

TMS320VC5416 DSK Developing System

1. General Overview

 TMS320VC5416 DSK is a static developing system. Allows the users to examine

different characteristics of the C5416 DSPs, in order to observe if their requirements are

met. The module is an excellent for developing and running programs for DSPs from the

family TMS320VC5416.

 A simplified scheme of the VC5416 DSK board is presented in figure 1:

 Figure 1 . VC5416 DSK Board DSK

The system has the following characteristics:

- 64k SRAM memory words

- 256k on-board flash ROM words

- 3 extension connectors (memory interface, peripheral interface, Host Port

Interface - HPI)

- USB JTAG controller with plug and play drivers

- Stereo Burr Brown PCM 3002 Codec;

- +5V as input;

- VC5416 works a 16-160MHZ.

DSK 5416 is a multi-layer board of 210x115mm fed from an external power

source of 5V. The is equipped with an external I/O interface which can have parallel I/O

ports and serial-synchronous ports (equipped with buffers) on multiple channels. The

important DSK interfaces include interfaces for ROM and RAM, FPGA, codec and

expansion.

Four jack stereo correspond to inputs and outputs from the codec.

DSK assures the VC5416 code verification at maximum speed. With 64k memory

words, 256 flash ROM memory words and a stereo Burr Brown PCM 3002 codec, the

board represents the solution for a wide range of problems.

The central elements of the board are the TMS320VC5416 DSP whose advanced

multibus architecture is presented bellow:

 Figure 2. TMS320VC5416 DSP block scheme

- advanced multibus architecture (3 separate data memory on 16 bits buses and

a program memory bus);

- arithmetical and logical unit on 40 bits, including 2 accumulator registers on

40 bits and a shifting one;

- parallel 17x17 bits multiplier coupled with a dedicated adder on 40 bits, for

multiplication/accumulation operations in a single “not-pipelined” cycle;

- comparing, selecting, storage (CSSU) unit for selection, addition/comparison

of Viterbi operator;

- exponential encoder used to compute an exponential value of a value from

the 40 bits accumulator (one cycle);

- two address generators with 8 auxiliary registers and two auxiliary

arithmetical register units;

- extended addressing mode for 8M x 16bits – maximum addressing space for

an external program;

- maximum addressing memory space 192k x 16 bits (64k program words, 64k

data words, 64k I/O words);

- ROM memory on chip with a few data program memory configurations.

- RAM memory on chip with dual access;

- instruction repeat and operation block repeat for program code;

- shifting memory blocks instructions – for a better programming and

maneuvering of data;

- instructions on operands on 32 bit words;

- 2 or 3 operands reading instructions;

- arithmetical instructions with storage and parallel loading and conditional

storage;

- fast return from interruptions;

1.2. System’s memory map

DSK includes 64 SRAM memory words and 256k flash ROM words for loading.

External memory decoding is made through a CPLD circuit. The associated program of

this device selects the RAM memory, ROM flash or the peripherals on board.

Data Memory

 Data memory space is extended on 64k words (2 pages of 32k words each). For

DSK C5416 system the external data memory is mapped between the addresses 0x8000h

and 0xFFFFh. DARAM (Dual Access RAM) memory is mapped in the data space

(between the addresses 8000h and FFFFh) if DROM bit (the third bit from the PMST

register) is set on “1”. Otherwise external memory is mapped in this space.

 Figure 3. Data memory of DSK TMS320VC5416

Program memory

Program memory configuration can be done in two ways using the bit 5, OVLY

of the PMST register. If OVLY=0, on-chip RAM memory is addressable in the data

memory and if OVLY=1, RAM memory is mapped in the data memory and program

memory also, as shown in the following figure:

 Figure 4. Program memory for TMS320VC541

VC5416 uses the CPLD circuit (with 8 registers) in order to select (the interface) the

ROM flash memory, SRAM memory, peripherals on the board or for the codec control.

CPLD’s 8 registers are mapped in the I/O address space, starting from, 0x0000h address

until 0x0007h.

Advantages of on-chip memory operations

 -high performance because there are no wait stages;

 -lower costs than of the external memory’s;

 -reduced power consumption than of the external memory’s;

 -the possibility of larger addressing space access;

1.3 PCM3002 Codec

DSK uses a stereo PCM3002 Codec, in order to provide analogical input and

output. Codec interfacing is made through two channels, a control one and a data one.

DSK’s CPLD circuit is used for the interfacing with the control channel through

the two registers on 8 bits on I/O space. CODEC_L and CODEC_H through which

commands on 16 bits are sent to the codec.

 After sending the control word, CPLD automatically transmits the data, serial, to

the control CODEC’s interface through master control signals. Master serial control

signals of the CODEC are: CODEC_MC (master clock), CODEC_MD (master data) and

CODEC_ML (master load).

