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Abstract—In this paper, we propose an approach for 

computing the 3D trajectory of UAVs between two locations 

when obstacles are present. The result is an obstruction free 

path, close to optimal. First, the precomputed 3D environment 

map is converted into a discrete voxel space. Next, the A* 

algorithm is applied on the discretized space. The A* method 

provides the optimal path with respect to the graph equivalent 

representation of the voxel space, however in the continuous 3D 

space the resulting path will cause unnecessary steering 

maneuvers for the UAV. The solution is to smooth the resulting 

path using an iterative linear approximation approach. A new 

representation of the 3D path is obtained, consisting of line 

segments and control points. Therefore, we manage to 

transform the A* path from the graph equivalent representation 

of the voxel space to the continuous representation of the 3D 

environment. The resulting control points can be used as 

intermediate destinations during autonomous UAV navigation. 

Experiments are performed on multiple scenarios, 

demonstrating that the proposed method shortens the standard 

A* path for UAV navigation in the 3D environment. 

Keywords—Pathfinding, 3D, UAV, A*, Navigation, Grid, 

Bresenham, voxelization, path smoothing 

 

I. INTRODUCTION 

The concept of Unmanned Aerial Vehicles dates since the 
beginning of the 20th century, and has significantly evolved 
over time, due to the technological progress. Drones are now 
used in a wide range of applications, including 
cinematography, surveillance and monitoring of hard-to-reach 
areas of interest, agriculture, transportation and aerial 
mapping. The size can vary from centimeters to meters and 
they can carry a wide range of loads in these conditions. These 
devices allow, by either mounting a camera sensor or other 
specialized sensors, to perceive the environment in which they 
are roaming. 

Nowadays, one of the major features needed for UAVs is 
autonomous navigation. However, this involves a lot of 
challenges. The first major problem is that the weather can be 
unfavorable, destabilizing the drone and its sensors. 
Simultaneously, the geolocation position may be inaccurate, 
which can lead to the loss or collision of the drone. Thus, in 
order to localize, avoid obstacles and plan paths, complex 
algorithms involving a variety of specialized sensors are 
required. Furthermore, the execution time for these operations 
should be within seconds or less. If the UAV is placed in an 
environment that is not fully observable, the detection of 
obstacles can be very difficult and misleading, requiring very 
high costs. In this regard, control points that depict 

intermediate locations for the UAV trajectory can be used to 
represent an obstacle free path during navigation. 

For real world scenarios where autonomous UAV 
navigation is needed, the continuous space must be 
represented appropriately to allow finite searches, a process 
known as discretization. Discretization brings certain 
advantages, but with them come various limitations that will 
impact navigation. 

The goal of the work described in this paper is to get an 
obstacle free path as close as possible to the real optimal one, 
in a timely manner, relying on the 3D map of the environment 
for navigation. Thus, we will focus on the techniques required 
to create a navigable path, the necessary refinements and the 
application of these principles to the UAV domain: mesh-
based 3D map of the environment, voxel representation, an 
iterative custom approach to refine the path provided by the 
A* algorithm and to select the best control (intermediate) 
trajectory points.  

In the following sections, we will present recent 
advancements and other research in this topic of interest, we'll 
outline the main necessary steps proposed, followed by their 
rigorous detailing, and lastly, we shall evaluate the proposed 
approach and present relevant results. 

II. RELATED WORK 

There are various approaches to digitally represent a real 
environment, but one of the most prominent ways is the 
concept of polygonal mesh. A mesh consists of a set of points, 
representing polygon vertices, grouped and interconnected to 
approximate various surfaces. We will use the triangle as the 
representative polygon because it is implicitly a convex shape, 
which will speed up the computations. With the help of a 
specialized camera sensors mounted on the drone and specific 
post-processing of the images obtained from the real 
environment, impressive results can be achieved in terms of 
the digital reconstruction of the scene. An in-depth review of 
the latest reconstruction methods is presented in [1], while [2] 
shows an effective method for reconstructing the three-
dimensional digital world using images captured by drones, 
along with a comparison of tools that can assist and speed up 
the process. The Structure from Motion approach is often used 
to create a polygonal mesh for virtual modeling of the real 
world. 

