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Abstract—Urban development is advancing at an 

exceedingly rapid pace, significantly complicating the task of 

updating reference maps and requiring considerable effort in 

terms of actualization and monitoring. To address this 

challenge, we propose an automated mechanism for detecting 

changes in maps, specifically at the building level. Our method 

integrates cadastral maps with low-altitude aerial imagery, 

identifying discrepancies between the reference maps and the 

perceived images. We use captured images from standard 

Unmanned Aerial Vehicles and derive the cadastral maps from 

OpenStreetMap. The change detection process employs a 

mechanism that localizes the drone’s position by aligning the 

perceived scene with the reference map. We utilize established 

foundation models, such as Grounded SAM and Depth 

Anything, for image-level perception based on semantic 

segmentation and depth estimation, capitalizing on their 

robustness and generalization capabilities. Subsequently, we 

construct a bird’s-eye view representation that mirrors the 

reference map and generate a set of discriminative features. The 

obtained features are utilized to formulate hypotheses as rigid 

transformations, which are tested by projecting the image onto 

the reference map and validated using the Intersection over 

Union (IoU) metric. Once the perceived image is aligned with 

the reference map, we obtain the global GPS position and 

camera orientation, implicitly determining the global location of 

the buildings. After achieving accurate localization, the focus 

shifts to identifying differences between the perceived image and 

the reference map. In terms of experimental results, we tested 

the method in an aerial environment using a subset of the UAVid 

dataset, considering significant GPS disturbances, and 

achieving high precision in localization regarding both the 

position and the camera orientation. 
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I. INTRODUCTION  

The swift and extensive expansion of urban areas poses a 
substantial challenge to the effective monitoring of urban 
development. Conventional methods, which rely on manual 
annotations and community efforts [1] to update reference 
maps, are both labor-intensive and time-consuming. As urban 
landscapes evolve at an unprecedented pace, relying on 
manual updates for maps becomes increasingly unfeasible, 
thereby highlighting the need for more efficient and 
automated solutions.  

Recent advancements in foundation models [2] have 
revolutionized computer vision, significantly enhancing our 
ability to analyze and interpret visual information. Notable 
improvements have been observed in tasks such as object 
detection [3], instance segmentation [4], semantic 
segmentation [5], video panoptic segmentation [6], visual 
question answering [7], and monocular depth estimation [8].  

 
Fig. 1. Overview of the proposed approach. We use foundation models to 

obtain the aerial environment perception, fuse them into a bird’s-eye view 

representation, extract relevant data (building’s footprint) and localize the 

perceived image into a reference map. 

Models such as CLIP [9], DINO [10] [11], Grounded-DINO 
[12], Segment Anything [13], Grounded SAM [14], and Depth 
Anything [15] have demonstrated exceptional performance 
and adaptability across various applications. Their increased 
generalization capabilities, resulting from training on diverse 
and large datasets, enable a deep understanding of visual 
characteristics and a more comprehensive perception of their 
surroundings. 

Unmanned Aerial Vehicles (UAVs), commonly known as 
drones, are increasingly utilized for various surveillance and 
monitoring applications. However, the onboard GPS sensors 
in standard systems can exhibit errors of up to tens of meters 
[16] and are especially vulnerable to transmission jamming. 
While RTK GPS [17] systems can address these issues by 
offering precise and reliable positioning, they are expensive 
and require a ground-based reference station. 

To address the challenges posed by the rapid development 
of new buildings and the necessary manual updates of existing 