In addition CPLD generates all the clock signals for PCM3002 through an

oscillator and through CODEC_CL K control register. The default system clock value is

12.288MHz. CPLD uses the internal system clock of the CODEC in order to generate a

clock signal of 3.0122 MHz a frame synchronization signal of 48 kHz.

CODEC_CLK register allows the programmer to modify the sampling frequency through

frequency rate division control of the PCM3002 codec. Data is transmitted to the codec

through VC5416, McBSP2 interface.

A bit from the CPLD’s MISC register will permit McBSP2 register to be routed to

the expansion HPI connector; the main path is assured through PCM3002 Codec.

Figure 5. Interconnection between PCM3002, CPLD and DSP

PCM3002 the control interface has 4 internal registers which are software

controlled through a serial interface.

 Data interface programming

PCM3002 data interface is connected to the McBSP2 pins of VC5416

 Figure 6. PCM 3002 Codec

PCM 3002 is a single chip audio codec (analog-digital and digital - analog

converter).CAD and CDA involves delta-sigma modulation with a sampling rate of 64.

CAD includes a digital decimation filter and CDA involves a digital interpolation filter

for oversampling with 8. CDA also includes digital attenuation, zero infinite detection

and the ‘mute’ soft function, all these making a complete subsystem. PCM3002 offers a

power mode which functions independently with both converters.

PCM3002 is fabricated using an advanced CMOS process and in available SSOP

packet on 24 pins. They are suitable for a wide range of applications, for which costs are

important and for which performance is a priority.

For PCM3002, the programmable functions are software controlled.

 Functions:

- CAD and CDA on 20 bits, monolithic

- Input/Output 16/20 bits

- Software control: PCM3002

- Special functions (PCM3002): digital attenuation (256 steps)

 soft mute

 digital loop back

 for alternative digital audio data formats

- Sampling rate: 4 kHz to 48 kHz

- Fed at 3V

- Portable/mobile audio applications.

CAD stereo CDA stereo

- input for a single end fed

- antialias filter

- oversampling with 64

- high performances: SNR: 90 dB

- output for a single end fed

- analogic low pass filter

- oversampling with 64

- high performances: SNR: 94 dB

The special of the PCM3002 codec are controlled using 4 registers each having 16

bits. See Appendix 1.

1.4 System connectors

DSK board has 16 connectors through which the users’ access to the board is

realized. The connector, their size and each one’s function are presented in the table bellow

and their description in Appendix 2.

Table 1. The connector of TMS320VC5416 DSK board

2. Applications
 The following presented applications will be made using Code Compressor

Studio C5416 Simulator. After describing the steps needed to create a new simulation

project, for each application basic theoretical concepts will be described. Also we will

describe the used formulas, block schemes of the applications, program sources and

signal graphical representation before and after the processing.

2.1 The need to create a new simulation project

 The following method was written for installing the template applications,

which is stored in template.zip. For other projects, change the name ‘template’ in the one

of the zip file used. (e.g. delay)

 The execution of this procedure need a few minutes. Win.Zip program is

needed.

1. Start Code Composer Studio for DSK TMS320C5416.

2. Select Project -> New. For Project Name, type the word template. Click on

button Finish. A new project was created. Keep in mind the directory in which

the project was saved, then minimize Code Composer Studio.

3. Using Windows Explorer, go in the directory in which the new project was

saved, e.g. C:\ti\myprojects\template

4. Copy template.zip file in the directory C:\ti\myprojects\template

5. Extract files from template.zip using WinZip at current directory with option

Extract Here.

6. Go back at Code Composer Studio. Select Project -> Add Files to Project.

Select path C:\ti\myprojects\template. Use Control+left click mouse for

showing all files .c. Click on button Open for add them to the project.

7. Select Project -> Add Files to Project. Using down arrow in Files at Type box,

select Linker Command File (*.cmd). Uses left click mouse for showing the file

template.cmd. Click on button Open for add the file template.cmd at the project.

8. Select Project -> Add Files to Project. Using down arrow in Files at Type box

select Asm Source Files (*.a*, *.s). Use Control + left click mouse for

showing files .asm (if exists). If files .asm doesn’t exist in project, click on

button Open for adding files .asm at the project. If not click Cancel.

9. Is not needed to add files .h at the project. This is done automatically.

10. Select Project -> Add Files to Project. Go at C5400/cgtools/lib and load file

rts.

11. Select Project -> Rebuild All. This time project should be build successfully

and file template.out and file could be loaded using File ->Load Program.

12. Follow the steps described in the previous paper.

2.2 Gain control

The gain control is implemented in the project named VOLUME. An application

which uses the CCS offered options [adds watch or GEL files] is created in order to

adjust a variable gain applied to the input signal.