In order to obtain a discrete representation of the 
environment, [3] presents a method for voxelization of 
polygonal meshes that accurately eliminates common 
voxelization artifacts at edges and vertices. Reference [4] 
presents the advantages and disadvantages of the various 



voxel shapes used for voxelization. In this paper, we propose 
to use cuboidal voxels with a standard 26-neighborhood, 
hence simplifying the subsequent processes of voxelization 
and pathfinding. 

There are a lot of possible solutions to deal with the 
problem of navigating in a virtual space, presented in [5], [6], 
[7] and [8]. However, we want to use a virtual space 
discretized by voxels, equivalent to a three-dimensional grid. 
Regarding this, [9] and [10] give a viewpoint on two-
dimensional grid search, comparing different search 
algorithms and representations. A* is commonly used in a 
variety of pathfinding problems, including games [11]. In our 
approach, the algorithm A* will be used as baseline with a 
proposed post processing step that shortens the path length. 
A* is known for its speed, using Euclidean distance as 
heuristic in order to reduce the search space. An in-depth 
examination of the characteristics of possible heuristics and 
their optimizations is presented in [12] and [13]. 

An extremely difficult problem that has been identified is 
the fact that the minimum distance obtained by the A* 
algorithm on the 3D grid is not the same as the minimum 
distance from the continuous space. This limitation is caused 
by two key factors. The first issue is that the turning angle 
along the trajectory is limited to a multiple of 45 degrees due 
to the topology of the voxel space (the 26 possible neighbors 
that allow straight or diagonal motion). The second issue is 
due to the unfeasibility to design a heuristic that provides a 
robust estimation of the cost for the path in an environment 
with obstacles. A potential solution for this is to use another 
algorithm that is closer to the minimal path, such as Lazy-
Theta* [14], or a real optimal algorithm, ANYA [15]. Both 
solutions can achieve any angle path planning on grids, but 
both have a greater search space, and, implicitly, a greater 
computational complexity. Another idea, for avoiding sudden 
and frequent direction changes along the A* path is presented 
in [16], the path being smoothed with various curve models 
(polynomial, spline etc.), but without aiming explicitly to 
shorten the path. In order to avoid an increased response time 
and also to smooth and shorten the A* path, our proposed 
approach is a smoothing technique that also provide a series 
of control points as a new representation of the path. The 
shortest path in Euclidean space is a straight line, so we can 
smooth, where appropriate, the trajectory using linear 
approximation. In this way, we will obtain a closer to ideal 
route, maintain the algorithm's speed and search space and 
also have the control points that can guide the autonomous 
UAV. 

III. OVERVIEW OF THE PROPOSED APPROACH 

The input of the proposed approach is a 3D virtual scene 
mesh-based representation built from multiple images of a 
real-world environment, using the approach of [17]. The main 
steps for obtaining the smoothed A* trajectory with the 
relevant intermediate control points are as follows: 

• Mesh discretization by voxelizing the space of 
interest and defining the search volume 

• Searching for a path between two desired points, 
using the A* algorithm 

• Apply the proposed iterative scheme to smooth the 
path and extract relevant control points.  

IV. DETAILED METHODOLOGY 

A. Environment input representation  

The input map, generated using the reconstruction 
approach described in [17], is a triangular mesh consisting of 
a series of vertices and triangle facets that represent surfaces 
and scene objects (Fig. 1 and Fig. 2). In particular, the test 
scenario used has 700 thousand triangle vertices and 1.5 
million faces, covering an area of approximatively 200 x 200 
meters with an elevation variance of 40 meters. The scene can 
be identified at the following coordinates (46.697391, 
23.547135) in Google Maps. 

