
Computer Programming
Representing data

Robert Varga

Technical University of Cluj-Napoca
Computer Science Department

Seminar 1

Contents

1 Natural numbers

2 Negative numbers

3 Rational numbers

Robert Varga (TUC-N) Computer Programming Seminar 1 2 / 28

1. Natural numbers

Number systems

modern computers use circuits with two states - representing
data in base 2 is convenient

humans use base 10

we need conversion methods

a bit is defined as a binary digit

a byte consists of 8 bits

shorthand name bytes 10x bytes 2x

KB kilobyte 103 210

MB megabyte 106 220

GB gigabyte 109 230

TB terabyte 1012 240

PB petabyte 1015 250

Robert Varga (TUC-N) Computer Programming Seminar 1 3 / 28

1. Natural numbers

Converting natural numbers

From decimal to binary

repeatedly divide the current number by 2

write the remainder on the right

change to current number to the quotient

repeat until quotient is 0

the digits in binary are the remainders, in reverse order

Robert Varga (TUC-N) Computer Programming Seminar 1 4 / 28

1. Natural numbers

Converting natural numbers - Examples

23 1
11 1
5 1
2 0
1 1
0

23(10) = 10111(2)

100 0
50 0
25 1
12 0
6 0
3 1
1 1
0

100(10) = 1100100(2)

Robert Varga (TUC-N) Computer Programming Seminar 1 5 / 28

1. Natural numbers

Converting natural numbers

Algorithm S1

read x, b
while x > 0 do
print x % b
x = [x / b]

end while

this works for strictly positive x

general conversion for any base
b > 1

the digits are shown in reverse order

this can be easily corrected by saving
them in an array

Robert Varga (TUC-N) Computer Programming Seminar 1 6 / 28

1. Natural numbers

Converting natural numbers

From binary to decimal

each digit has a weight equal to 2position

the digit position starts from zero and from the the right

sum up the digits multiplied by their weights

x = bn−1...b1b0(2)

x = 2n−1bn−1 + ...+ 21b1 + 20b0

Example:

101110(2) = 1·25+0·24+1·23+1·22+1·21+0·20 = 32+8+4+2 = 46(10)

Robert Varga (TUC-N) Computer Programming Seminar 1 7 / 28

1. Natural numbers

Converting natural numbers - related bases

because binary representation is long, programmers use octal
and hexadecimal

hexadecimal uses 16 digits, assigning letters to digits above 9:

A = 10,B = 11,C = 12,D = 13,E = 14,F = 15

when converting from base b to base bk there is a simple method

group digits into groups of k , starting from the right (least
significant)

convert each group of k digits in base b to base bk

Examples:
y = 1010100101(2) = 10 1010 0101(2) = 2A5(16)
z = 1010100101(2) = 1 010 100 101(2) = 1245(8)

Robert Varga (TUC-N) Computer Programming Seminar 1 8 / 28

1. Natural numbers

Storing natural numbers

positive natural numbers are stored in unsigned integer types

use binary representation

add leading zeros if necessary

bits are grouped into bytes

the least significant byte is stored first (little-endian)

if n bits are used

the smallest representable value = 0...000(2) = 0
the largest representable value = 1...111(2) = 2n − 1

Robert Varga (TUC-N) Computer Programming Seminar 1 9 / 28

1. Natural numbers

Storing natural numbers - Example

Determine the memory representation of the number 314 as an
unsigned short int.

convert the number to binary 31410 = 1001110102

unsigned short int has 2 bytes

add leading zeroes up to 16 bits = 0000 0001 0011 1010

store the bytes starting from the least significant one:

byte 0: 0011 1010

btye 1: 0000 0001

Robert Varga (TUC-N) Computer Programming Seminar 1 10 / 28

1. Natural numbers

Storing natural numbers

Domain of unsigned types

type size minimum maximum
[bytes]1

unsigned char 1 0 28 − 1 = 255
unsigned short int 2 0 216 − 1 = 65k
unsigned int 4 0 232 − 1 = 4.3 · 109
unsigned long long int 8 0 264 − 1 = 1.8 · 1019

1dimensions are given for Windows 64bit
Robert Varga (TUC-N) Computer Programming Seminar 1 11 / 28