The implementation formula is: y(n) = A * x(n) ;

Figure7. Application block scheme

Observation when gain equals one, the output signal is the same with the input

signal.

Source program is presented bellow:

/* V O L U M E . C */

#include <stdio.h>
#include "volume.h"

/* Global declaration */

int inp_buffer[BUFSIZE]; /* data buffer processing */
int out_buffer[BUFSIZE];
int gain = MINGAIN; /* volume control variable */
unsigned int processingLoad = BASELOAD; /* loading value of processing routine*/
/* Functions */

extern void load(unsigned int loadValue);
static int processing(int *input, int *output);
static void dataIO(void);

 CAN Acumulator A

 CNA Castig

 Memorie

IN

NO

/*Main program*/
void main()
{ int *input = &inp_buffer[0];
 int *output = &out_buffer[0];
 puts("volume example started\n"); /* message display */

 /* infinite loop */
 while(TRUE)
 { dataIO(); /* Read the input data using probe-point connected to a host file.*/
 #ifdef FILEIO
 puts("begin processing") /* display message at the beginning of the processing */
 #endif
 processing(input, output); /* the gain is applied through
processing function*/
 }
}

/*Processing function: applies a transform (multiplied by a gain factor) to a received input signal;
PARAMETERS: input/output buffer addresses ; RETURN VALOAREA : TRUE.*/

static int processing(int *input, int *output)
{ int size = BUFSIZE; /* size of buffer memory*/
 while(size--) /* for all buffer samples... */

{ *output++ = *input++ * gain; /* output equals input multiplied by a coefficient,
and buffers pointers are incremented */

 }
 load(processingLoad);
 return(TRUE);
}

/*IO data function: reads the inputs signal and writes the processed output signal.*/

static void dataIO()
{ return; }

/***

******/

 Fig. 8 Input signal Fig. 9. Output signal

2.3 Delay
Another phenomenon often met in signal processing is signal delay. This may

appear due to unfavorable conditions, channel imperfections or different techniques

applied to the signal.

 The computation formula, block schema and application source are presented

below

Figure 10. Application block scheme.

/* D E L A Y . C */

#include <stdio.h>
#include "delay.h"

/* Gobal declarations */
int inp_buffer[BUFSIZE]; /*volume data buffer processing*/
int out_buffer[BUFSIZE];
int delay = MINGAIN; /* volume control variable */

/* Functions */

extern void load(unsigned int loadValue);
static int processing(int *input, int *output);
static void dataIO(void);

/* main program */
void main()
{
 int *input = &inp_buffer[0];
 int *output = &out_buffer[0];

 puts("Delay example started\n"); /* message display */

 /* infinite loop */

 while(TRUE)
 {
 dataIO(); /*Reads the inputs data using a probe-point connected to host file.
 Writes the output data in a graph connected through a probe-point.*/

 #ifdef FILEIO
 puts("begin processing") /* message display at the

beginning of the processing */
 #endif

 /* delay is applied using processing function */
 processing(input, output);
 }
}

/* Processing function:applies a transform (attenuation and delay) at a received input signal.
PARAMETERS: input and output address buffers. RETURN VALUE: TRUE.*/

static int processing(int *input, int *output)

 CAN Acumulator A

 CNA

 Buffer

Circular

IN

NO

{
 int size = BUFSIZE; /* size of buffer memory */

 while(size--) /* for all buffer samples*/
{ if (size<(BUFSIZE-delay)) /* if the elements required are in the
memory*/

 *output = *(input-delay); /* delayed input is reproduced at the
output */

 else
 output = 0; / otherwise 0 is transmitted */

 output++; /* increments buffers pointers */

input++;
 }
 return(TRUE);
}

/*IO data function :reads the input signal and writes the output processed signal. PARAMETERS:
doesn’t have; RETURN VALUE: doesn’t have.*/

static void dataIO()
{
 return;
}

/***

************/

Used program allows us to fix the delay variable. For a value equivalent with 2ms

obtaining the following graphics:

Fig. 11. Input signal Fig. 12. Output signal

 2.4 Reverberation

 Reverberation is the sound persistence in a certain space after the original sound

is removed. When the sound is produced in a certain space a large number echoes are

produced and then slowly decreasing, while the sound is absorbed by the air and the wall,

in this way the reverberation is created. This is especially observed when the source of

the sound is stopped and the reflections carry on, decreasing in amplitude until they

cannot be heard anymore.

 The used formula in reverberation software implementation is:

y(n) = x(n-d) +1/2*x(n-2d) +1/4 * x(n-3d) + 1/8* x(n-4d) ;

Exercise: Using the previous programs make a project that implements

reverberation using the following block skin:

 Figure 13: Application block scheme

The signal diagram

Figure 14: Input signal Figure 15: Output signal