 

Fig. 1: Input map, top view 

 

Fig. 2: Input map, perspective view 

B. Voxel space representation 

This pre-processing step will provide an appropriate 
discrete representation of the scene, that allows searching for 
an obstacle-free path in a timely manner.  

In the voxel representation built from the input mesh, each 
voxel that contains part of the mesh is considered occupied. 

Because the input map to be voxelized has a large size (200 
x 200 x 40 meters), the voxel size needs to be tailored in order 
to have an acceptable resolution but, also, to have a 
manageable memory footprint. Assuming a size of 0.3 meters 
for each axis of the volumetric elements (cubes), the 
discretized space becomes very large, resulting in 
approximately 59 million voxels. Since the map does not show 
height variations over its entire extent, we can take advantage 
of the sparse scene. Because we want to retain information 
about obstacles in an efficient way in terms of memory, we 



propose to retain information through two important data 
structures. First, we'll need a three-dimensional vector of 
integer elements that represents every voxel in the volume of 
interest. The values in this multi-dimensional vector encode 
the following information. If the value is -1 (empty) it means 
that we do not have information of interest in that discretized 
area. Otherwise, it means that we have an occupied voxel and 
the voxel value is an index in a one-dimensional vector that 
stores all the occupied voxels. The one-dimensional vector 
retains, for each occupied voxel, relevant information such as 
3D position and other features that might be used for future 
development. Basically, we leverage the discretization and 
memory storage of a sparse map. 

Fig. 3 shows an example of scene discretization using a 
size of 0.3 meters on the X, Y and Z axes for a volumetric 
element and a particular volume of interest (2.1 meters in 
height, 6.3 meters in length and 3.3 meters in width). To 
highlight the discretization, the drawing of each voxel was 
made with a size of 0.2 meters instead of 0.3 meters, hence the 
free spaces between the volumetric elements. In this example, 
the property of empty / occupied for the generated voxels is 
not taken into account. 

 

Fig. 3: Voxel volume (all voxels) example 

Fig. 5 shows all occupied voxels in the red polygon of Fig. 
4 using 0.3 meters on each axis for the display of volumetric 
elements. 

 

Fig. 4: Map volume of interest (textureless mesh, for a better visualization) 

 

Fig. 5: Voxelized volume of interest (different perspective, for the area 

depicted in Fig. 4). Only the mesh vertices are displayed (white points) 

To have a reliable representation of the environment, the 
voxel size must be chosen small enough to represent all the 

relevant objects and surfaces from the scene. However, we 
must also consider the size of the UAV. For instance, in this 
research work, the DJI Matrice 210 V2 RTK drone was used. 
This drone size is (at least on two axes) almost 3 times the size 
of the selected dimension of the voxel and will be considered 
during the A* pathfinding. 

C. Searching for an initial path 

As mentioned, to find a free path between two points we 
will initially use the standard A* algorithm. This involves 
using a priority queue to select the most appropriate node to 
explore next. To determine the priority, we will consider two 
factors: first, the actual distance between the starting node and 
the node we wish to explore, and second, the approximate 
distance between the node to be investigated and the 
destination node, using a heuristic based on Euclidean 
distance. The Euclidean distance between the voxels (x1, y1, 
z1) and (x2, y2, z2) is defined by (1). 

 d2 = (x2−x1)2+(y2−y1)2+(z2−z1)2 (1) 

 The search will take place in a neighborhood of 26 voxels, 
as illustrated in Fig. 6, with each neighbor being examined to 
see if it is an obstacle or not. Depending on the drone size, this 
test must be done on the proximity of each checked neighbor 
to ensure that the drone can safely navigate there. If the voxel 
is completely navigable, it will be kept as a potential 
exploration node. 

 
Fig. 6: 26-voxel-neighborhood with relative displacements 

As previously stated, voxelization of the space imposes a 
limitation on changing the direction of travel. The turning 
angle along the trajectory is limited to a multiple of 45 degrees 
due to the topology of the voxel space. Thus, there will be 
small differences between the real minimal path and the 
obtained path. This leads to errors similar to those in Fig. 7, 
where the trajectory formed by the red cubes represents the 
resulting A* path and the green line indicates the desired path. 

