

Pathfinding in a 3D Grid for UAV Navigation

Vivian Chiciudean, Florin Oniga

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Chiciudean.Au.Vivian@student.utcluj.ro, Florin.Oniga@cs.utcluj.ro

Abstract—In this paper, we propose an approach for

computing the 3D trajectory of UAVs between two locations

when obstacles are present. The result is an obstruction free

path, close to optimal. First, the precomputed 3D environment

map is converted into a discrete voxel space. Next, the A*

algorithm is applied on the discretized space. The A* method

provides the optimal path with respect to the graph equivalent

representation of the voxel space, however in the continuous 3D

space the resulting path will cause unnecessary steering

maneuvers for the UAV. The solution is to smooth the resulting

path using an iterative linear approximation approach. A new

representation of the 3D path is obtained, consisting of line

segments and control points. Therefore, we manage to

transform the A* path from the graph equivalent representation

of the voxel space to the continuous representation of the 3D

environment. The resulting control points can be used as

intermediate destinations during autonomous UAV navigation.

Experiments are performed on multiple scenarios,

demonstrating that the proposed method shortens the standard

A* path for UAV navigation in the 3D environment.

Keywords—Pathfinding, 3D, UAV, A*, Navigation, Grid,

Bresenham, voxelization, path smoothing

I. INTRODUCTION

The concept of Unmanned Aerial Vehicles dates since the
beginning of the 20th century, and has significantly evolved
over time, due to the technological progress. Drones are now
used in a wide range of applications, including
cinematography, surveillance and monitoring of hard-to-reach
areas of interest, agriculture, transportation and aerial
mapping. The size can vary from centimeters to meters and
they can carry a wide range of loads in these conditions. These
devices allow, by either mounting a camera sensor or other
specialized sensors, to perceive the environment in which they
are roaming.

Nowadays, one of the major features needed for UAVs is
autonomous navigation. However, this involves a lot of
challenges. The first major problem is that the weather can be
unfavorable, destabilizing the drone and its sensors.
Simultaneously, the geolocation position may be inaccurate,
which can lead to the loss or collision of the drone. Thus, in
order to localize, avoid obstacles and plan paths, complex
algorithms involving a variety of specialized sensors are
required. Furthermore, the execution time for these operations
should be within seconds or less. If the UAV is placed in an
environment that is not fully observable, the detection of
obstacles can be very difficult and misleading, requiring very
high costs. In this regard, control points that depict

intermediate locations for the UAV trajectory can be used to
represent an obstacle free path during navigation.

For real world scenarios where autonomous UAV
navigation is needed, the continuous space must be
represented appropriately to allow finite searches, a process
known as discretization. Discretization brings certain
advantages, but with them come various limitations that will
impact navigation.

The goal of the work described in this paper is to get an
obstacle free path as close as possible to the real optimal one,
in a timely manner, relying on the 3D map of the environment
for navigation. Thus, we will focus on the techniques required
to create a navigable path, the necessary refinements and the
application of these principles to the UAV domain: mesh-
based 3D map of the environment, voxel representation, an
iterative custom approach to refine the path provided by the
A* algorithm and to select the best control (intermediate)
trajectory points.

In the following sections, we will present recent
advancements and other research in this topic of interest, we'll
outline the main necessary steps proposed, followed by their
rigorous detailing, and lastly, we shall evaluate the proposed
approach and present relevant results.

II. RELATED WORK

There are various approaches to digitally represent a real
environment, but one of the most prominent ways is the
concept of polygonal mesh. A mesh consists of a set of points,
representing polygon vertices, grouped and interconnected to
approximate various surfaces. We will use the triangle as the
representative polygon because it is implicitly a convex shape,
which will speed up the computations. With the help of a
specialized camera sensors mounted on the drone and specific
post-processing of the images obtained from the real
environment, impressive results can be achieved in terms of
the digital reconstruction of the scene. An in-depth review of
the latest reconstruction methods is presented in [1], while [2]
shows an effective method for reconstructing the three-
dimensional digital world using images captured by drones,
along with a comparison of tools that can assist and speed up
the process. The Structure from Motion approach is often used
to create a polygonal mesh for virtual modeling of the real
world.