2. Negative numbers

Converting negative numbers

the encoding should not change the rules of addition

we want: −x + x = 0, for any x encoded on n bits

we have the following property: x + x̃ = 1...111(2) (n bits)

where x̃ has all of x’s bits flipped = one’s complement

furthermore, 1...111(2) + 1 = 10...000(2)

the last number has one active bit and n inactive bits

but this cannot be represented on n bits

we will ignore the leading active bit

this is called overflow

so: x + x̃ + 1 = 0 (with overflow)

from this −x = x̃ + 1

Robert Varga (TUC-N) Computer Programming Seminar 1 12 / 28

2. Negative numbers

Converting negative numbers

we call x̃ + 1 the two’s complement representation of -x

all signed types in C use this representation

types are signed, unless they are modified with the unsigned
keyword

Properties:

−1 = 1...111(2) all n bits equal 1 in two’s complement

−10...000(2) = 10...000(2) according to the conversion rule

this is impossible, so −10...000(2) doesn’t have a valid C2
representation

all negative numbers have the first bit active

Robert Varga (TUC-N) Computer Programming Seminar 1 13 / 28

2. Negative numbers

Converting negative numbers

From decimal to two’s complement:

convert -x into binary

flip all the bits from this representation

add one (in binary) to the number

Example:
Find the representation of -24 in two’s complement on n = 8 bits.
-24 = 2̃4 + 1
24 = 0001 1000
-24 = 1110 0111 + 1
-24 = 1110 1000 C2

Robert Varga (TUC-N) Computer Programming Seminar 1 14 / 28

2. Negative numbers

Converting negative numbers

From two’s complement to decimal:

each digit has a weight equal to 2position

except the most significant digit, which has a weight of −2n−1

the digit position starts from zero and from the right

sum up the digits multiplied by their weights

x = bn−1bn−2...b1b0C2

x = −2n−1bn−1 + 2n−2bn−2 + ...+ 21b1 + 20b0

Example:
10101010C2 = −1·27+1·25+1·23+1·21 = −128+32+8+2 = −86(10)

Robert Varga (TUC-N) Computer Programming Seminar 1 15 / 28

2. Negative numbers

Storing negative numbers

negative whole numbers are stored in C2

the first bit (most significant) shows the sign of the number

first bit inactive = positive number
first bit active = negative number

if we have a valid representation of the number x on m bits it
can be simply extended to n > m bits

by adding leading zeroes to positive numbers
by adding leading ones to negative numbers

Robert Varga (TUC-N) Computer Programming Seminar 1 16 / 28

2. Negative numbers

Storing negative numbers

Case with n = 3 bits

C2 10
000 0
001 1
010 2
011 3
100 -4
101 -3
110 -2
111 -1

numbers less than 2n−1 are
represented like natural
numbers

after the largest representable
number, there is a jump to
the smallest representable
number −2n−1

besides this jump, the
numbers increase by one

no duplicate representation
for zero

Robert Varga (TUC-N) Computer Programming Seminar 1 17 / 28

2. Negative numbers

Storing negative numbers

Domain of signed types

type size minimum maximum
[bytes]2

char 1 −27 = −128 27 − 1 = 127
short int 2 −215 215 − 1 = 32k
int 4 −231 231 − 1 = 2 · 109
long long int 8 −263 263 − 1 = 9 · 1018

2dimensions are given for Windows 64bit
Robert Varga (TUC-N) Computer Programming Seminar 1 18 / 28

3. Rational numbers

Converting the fractional part of numbers

From decimal to binary

repeatedly multiply the current number by 2

write the whole part on the right

change to current number to the fractional part

repeat until the fractional part is 0 or maximum precision is
reached

the digits in binary are the whole parts, in correct order

Robert Varga (TUC-N) Computer Programming Seminar 1 19 / 28

3. Rational numbers

Converting the fractional part of numbers

Examples

0.15625 0
0.3125 0
0.625 1
0.25 0
0.5 1
0

0.15625(10) = 0.00101(2)

0.1 0
0.2 0
0.4 0
0.8 1
0.6 1
0.2 0
0.4 0
... ...