 

Fig. 7: Difference between A* result and the continuous optimal path 

Another issue is that the utilized heuristic does not enable 
us to determine when to change direction. If we combine the 
current heuristic with another heuristic that is based on the 
distance from a straight line, as in [18], we would obtain real 
minimal paths but only if no obstacles are present. When 
obstacles are encountered on the path, the trajectory will 
present unwanted direction changes. This situation is shown 



in Fig. 8, the red path is the result of A* using Euclidean 
distance and the distance from the straight-line as a combined 
heuristic, and the green path is the desired and optimal one. 

 

Fig. 8: Combined heuristic (red), two different perspectives of the same 

path 

Therefore, the A* path in the voxel space will not be 
minimal in the corresponding continuous space due to these 
two limitations, requiring further refinement. 

D. Path smoothing 

A* implies visibility in the immediate neighborhood and 
not the full interconnection of the voxels, as a complete graph. 
Fig. 9 shows the connectivity assumed by the A* algorithm in 
the voxel space representation of the continuous space. Each 
voxel has such a vicinity during the exploration phase of A*, 
seen as a vertex with connecting edges. The spheres in this 
image represent graph vertices, the green one being the 
reference, and the lines depict the graph edges in the A* 
search. 

 

Fig. 9: The direct neighborhood of one voxel 

The smoothing technique proposed is based on line 
segments and control points to approximate a shorter path and 
to reduce the number of direction changes. Thus, if the refined 
trajectory is used for autonomous navigation, the drone travels 
with fewer risks while approaching objects. The algorithm 
takes as input the A* path, represented by the array of voxels 
P1..Pn. The smoothing begins by marking the starting point as 
a control point, followed by iterating the path and tracing lines 
in the voxel space between the last marked control point and 
the current point. If the line drawn to the current point 
intersects with occupied voxels, the previous point becomes 

the current control point. A pseudocode description is 
highlighted in Algorithm 1. 

  

In order to render the three-dimensional lines and to check 
for occupied locations in the voxel space representation, the 
Bresenham algorithm is used to generate the discrete line 
points [19]. The example of a line approximation for the two-
dimensional case, using this algorithm, is presented in Fig. 10. 

 

Fig. 10: Bresenham line approximation 

The smoothing of the path also brings a possible relaxation 
of the heuristic, favoring a greedier strategy and therefore 
decreasing the execution time and search space. Even if we 
obtain paths that are not necessarily perfect, once we smooth 
the path, it will get closer to the optimal one. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed solution was implemented in C++ on a 
machine with an i7 CPU running at 4.7 GHz, 8 cores, 16 GB 
RAM and a dedicated NVIDIA GeForce RTX 2060 6 GB 
graphics card for visualization. 

A comparison of the running time using the A* algorithm 
and the proposed method (A* + smoothing) for different path 
lengths is presented in TABLE I.  

TABLE I.  EXECUTION TIME COMPARISON 

Path length Method Time (ms) 

Short (10 m) 
A* 13.4 

Proposed method 14.9 

 
Medium (50 m) 

A* 253.5 

Proposed method 258.7 

 
Long (90 m) 

A* 2715.7 

Proposed method 2728.3 

 

Fig. 11 shows the first path determined after running the 
A* algorithm across a distance of around 85 meters in a 
straight line, on an uneven terrain with vegetation. 



 

Fig. 11: The path resulting from the A* algorithm, perspective view 

Fig. 12 highlights the control points obtained after 
smoothing the initial path. 

 

Fig. 12: Control points 

Finally, Fig. 13 shows the final path obtained by the 
proposed method. 

