 29 return O;

15 x = atof(argv[1l]); 30 }

16 op = argv [2][0];

17 y = atof(argv[3]);

Robert Varga (TUC-N) Computer Programming Course 12 6 /13

1. Command line arguments

Stream redirection

@ given an existing executable we can redirect

e where the output is printed
e from where the input is read

@ can be done in the command line without changing the code
@ redirecting output can be achieved using the > symbol
example: main.exe > outfile

will write to the file instead of writinf on the screen
equivalent to opening outfile with mode w

to append use the >> symbols
example: main.exe >> outfile

@ redirecting input can be achieved using the < symbol

e example: main.exe < infile
e will read from the file instead of reading from the keyboard

Robert Varga (TUC-N) Computer Programming Course 12

7/13

System function up

int system(const char* cmd);
@ sends the string cmd to the command line
@ transfer control to the interpreter and wait for the command to
finish
@ the return value can be checked to see if the command was
executed successfully

@ usually, 0 means success, but depends on the command
@ interaction with the operating system

e commands are different

e security aspects = can run dangerous commands

Robert Varga (TUC-N) Computer Programming Course 12 8 /13

2. Command line system calls

DIR command

(]

allows us to view the files in a folder

basic command syntax:
DIR folder options

will list the files in the given folder
options change the way listing happens
for full help on options run DIR /7

Robert Varga (TUC-N) Computer Programming

Course 12

9/13

2. Command line system calls

DIR command example

@ Example command:
DIR "d:\code\c\codeblocks" /B > files.txt

@ print all the files in the specified folder
@ uses bare format: only file names with extensions

@ instead of printing in the console, print to the given file

Robert Varga (TUC-N) Computer Programming Course 12 10 / 13

2. Command line system calls

gcc command

@ the gcc compiler is employed by your editor to compile the
source code

@ we can call it manually

@ basic usage:

gcc options source_file
@ options start with - or —

@ can be used to change the output executable file name, the
standard, etc.

for full help run gcc —help

Robert Varga (TUC-N) Computer Programming Course 12 11 /13

2. Command line system calls

gcc command example

@ Example command:

gcc.exe -std=c99 -o main.exe main.c

compiles and links the main.c source file

use the c99 standard

the name of the resulting executable should be main.exe

gcc must be either in the current folder or on the system path

returns O in case of success

once main.exe was created in can be executed from our program
using the following system call

system("main.exe");

Robert Varga (TUC-N) Computer Programming Course 12 12 /13

2. Command line system calls

up

Snipet - Running other programs

: // ... eval
void eval(){ printf("building ... ");
char folder[] = "d:\\code\\c\\codeblocks\\tmp2\\"; sprintf(cmd, "\"%s\\gcc.exe\" -std=c99 -o a.exe %s\\%s",
. gcc_root, folder, fname);
char Cmd[ZSG], int ret = system(cmd);
sprintf(emd, "dir %s*.c /b > files.txt",folder); if (ret!=0){
system(cmd) ; p.correct = -10;
printf("build failed\n");
}
char fname[256]; else{
char gcc_root[] = printf("ol\n™);
.) . sprintf(cmd,"a.exe");
"c:\\Program Files (x86)\\CodeBlocks\\MinGW\\bin"; int ret = system(cmd);
FILE* f = fopen("files.txt","r"); if (ret!=e){
w o p.correct = -9;

FILE* fout = fopen("results.csv", "w"); printf("run failed\n");

mypair p; }
lm.: idx = 1; p = compare("output.txt", "chess_out_gt.txt");
while(1){

¥
if (fgets(fname, 99, f) < 1) printf("correct: %d / %d\n\n",
p.correct, p.total);

break; fprintf(fout, "%s, %d, %d\n",
fname[strlen(fname)-1] = @; fname, getNum(fname), p.correct);
; wo v g . }
pr‘}ntf(%d:\n ,'1dx++), Felose(f);
printf("processing %s\n", fname); fclose(fout);
remove ("output.txt"); ¥

Varga (T) Computer Programming Course 12 13 /13

	Command line arguments
	Command line system calls