maps, we propose a processing pipeline (Fig. 1) that performs 
a precise localization and detects building changes in an urban 
environment. This approach leverages the integration of 
cadastral maps with low-altitude aerial imagery to identify 
discrepancies between reference maps and current 
observations. By employing standard drones to capture aerial 
views and utilizing OpenStreetMap [18] [19] (OSM) for 
cadastral map emulation, our method addresses the challenge 
of maintaining up-to-date maps in dynamic urban 
environments. The proposed localization and change 
detection pipeline addresses the limitations of unreliable GPS 
signals by aligning the perceived scene with a reference map. 
This alignment utilizes pre-trained models, such as Depth 
Anything [15] and Grounded SAM [14], for depth estimation 
and semantic segmentation. These models provide robust and 
generalized image-level perception, which is essential for 
accurate localization and change detection. The proposed 
pipeline also involves constructing a bird’s-eye view (BEV) 
that mirrors the reference map representation. This 
representation is then used to extract discriminative features 
(90o angles and length of building sides). The obtained 
features are utilized to formulate hypotheses, which are tested 
by projecting the image onto the reference map and evaluated 
using the Intersection over Union (IoU) metric. Subsequently, 
to address perception errors, we search for pairs of valid 
hypotheses that result in identical rigid transformations. This 
process ensures accurate localization and enables a detailed 
comparison between the perceived image and the reference 
map, revealing any changes that have occurred. 

To validate the effectiveness of our proposed pipeline for 
localization and change detection, we conducted experiments 
using the UAVid [20] dataset and the corresponding OSM 
[18] [19] areas. We employed traditional photogrammetry 
techniques [21] [22] to obtain precise camera poses and 
parameters, which were then aligned with the environment to 
achieve accurate global GPS measurements. We focused on a 
specific area within the real-world neighborhood where the 
images were captured and compared the outputs of our 
method with the GPS coordinates. For each image, we 
considered a search area of 120 x 120 meters without 
information on camera orientation. The extensive testing 
revealed an average heading error of 1 degree and a translation 
error of 1.5 meters, demonstrating superior accuracy 
compared to standard GPS systems typically used in UAVs. 
Additionally, we showcased the change detection algorithm 
across different experimental setups, highlighting the 
pipeline’s capabilities in urban scenarios. 

We summarize the main contributions of our work as 
follows:  

 The development of a pipeline for localization and change 
detection of buildings in reference maps 

 The development of an algorithm for low-altitude aerial 
imagery localization in urban scenarios, utilizing the 
hypothesis generation and validation method 

 The development of a procedure for converting the image-
level perception to the reference map representation level 

 The combination of photogrammetry-based approaches 
with pretrained foundation models to obtain a BEV 
representation 

II. RELATED WORK 

A. Image-based Localization 

Traditional image-based localization typically relies on 
texture (RGB) images and feature matching techniques. 
Common approaches utilize SIFT-based (Scale-Invariant 
Feature Transform) algorithms [23] to detect, describe, and 
match local features. These features are then used to compare 
the perceived image with a georeferenced image. Thus, 
identifying the exact correspondence and the necessary 
transformation to localize the initial image. A better approach 
employs the FAST key point detector [24] and the BRIEF 
descriptor [25], specifically ORB-based (Oriented FAST and 
Rotated BRIEF) algorithms [26]. However, these methods 
have limited functionality due to their dependence on 
georeferenced images and the presence of similar texture-
level features, making them significantly susceptible to 
environmental factors. 

Recently, various approaches have addressed the problem 
of image-based localization using end-to-end deep learning 
techniques. PlaNet [27] formulates localization as a 
classification problem, where the current position is matched 
to the most appropriate location in the training set. PoseNet 
[28] [29], on the other hand, approaches 6DoF pose estimation 
as a regression problem. The authors of [30] combine a 
convolutional neural network (CNN) with long short-term 
memory (LSTM) units to create a direct mapping from the 
input image to the camera pose. AtLoc [31] demonstrates that 
attention mechanisms can be employed to direct the network's 
focus towards more geometrically robust objects and features. 
Additionally, MapNet [32] facilitates the learning of data-
driven map representations by integrating various sensory 
inputs, such as visual odometry and GPS, alongside images, 
to enhance camera localization.  

Despite the potential benefits of specialized neural 
networks for localization in specific scenarios, the scarcity of 
publicly available datasets presents a significant challenge to 
their generalization capabilities. Consequently, models are 
often trained to operate effectively only in particular 
environments. Furthermore, the aforementioned approaches 
typically utilize street-level views captured from main roads, 
which restricts the amount of information gathered compared 
to aerial views. To overcome these limitations, we leverage 
the generalization capabilities of foundation models to 
develop a robust localization system for aerial imagery. 