In order to obtain a discrete representation of the
environment, [3] presents a method for voxelization of
polygonal meshes that accurately eliminates common
voxelization artifacts at edges and vertices. Reference [4]
presents the advantages and disadvantages of the various

voxel shapes used for voxelization. In this paper, we propose
to use cuboidal voxels with a standard 26-neighborhood,
hence simplifying the subsequent processes of voxelization
and pathfinding.

There are a lot of possible solutions to deal with the
problem of navigating in a virtual space, presented in [5], [6],
[7] and [8]. However, we want to use a virtual space
discretized by voxels, equivalent to a three-dimensional grid.
Regarding this, [9] and [10] give a viewpoint on two-
dimensional grid search, comparing different search
algorithms and representations. A* is commonly used in a
variety of pathfinding problems, including games [11]. In our
approach, the algorithm A* will be used as baseline with a
proposed post processing step that shortens the path length.
A* is known for its speed, using Euclidean distance as
heuristic in order to reduce the search space. An in-depth
examination of the characteristics of possible heuristics and
their optimizations is presented in [12] and [13].

An extremely difficult problem that has been identified is
the fact that the minimum distance obtained by the A*
algorithm on the 3D grid is not the same as the minimum
distance from the continuous space. This limitation is caused
by two key factors. The first issue is that the turning angle
along the trajectory is limited to a multiple of 45 degrees due
to the topology of the voxel space (the 26 possible neighbors
that allow straight or diagonal motion). The second issue is
due to the unfeasibility to design a heuristic that provides a
robust estimation of the cost for the path in an environment
with obstacles. A potential solution for this is to use another
algorithm that is closer to the minimal path, such as Lazy-
Theta* [14], or a real optimal algorithm, ANYA [15]. Both
solutions can achieve any angle path planning on grids, but
both have a greater search space, and, implicitly, a greater
computational complexity. Another idea, for avoiding sudden
and frequent direction changes along the A* path is presented
in [16], the path being smoothed with various curve models
(polynomial, spline etc.), but without aiming explicitly to
shorten the path. In order to avoid an increased response time
and also to smooth and shorten the A* path, our proposed
approach is a smoothing technique that also provide a series
of control points as a new representation of the path. The
shortest path in Euclidean space is a straight line, so we can
smooth, where appropriate, the trajectory using linear
approximation. In this way, we will obtain a closer to ideal
route, maintain the algorithm's speed and search space and
also have the control points that can guide the autonomous
UAV.

III. OVERVIEW OF THE PROPOSED APPROACH

The input of the proposed approach is a 3D virtual scene
mesh-based representation built from multiple images of a
real-world environment, using the approach of [17]. The main
steps for obtaining the smoothed A* trajectory with the
relevant intermediate control points are as follows:

• Mesh discretization by voxelizing the space of
interest and defining the search volume

• Searching for a path between two desired points,
using the A* algorithm

• Apply the proposed iterative scheme to smooth the
path and extract relevant control points.

IV. DETAILED METHODOLOGY

A. Environment input representation

The input map, generated using the reconstruction
approach described in [17], is a triangular mesh consisting of
a series of vertices and triangle facets that represent surfaces
and scene objects (Fig. 1 and Fig. 2). In particular, the test
scenario used has 700 thousand triangle vertices and 1.5
million faces, covering an area of approximatively 200 x 200
meters with an elevation variance of 40 meters. The scene can
be identified at the following coordinates (46.697391,
23.547135) in Google Maps.

Fig. 1: Input map, top view

Fig. 2: Input map, perspective view

B. Voxel space representation

This pre-processing step will provide an appropriate
discrete representation of the scene, that allows searching for
an obstacle-free path in a timely manner.