0.1(10) = 0.0(0011)(2)

Robert Varga (TUC-N) Computer Programming Seminar 1 20 / 28

3. Rational numbers

Converting the fractional part of numbers

Algorithm S2

read x, b, n
while x > 0 and n > 0 do
d = [b x]
print d
x = b x - d
n = n - 1

end while

this works for x ∈ (0, 1)

general conversion for any
base b > 1

prints the digits after the
decimal point in correct order

n stores the number of digits
to calculate

Robert Varga (TUC-N) Computer Programming Seminar 1 21 / 28

3. Rational numbers

Converting the fractional part of numbers
From binary to decimal

each digit has a weight equal to 2position

the digit position starts from -1 from the right of the decimal
point and decreases as we go to the right

sum up the digits multiplied by their weights

x = 0.b−1b−2...b−k (2)

x = 2−1b−1 + 2−2b−2 + ...+ 2−kb−k

Example:

0.1001(2) = 1 · 2−1 + 0 · 2−2 + 0 · 2−3 + 1 · 2−4

=
1

2
+

1

16
=

9

16
= 0.5625(10)

Robert Varga (TUC-N) Computer Programming Seminar 1 22 / 28

3. Rational numbers

Storing rational numbers

rational numbers are stored using the floating point
representation

the absolute value of the integer part can be converted to binary
using Algorithm S1

the fractional part can be converted to binary using the
Algorithm S2

concatenate the two parts

the sign is stored in the sign bit

does not use two’s complement (C2)

Robert Varga (TUC-N) Computer Programming Seminar 1 23 / 28

3. Rational numbers

Floating point representation

the floating point representation of a number is of this form:

x = ±a.bcde... · bexponent

when working with numbers we care about its sign, the first
digits and its magnitude

distances between two cities: 120 km = 1.2 · 105 m
the charge of an electron = −1.60217662 · 10−19 Coulomb

the name reflects how multiplying a number by the base to a
power changes the position of the decimal point

Robert Varga (TUC-N) Computer Programming Seminar 1 24 / 28

3. Rational numbers

Floating point representation

all real types in C (float, double, long double) use floating point
representation

each type has

1 bit reserved for sign: 0 positive, 1 negative
a bits reserved for the exponent
b bits reserved for the mantissa (fraction)

to find the representation of a number it must be written as:

x = ±2exponent−displacement · 1.uvw ...

where:

the exponent is expressed using a bits
there are b digits after the decimal point

Robert Varga (TUC-N) Computer Programming Seminar 1 25 / 28

3. Rational numbers

Floating point representation

Steps required the find the representation of a decimal number:

convert the rational number from base 10 to base 2

move the decimal point to the left or right by multiplying with
2k

note, k can be negative, zero or positive

calculate the exponent as k + displacement and express it in
binary

read the bits of the mantissa as the digits after the decimal point

Robert Varga (TUC-N) Computer Programming Seminar 1 26 / 28

3. Rational numbers

Floating point representation - Example

132.57 represented as a float

1 sign bit, 8 bits for exponent, 23 bits for mantissa

displacement for float is 127 = 0111 1111(2)

132.57 = 10000100.1001000111101100...(2)

≈ 10000100.1001000111101100(2)

= 27 · 1.00001001001000111101100(2)
= 2134−127 · 1.00001001001000111101100(2)

= 2
10000110(2) −127 · 1. 00001001001000111101100 (2)

the representation in memory is:

0 100 0011 0 000 0100 1001 0001 1110 1100

Robert Varga (TUC-N) Computer Programming Seminar 1 27 / 28

3. Rational numbers

Floating point representation

Domain of real types

type size exponent displacement mantissa minimum maximum precision

[bytes]3 bits

float 4 8 127 = 27-1 23 1.17 · 10−38 3.4 · 1038 6

double 8 11 1023 = 210-1 52 2.22 · 10−308 1.79 · 10308 15

long double 10 15 16383=214-1 64 3.7 · 10−4932 1.2 · 104932 18

normal minimum value = 2−displacement+1

normal maximum value = 2+displacement+1

precision = number of digits that can be accurately represented

10precision = 2bits mantissa so precision = log10(2) bits mantissa

all bits active in exponent: infinite and not-a-number

all bits inactive in exponent: subnormal numbers = zero to the left of the
decimal point

IEEE 754 standard; online conversion tool
3dimensions are given for Windows 64bit

Robert Varga (TUC-N) Computer Programming Seminar 1 28 / 28

https://en.wikipedia.org/wiki/IEEE_754
https://float.exposed/

	Natural numbers
	Negative numbers
	Rational numbers