B. Change Detection 

Change detection based on aerial data is a crucial method 
for urban planning, environmental monitoring, disaster 
assessment, and map revision on the Earth’s surface [33]. 
Traditionally, change detection has been addressed by 
integrating various types of data from multiple sources. 
Commonly used data include 3D LiDAR scans of real-world 
environments or images acquired through remote sensing and 
satellite views [34]. Nevertheless, these kinds of data are very 
expensive to gather or suffer from poor spatial resolution, 
limiting the ability to capture low-level details. Another 
approach [35] involves scene understanding and captioning to 
detect changes between two different views of the 
environment, but these methods tend to perform well only in 
simplified indoor scenarios. To support and drive progress, 
several datasets [36] [37] [38] have been released to facilitate 
end-to-end training and the development of change detection 
systems. However, these datasets primarily focus on disaster 



assessment, such as post-flood, hurricane, or earthquake scene 
understanding.  

To address these limitations, we propose a novel approach 
for low-altitude scene understanding that converts aerial 
perceptions into representations compatible with reference 
maps. Our method uses high-resolution UAV imagery and the 
strong generalization capabilities of pretrained foundation 
models to localize and detect building-level changes, allowing 
change detection in complex urban environments. 

III. DETAILED METHODOLOGY 

The inputs of the proposed pipeline are a reference map, 
an RGB texture image acquired from a drone, and a rough map 
area. The primary steps to achieve change detection regarding 
buildings are as follows:  

A. Depth and semantic segmentation inference based on 
pretrained foundation models.  

B. BEV representation. 

C. Conversion to map representation. 

D. Hypotheses generation.  

E. Hypotheses validation and pair searching. 

To visually support the proposed approach, we utilize a 
subset of the UAVid [20] dataset. This UAV-acquired 
semantic dataset comprises 42 video sequences collected from 
two countries, China and Germany. We used approximate 
locations of two video sequences (Gronau, Germany) in 
conjunction with camera poses and intrinsics obtained using 
COLMAP [21] [22] through a Structure-from-Motion 
approach. Registering the 3D reconstructions with aerial 
LiDAR data of the locations [39] yields an accurate global 
localization that can be used for evaluation. 

A. Depth and Semantic Segmentation Perception Through 

Foundation Models 

The first step in the proposed pipeline is to understand the 
perceived image (Fig. 2 (a)). For this, we leverage two 
pretrained foundation models to obtain depth and semantic 
segmentation. Specifically, we use Depth Anything (v2) [15] 
to generate a metric monocular depth estimation (Fig. 2 (b)) 
of the perceived image. For the semantic segmentation (Fig. 2 
(c)), we employ Grounded SAM [14] and use prompts such as 
“buildings” and “main road” to extract the most relevant 
information for our system. 

 
(a) 

 
(b)  

 
(c) 

Fig. 2. Foundation model perception results: (a) initial RGB frame; (b) 
monocular depth estimation; (c) semantic segmentation (buildings and 

road) overlayed on top of the RGB frame. 

B. BEV Representation 

To further understand the scene, we use the intrinsic 
camera parameters and the scale information obtained from 
the 3D reconstruction process. We back-project each scaled 
depth point from the estimation (Fig. 2 (b)) to form a 3D point 
cloud. Simultaneously, we propagate the texture (Fig. 2 (a)) 
and semantic (Fig. 2 (c)) information into the 3D geometry, 
creating an enhanced point cloud with various information 
(Fig. 3). To obtain the BEV representation, we leverage the 
"road" segmentation and detect the plane that approximates 
the ground-level area. Next, we position our camera 
perpendicularly to that plane, center the point cloud, and 
project each visible 3D point, resulting in the RGB (Fig. 3 (b)) 
and semantic (Fig. 3 (c)) BEV representation. In this step, each 
pixel in the BEV representation corresponds to a 30 x 30-
centimeter area of the real-world environment. 

 
(a) 

(b) (c) 

Fig. 3. Obtaining a bird’s-eye view (BEV) representation: (a) obtained 
3D point cloud with texture information; (b) texture BEV; (c) semantic 

BEV (buildings). 