In the voxel representation built from the input mesh, each
voxel that contains part of the mesh is considered occupied.

Because the input map to be voxelized has a large size (200
x 200 x 40 meters), the voxel size needs to be tailored in order
to have an acceptable resolution but, also, to have a
manageable memory footprint. Assuming a size of 0.3 meters
for each axis of the volumetric elements (cubes), the
discretized space becomes very large, resulting in
approximately 59 million voxels. Since the map does not show
height variations over its entire extent, we can take advantage
of the sparse scene. Because we want to retain information
about obstacles in an efficient way in terms of memory, we

propose to retain information through two important data
structures. First, we'll need a three-dimensional vector of
integer elements that represents every voxel in the volume of
interest. The values in this multi-dimensional vector encode
the following information. If the value is -1 (empty) it means
that we do not have information of interest in that discretized
area. Otherwise, it means that we have an occupied voxel and
the voxel value is an index in a one-dimensional vector that
stores all the occupied voxels. The one-dimensional vector
retains, for each occupied voxel, relevant information such as
3D position and other features that might be used for future
development. Basically, we leverage the discretization and
memory storage of a sparse map.

Fig. 3 shows an example of scene discretization using a
size of 0.3 meters on the X, Y and Z axes for a volumetric
element and a particular volume of interest (2.1 meters in
height, 6.3 meters in length and 3.3 meters in width). To
highlight the discretization, the drawing of each voxel was
made with a size of 0.2 meters instead of 0.3 meters, hence the
free spaces between the volumetric elements. In this example,
the property of empty / occupied for the generated voxels is
not taken into account.

Fig. 3: Voxel volume (all voxels) example

Fig. 5 shows all occupied voxels in the red polygon of Fig.
4 using 0.3 meters on each axis for the display of volumetric
elements.

Fig. 4: Map volume of interest (textureless mesh, for a better visualization)

Fig. 5: Voxelized volume of interest (different perspective, for the area

depicted in Fig. 4). Only the mesh vertices are displayed (white points)

To have a reliable representation of the environment, the
voxel size must be chosen small enough to represent all the

relevant objects and surfaces from the scene. However, we
must also consider the size of the UAV. For instance, in this
research work, the DJI Matrice 210 V2 RTK drone was used.
This drone size is (at least on two axes) almost 3 times the size
of the selected dimension of the voxel and will be considered
during the A* pathfinding.

C. Searching for an initial path

As mentioned, to find a free path between two points we
will initially use the standard A* algorithm. This involves
using a priority queue to select the most appropriate node to
explore next. To determine the priority, we will consider two
factors: first, the actual distance between the starting node and
the node we wish to explore, and second, the approximate
distance between the node to be investigated and the
destination node, using a heuristic based on Euclidean
distance. The Euclidean distance between the voxels (x1, y1,
z1) and (x2, y2, z2) is defined by (1).

 d2 = (x2−x1)2+(y2−y1)2+(z2−z1)2 (1)

 The search will take place in a neighborhood of 26 voxels,
as illustrated in Fig. 6, with each neighbor being examined to
see if it is an obstacle or not. Depending on the drone size, this
test must be done on the proximity of each checked neighbor
to ensure that the drone can safely navigate there. If the voxel
is completely navigable, it will be kept as a potential
exploration node.

Fig. 6: 26-voxel-neighborhood with relative displacements

As previously stated, voxelization of the space imposes a
limitation on changing the direction of travel. The turning
angle along the trajectory is limited to a multiple of 45 degrees
due to the topology of the voxel space. Thus, there will be
small differences between the real minimal path and the
obtained path. This leads to errors similar to those in Fig. 7,
where the trajectory formed by the red cubes represents the
resulting A* path and the green line indicates the desired path.

Fig. 7: Difference between A* result and the continuous optimal path

Another issue is that the utilized heuristic does not enable
us to determine when to change direction. If we combine the
current heuristic with another heuristic that is based on the
distance from a straight line, as in [18], we would obtain real
minimal paths but only if no obstacles are present. When
obstacles are encountered on the path, the trajectory will
present unwanted direction changes. This situation is shown

in Fig. 8, the red path is the result of A* using Euclidean
distance and the distance from the straight-line as a combined
heuristic, and the green path is the desired and optimal one.