C. Conversion to map representation 

Now, we shift our focus on converting the BEV to a 
representation similar to the reference map. From the BEV 
projection, we extract the top view of each building present in 
the perceived image (Fig. 4 (a)) and apply morphological 
operations to obtain a preliminary contour of them (Fig. 4 (b)). 
Next, we compute the polygons that approximate each 
building and discard those with an area less than a fixed 
threshold (Fig. 4 (c)). 

  
(a) (b) 

 
(c) 

Fig. 4. Relevant information extraction from the BEV projection: (a) 

building’s footprint, initial mask; (b) initial contour; (c) polygonal 

approximation of the building’s footprint. 

However, the current contours of the buildings are quite 
coarse and noisy compared to the OSM representation that we 
will use as a reference map. Therefore, a postprocessing step 
is required to close the gap between the two representations. 
For that, we first simplified the contours of the polygons by 
identifying the most representative points using the Shi-
Tomasi Corner Detector [40]. The new contour is highlighted 
in red in Fig. 5 (a). Next, we iterated over each polygon and 
discarded every vertex forming an angle in the range of 170 to 
190 degrees, as they did not significantly enhance the 
polygonal representation of the buildings and introduced 
unnecessary complexity. The vertices that were discarded are 
highlighted in red in Fig. 5 (b), while the final result is 
presented in Fig. 5 (c). 

 

 

  
(a) (b) 

 
(c) 

Fig. 5. Postprocessing operations for building’s footprint extraction: (a) 
footprint obtained after Shi-Tomasi corner detection; (b) discarded 

vertices by angle of the sides; (c) final building’s footprint, converted 

from perceived image to reference map representation. 

D. Hypotheses generation 

Once we obtain the best possible contour approximation 
from the bird's-eye view and convert our understanding of the 
scene into the map representation, we shift our focus to 
identifying discriminative features for hypothesis generation.  

OpenStreetMap, which consists of lines, points, and 
polygons, serves as our reference map. Therefore, we need to 
identify features that are suitable for comparison. In our 
scenario, where buildings of various shapes may be present, 
the most suitable features for hypothesis generation are the 
vertices of polygons forming angles between 80 and 100 
degrees. To further refine the method, we also consider the 
length of the edges at each vertex. To clarify the underlying 
idea, vertices with longer edges forming angles close to 90 
degrees are likely the most reliable features. 

Based on the identified features, we generate hypotheses 
and determine rigid transformations (i.e., one-dimensional 
rotations and 2D translations) between a vertex in the 
converted map representation of the perceived scene and each 
potential vertex within a specified area of the reference map. 
Each rigid transformation is verified for both rotation and 
translation within the reference map. The rotation is verified 
by comparing the angle between the right edge of a perceived 
building vertex and the corresponding right edge in the 
reference map, as well as the angle between the left edge of 
the perceived building and the corresponding left edge in the 
reference map. If the angle difference exceeds 10 degrees, the 
rotation is deemed invalid. Translation is validated using the 
coordinates of the area of interest. If the metric difference 
between the reference point and the perceived point exceeds 
the map size after accounting for rotation, the translation is 
considered invalid. Consequently, such transformations are 
excluded from hypothesis generation. Fig. 6 illustrates the 
process of generating valid rigid transformations from a set of 
discriminative features. These features are highlighted in blue 



in both the cropped perceived image and the OSM reference 
map. 

 

Fig. 6 Hypotheses generation and rigid transformation verification based on 
discriminative features: the discriminative features (highlighted in blue) 

present in the OSM-like perception image (left) compared to the reference 

data (right). 

E. Hypotheses validation and pair searching 

After generating valid rigid transformations, we focus on 
the hypotheses that were obtained. For each hypothesis, we 
apply the transformation to the perceived image, considering 
the search space of the reference map. We then compute the 
Intersection over Union (IoU) score between the buildings in 
the transformed perception image and those in the reference 
map. We retain only those hypotheses that achieve an IoU 
score greater than a specified threshold; our experiments 
indicate that 50% is an effective threshold. Subsequently, we 
search for pairs of valid hypotheses that yield nearly identical 
rigid transformations in terms of rotation and translation. This 
pair-searching strategy proves more robust, offering greater 
tolerance to perception errors and improved performance in 
scenarios where the perception image closely resembles 
different regions of the reference map. This process is 
illustrated in Fig. 7, where we highlight the best three 
hypotheses in red. 

 
Fig. 7. Selecting the best valid hypothesis: converted perception image 
overlayed on top of the reference map based on the discriminative features 

with valid rigid transformations (highlighted in red). 

Our experiments revealed that the most effective way to 
compute the IoU score and validate the hypotheses is by 
considering the 3D observable area of the perceived image. 
This area encompasses the entire real-world region captured 
by the image, as depicted in Fig. 8 (b). This approach enhances 
the robustness of our method by effectively managing 
scenarios with a limited number of buildings in the perceived 
image. 

 

  
  

(a) (b) 
Fig. 8. The observable area mask of the initially perceived image (Fig. 2 

(a)) represented from a bird's-eye view: (a) texture BEV; (b) observable 

area mask. 

IV. EXPERIMENTAL RESULTS 

We conducted experiments using a subset of the UAVid 
[20] dataset combined with OpenStreetMap [18] [19] data 
from various timestamps as reference maps to evaluate the 
performance of our proposed method.  

For the UAVid dataset, which provides aerial views of the 
real-world environment, we selected two video sequences 
from Gronau, Germany: seq13 and seq31. Each sequence 
contains 901 frames, with images acquired at an altitude of 
approximately 50 meters and a camera pitch of 45 degrees. 
Each video covers an area of roughly 200 x 50 meters. 
Portions of the areas captured in these sequences are also 
visible on Google Earth (Fig. 9 left) and OpenStreetMap (Fig. 
9 right). These sequences were selected due to the increased 
number of buildings visible in each video frame. Additionally, 
significant changes, including building modifications and 
demolitions, have occurred in the real-world environment 
since the data was acquired. 

For the OpenStreetMap reference map, we assumed severe 
GPS errors with no information on camera orientation and a 
possible search area of around 120 x 120 meters relative to the 
last GPS position. 

 
(a) 



 
(b) 

Fig. 9. Different satellite views of Gronau, Germany: (a) seq13; (b) 

seq31. 

We used approximate locations of the two video sequences 
along with 3D reconstructions of the scenes generated using 
COLMAP [21] [22]. Ground truth global GPS localization 
needed for evaluation was recovered through registration of 
the 3D reconstruction [39] with aerial LiDAR data of the flight 
areas. 

The quantitative evaluation results for seq31, using 
reference data from 2024, are presented in terms of position 
and orientation errors, as well as Intersection over Union 
(IoU) with the reference map. These results illustrate the 
effectiveness of localization across different frames. 

For translation errors (Fig. 10 (a)), the average error is 1.52 
meters, with a standard deviation of 0.99 meters, a maximum 
of 5 meters, and a minimum of 0.1 meters. Fig. 10 compares 
these results with those obtained without using the observable 
area mask in the IoU calculation (Fig. 10 (b)). The ablation 
study reveals that omitting the restricted IoU computation 
leads to a significant increase in the position error. We 
obtained an average of 6.18 meters, a standard deviation of 
27.76 meters, a minimum error of 0.14 meters, and a 
maximum error of 172.62 meters. 

(a) 

(b) 
Fig. 10. Position error (meters) analysis on seq31: (a) proposed approach; 
(b) ablation study without using the observable area mask. 

Regarding heading errors, the results are shown in Fig. 11. 
The proposed approach (Fig. 11 (a)) achieves an average 

rotation error of 1 degree, with a standard deviation of 0.84 
degrees, a maximum of 3.77 degrees, and a minimum of 0.07 
degrees. If the restricted IoU computation is not used, as 
depicted in Fig. 11 (b), the results are notably worse. The 
average error increases to 2.62 degrees, with a standard 
deviation of 9.52 degrees, a minimum error of 0.02 degrees, 
and a maximum error of 59.5 degrees. 

(a) 

(b) 

Fig. 11. Angle error (degrees) analysis on seq31: (a) proposed approach; 

(b) ablation study without using the observable area mask. 