Fig. 8: Combined heuristic (red), two different perspectives of the same

path

Therefore, the A* path in the voxel space will not be
minimal in the corresponding continuous space due to these
two limitations, requiring further refinement.

D. Path smoothing

A* implies visibility in the immediate neighborhood and
not the full interconnection of the voxels, as a complete graph.
Fig. 9 shows the connectivity assumed by the A* algorithm in
the voxel space representation of the continuous space. Each
voxel has such a vicinity during the exploration phase of A*,
seen as a vertex with connecting edges. The spheres in this
image represent graph vertices, the green one being the
reference, and the lines depict the graph edges in the A*
search.

Fig. 9: The direct neighborhood of one voxel

The smoothing technique proposed is based on line
segments and control points to approximate a shorter path and
to reduce the number of direction changes. Thus, if the refined
trajectory is used for autonomous navigation, the drone travels
with fewer risks while approaching objects. The algorithm
takes as input the A* path, represented by the array of voxels
P1..Pn. The smoothing begins by marking the starting point as
a control point, followed by iterating the path and tracing lines
in the voxel space between the last marked control point and
the current point. If the line drawn to the current point
intersects with occupied voxels, the previous point becomes

the current control point. A pseudocode description is
highlighted in Algorithm 1.

In order to render the three-dimensional lines and to check
for occupied locations in the voxel space representation, the
Bresenham algorithm is used to generate the discrete line
points [19]. The example of a line approximation for the two-
dimensional case, using this algorithm, is presented in Fig. 10.

Fig. 10: Bresenham line approximation

The smoothing of the path also brings a possible relaxation
of the heuristic, favoring a greedier strategy and therefore
decreasing the execution time and search space. Even if we
obtain paths that are not necessarily perfect, once we smooth
the path, it will get closer to the optimal one.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed solution was implemented in C++ on a
machine with an i7 CPU running at 4.7 GHz, 8 cores, 16 GB
RAM and a dedicated NVIDIA GeForce RTX 2060 6 GB
graphics card for visualization.

A comparison of the running time using the A* algorithm
and the proposed method (A* + smoothing) for different path
lengths is presented in TABLE I.

TABLE I. EXECUTION TIME COMPARISON

Path length Method Time (ms)

Short (10 m)
A* 13.4

Proposed method 14.9

Medium (50 m)

A* 253.5

Proposed method 258.7

Long (90 m)

A* 2715.7

Proposed method 2728.3

Fig. 11 shows the first path determined after running the
A* algorithm across a distance of around 85 meters in a
straight line, on an uneven terrain with vegetation.

Fig. 11: The path resulting from the A* algorithm, perspective view

Fig. 12 highlights the control points obtained after
smoothing the initial path.

Fig. 12: Control points

Finally, Fig. 13 shows the final path obtained by the
proposed method.

Fig. 13: Smoothed path, two different perspective views

The final path is smoother and shorter than the initial one.
Additionally, compared to the results obtained with A* using
combined heuristics, the smoothed path does not get so close
to obstacles, thus increasing the safety of the navigation. In
order to obtain a quantitative evaluation of the presented
method, we proposed a statistical approach by which we will
compare, using different test scenarios, the length of the
obtained paths. We will consider both a high elevation region
of the voxel volume, so that there are no obstacles, and a low
elevation region where each path encounters at least one
obstacle.

The first evaluation is performed on obstacle-free paths
generated in the high elevation region. We analyze the
difference between the real Euclidean path, the path generated
by the proposed method and the path generated by A*. In this
assessment, 180 paths obtained using 180 randomly generated
pairs of start and stop voxels are used, without any obstacles
in between. Fig. 14 and Fig. 15 illustrate the generated straight
paths, with a mean length of 50 meters and a standard
deviation of 21 meters.