Additionally, for mean IoU (Fig. 12), the proposed 
approach (Fig. 12 (a)) shows substantial improvements over 
the ablation study (Fig. 12 (b)). We achieve a mean IoU of 
67%, with a standard deviation of 3%, a maximum of 74%, 
and a minimum of 58%. In contrast, the ablation study reports 
a maximum IoU of only 58%, a minimum of 50%, an average 
of 54%, and a standard deviation of 2%. 

(a) 

(b) 
Fig. 12. Intersection over Union (%) analysis on seq31: (a) proposed 

approach; (b) ablation study without using the observable area mask. 

We also conducted an ablation study to compare two 
strategies: selecting the hypothesis with the highest IoU score 
below a specified threshold (Fig. 13 (b)), versus searching for 
a pair of potential hypotheses to derive a final transformation 
(Fig. 13 (a)). We found that the first approach fails to correctly 
localize the perceived image in some corner cases, whereas 



the proposed approach is more robust and consistently 
performs better. 

(a) 

(b) 

Fig. 13. Intersection over Union (%) analysis on the searching strategy: 

(a) pair searching, proposed approach; (b) first choice, unlocalized frames 

are highlighted with pink rectangles.  

As a qualitative evaluation, we observed that the proposed 
method performs well even with sudden camera movements 
and rotations (Fig. 14). Our approach provides better results 
compared to GPS interpolation based on two previous 
accurate GPS positions, considering an update frequency of 
around one second, which is typical for most UAVs. 

 

Fig. 14. Tolerance to sudden camera rotations (UAVid, seq13, frame 
200). We represented the localized area with a magenta rectangle and the 

search space with a cyan rectangle. 

Subsequently, we evaluated the change detection 
mechanism to demonstrate its effectiveness using data from 
different time periods. The UAVid video sequences were 
collected in 2018, which allowed us to use these sequences to 
qualitatively assess the proposed approach. We selected video 
sequence 13 (seq13) from UAVid and alternated the 
OpenStreetMap official data between 2018 and 2024 for the 
reference map. Localization was performed in both scenarios, 
revealing that the proposed approach effectively 
accommodates scene changes over time (Fig. 15).  

 

Fig. 15. Toleration to scene changes using acquired images from 2018: 

top – results on reference data from 2018; bottom – results on reference 

data from 2024. 

For a qualitative evaluation, we examined areas from the 
reference map that had different buildings at the time the 
images were acquired. We aimed to detect changes in building 
shapes or the construction of new structures. Newly 
constructed buildings are marked in green (Fig. 16), while 
modified buildings are marked in red (Fig. 17). The yellow 
area represents buildings that are present both in the perceived 
image and in the OSM official data. To minimize detection 
noise, we considered the observable area and applied an 
intersection threshold at the building level. 

 
(a) 

 
(b) 

Fig. 16. Change detection in a reference map with UAV-acquired images 

– new buildings: (a) reference map from different times; (b) converted 

perception image (2018) overlayed on top of the reference map (2024). 



 
(a) 

 
(b) 

Fig. 17. Change detection in a reference map with UAV-acquired images 
– modified building: (a) reference map from different times; (b) converted 
perception image (2018) overlayed on top of the reference map (2024). 

 

V. CONCLUSIONS 

In this paper, we proposed a processing pipeline for image-
based localization and change detection of buildings. The 
pipeline generates a bird’s-eye view representation of the 
scene and extracts discriminative features from a single image. 
These features are then used in a hypothesis generation and 
validation step to determine valid rigid transformations. The 
resulting rigid transformations localize the initial image within 
the reference map, providing the corresponding global GPS 
position of the camera and implicitly localizing the buildings. 
Subsequently, change detection is performed as an additional 
step. Our localization evaluation revealed an average heading 
error of 1 degree and a translation error of 1.5 meters over a 
search area of 120 x 120 meters, with no prior orientation 
information. Additionally, we demonstrated that the change 
detection component shows promising results. In terms of 
future work and improvements, the temporal fusion of 
multiple frames may enhance building contour accuracy and 
help mitigate depth bleeding and occlusion issues. We also 
plan to explore the potential of updating cadastral maps 
through the proposed localization and change detection 
algorithm. 
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