TABLE II. STATISTICAL COMPARISON OF PATH LENGTH IN AN

OBSTRUCTION-FREE ENVIRONMENT, 180 PATHS, MEAN VALUES (%)

Method Distance (%)

Straight line (Euclidean) 100

A* 105.2

Proposed method 100

Fig. 14: Top view of the 180 paths

Fig. 15: Perspective view of the 180 paths

The obstacle-free environment allows us to analyze the
variation of the difference between the Euclidean distance,
equal to the distance of the proposed method (between the
start and end control voxels of the straight path), and the
distance generated with the help of A*. TABLE II presents a
statistical view in terms of path shortening for the obstacle-
free environment using the two possible methods compared
with the ground truth (Euclidian). The mean value of the A*
paths is larger than the smoothed paths by 5.2%, with the
standard deviation of 2.6%.

Also, since there are no obstacles, we can make an analysis
of the variation of distance according to the angle formed with
the abscissa of the coordinate system. This procedure is
illustrated with the help of Fig. 16, where the X axis represents
the angle of the path with respect to the abscissa of the voxel
coordinate system, and the Y axis represents the percentage
difference between the path length generated by A* and the
proposed method. The largest differences are obtained for
angles whose value is halfway between two perfect paths in
the discrete space, i.e. 22.5 degrees, 67.5 degrees, 112.5
degrees and 157.5 degrees. The paths aligned with the main
axes and bisectors are not improved by the smoothing
technique because, in these situations, the Euclidian heuristic
in the discrete A* search provides a cost similar with the
distance in the continuous space.

Fig. 16: The difference (%) between the path length generated by A* and

the proposed method, for all the possible path orientations

The second evaluation is performed on paths generated in
the low elevation region, where obstacles are present. We
analyze the difference between the path generated by the
proposed method and the path generated by A*. In this
assessment, 50 paths obtained using 50 randomly generated
pairs of start and stop voxels are used (Fig. 17 and Fig. 18).
The paths have a mean length of 30 meters and a standard
deviation of 12 meters. The chosen region has a size of about
30 x 30 meters and a high density of obstacles (mainly
vegetation).

Fig. 17: Top view of the 50 paths

Fig. 18: Perspective view of the 50 paths

The 50 paths are generated so that there is at least one
obstacle between the start and stop points. Therefore, we will
not be able to compare the distance with a straight line, so we
will take the A* path length as a reference. TABLE III shows
the path length improvement for the chosen region using the

50 paths and the two possible methods. The smoothed paths
are smaller than the A* paths by 6.5% (mean value), with the
standard deviation of 2%.

TABLE III. STATISTICAL COMPARISON OF PATH LENGTH IN AN

ENVIRONMENT WITH OBSTACLES, 50 PATHS, MEAN VALUES (%)

Method Distance(%)

A* 100

Proposed method 93.5

VI. CONCLUSIONS

An approach for computing the 3D path was presented in
this paper, with application for UAV autonomous navigation.
The solution is an iterative method based on extracting a set
of control points from the initial path and interconnecting
them using line segments. In this sense, the proposed method
improves the paths generated by A*, shortening the path
length by up to 8% and minimizing the unnecessary steering
maneuvers without significantly affecting the running time.
The software of an autonomous drone can take advantage of
the control points and use them to navigate in a real
environment.

In terms of future work, a comparison can be made
between the proposed method and other state of the art
pathfinding algorithms. Another possible development is the
identification and integration of more complex smoothing
methods and trajectory shapes that approximate the real
movement pattern of the drone, regardless of its speed. In the
current phase, the proposed method is only valid for low
speeds, without considering the dynamic maneuverability of
the drone.

ACKNOWLEDGMENT

This work was partially supported by the “SEPCA-
Integrated Semantic Visual Perception and Control for
Autonomous Systems” grant funded by Romanian Ministry of
Education and Research, code PN-III-P4-ID-PCCF-2016-
0180.

References

[1] J. L. Schönberger and J.-M. Frahm, "Structure-from-Motion
Revisited," in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, 2016.

[2] S. Jiang, C. Jiang and W. Jiang, "Efficient structure from motion for
large-scale UAV images: A review and a comparison of SfM tools,"

ISPRS Journal of Photogrammetry and Remote Sensing , pp. 230-251,

2020.

[3] J. Huang, R. Yagel, V. Filippov and Y. Kurzion, "An accurate method

for voxelizing polygon meshes," in IEEE Symposium on Volume

Visualization, North Carolina, 1998.

[4] D. Cavagnino and M. Gribaudo, "Discretization of 3D models using

voxel elements of different," in Computational Aesthetics in Graphics,

Visualization, and Imaging, Styria, 2010.

[5] R. Graham, H. McCabe and S. Sheridan, "Pathfinding in Computer

Games," The ITB Journal, vol. IV, no. 2, pp. 57-81, 2003.

[6] Z. A. Algfoor, M. S. Sunar and H. Kolivand, "A Comprehensive Study
on Pathfinding Techniques for Robotics and Video Games,"

International Journal of Computer Games Technology , pp. 1-11,

2015.

[7] Z. He, M. Shi and C. Li, "Research and application of path-finding

algorithm based on unity 3D," in 2016 IEEE/ACIS 15th International

Conference on Computer and Information Science (ICIS), Okayama,
2016.

[8] A. Botea, B. Bouzy, M. Buro, C. Bauckhage and D. Nau, "Pathfinding

in Games," Artificial and Computational Intelligence in Games, pp.

21-31, 2013.

[9] P. Yap, "Grid-Based Path-Finding," in Proceedings of the 15th

Conference of the Canadian Society for Computational Studies of
Intelligence on Advances in Artificial Intelligence, Heidelberg, 2002.

[10] P. Mehta, H. Shah, S. Shukla and S. Verma, "A Review on Algorithms

for Pathfinding in Computer Games," in International Conference on
Innovations in Information Embedded and Communication Systems,

Coimbatore, 2015.

[11] X. Cui and H. Shi, "A*-based Pathfinding in Modern Computer
Games," International Journal of Computer Science and Network

Security, pp. 125-130, 2011.

[12] A. Y. Kapi, "A Review on Informed Search Algorithms for Video
Games Pathfinding," International Journal of Advanced Trends in

Computer Science and Engineering, pp. 2756-2764, 2020.

[13] S. K. Sharma and S. Kumar, "Comparative analysis of manhattan and
euclidean distance metrics using A* algorithm," Journal of Research

in Engineering and Applied Sciences, pp. 196-198, 2016.

[14] A. Nash, S. Koenig and C. A. Tovey, "Lazy Theta*: Any-Angle Path

Planning and Path Length Analysis in 3D," in Proceedings of the
Third Annual Symposium on Combinatorial Search, Atlanta, 2010.

[15] D. Harabor, A. Grastien, D. Öz and V. Aksakalli, "Optimal Any-Angle

Pathfinding In Practice," Journal of Artificial Intelligence Research,
pp. 89-118, 2016.

[16] A. Ravankar, A. Ravankar, Y. Kobayashi and Y. Hoshino, "Path

smoothing techniques in robot navigation: State-of-the-art," Sensors,
vol. XVIII, no. 9, p. 3170, 2018.

[17] H. Florea, V.-C. Miclea and S. Nedevschi, "WildUAV: Monocular

UAV Dataset for Depth Estimation Tasks," in 2021 IEEE 17th
International Conference on Intelligent Computer Communication

and Processing (ICCP), Cluj-Napoca, 2021.

[18] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang and M.
Likhachev, "Multi-heuristic A*," The International Journal of

Robotics Research, vol. 35, no. 1-3, pp. 224-243, 2016.

[19] J. E. Bresenham, "Algorithm for computer control of a digital plotter,"
IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965.