 

Fig. 13: Smoothed path, two different perspective views 

The final path is smoother and shorter than the initial one. 
Additionally, compared to the results obtained with A* using 
combined heuristics, the smoothed path does not get so close 
to obstacles, thus increasing the safety of the navigation. In 
order to obtain a quantitative evaluation of the presented 
method, we proposed a statistical approach by which we will 
compare, using different test scenarios, the length of the 
obtained paths. We will consider both a high elevation region 
of the voxel volume, so that there are no obstacles, and a low 
elevation region where each path encounters at least one 
obstacle. 

The first evaluation is performed on obstacle-free paths 
generated in the high elevation region. We analyze the 
difference between the real Euclidean path, the path generated 
by the proposed method and the path generated by A*. In this 
assessment, 180 paths obtained using 180 randomly generated 
pairs of start and stop voxels are used, without any obstacles 
in between. Fig. 14 and Fig. 15 illustrate the generated straight 
paths, with a mean length of 50 meters and a standard 
deviation of 21 meters. 

TABLE II.  STATISTICAL COMPARISON OF PATH LENGTH IN AN 

OBSTRUCTION-FREE ENVIRONMENT, 180 PATHS, MEAN VALUES (%) 

Method Distance (%) 

Straight line (Euclidean) 100 

A* 105.2 

Proposed method 100 

 

 
Fig. 14: Top view of the 180 paths 

 
Fig. 15: Perspective view of the 180 paths 

The obstacle-free environment allows us to analyze the 
variation of the difference between the Euclidean distance, 
equal to the distance of the proposed method (between the 
start and end control voxels of the straight path), and the 
distance generated with the help of A*. TABLE II presents a 
statistical view in terms of path shortening for the obstacle-
free environment using the two possible methods compared 
with the ground truth (Euclidian). The mean value of the A* 
paths is larger than the smoothed paths by 5.2%, with the 
standard deviation of 2.6%. 

Also, since there are no obstacles, we can make an analysis 
of the variation of distance according to the angle formed with 
the abscissa of the coordinate system. This procedure is 
illustrated with the help of Fig. 16, where the X axis represents 
the angle of the path with respect to the abscissa of the voxel 
coordinate system, and the Y axis represents the percentage 
difference between the path length generated by A* and the 
proposed method. The largest differences are obtained for 
angles whose value is halfway between two perfect paths in 
the discrete space, i.e. 22.5 degrees, 67.5 degrees, 112.5 
degrees and 157.5 degrees. The paths aligned with the main 
axes and bisectors are not improved by the smoothing 
technique because, in these situations, the Euclidian heuristic 
in the discrete A* search provides a cost similar with the 
distance in the continuous space. 

 



 
Fig. 16: The difference (%) between the path length generated by A* and 

the proposed method, for all the possible path orientations  

The second evaluation is performed on paths generated in 
the low elevation region, where obstacles are present. We 
analyze the difference between the path generated by the 
proposed method and the path generated by A*. In this 
assessment, 50 paths obtained using 50 randomly generated 
pairs of start and stop voxels are used (Fig. 17 and Fig. 18). 
The paths have a mean length of 30 meters and a standard 
deviation of 12 meters. The chosen region has a size of about 
30 x 30 meters and a high density of obstacles (mainly 
vegetation). 

 

Fig. 17: Top view of the 50 paths 

 

Fig. 18: Perspective view of the 50 paths 

The 50 paths are generated so that there is at least one 
obstacle between the start and stop points. Therefore, we will 
not be able to compare the distance with a straight line, so we 
will take the A* path length as a reference. TABLE III shows 
the path length improvement for the chosen region using the 

50 paths and the two possible methods. The smoothed paths 
are smaller than the A* paths by 6.5% (mean value), with the 
standard deviation of 2%. 

TABLE III.  STATISTICAL COMPARISON OF PATH LENGTH IN AN 

ENVIRONMENT WITH OBSTACLES, 50 PATHS, MEAN VALUES (%) 

Method Distance(%) 

A* 100 

Proposed method 93.5 

 

VI. CONCLUSIONS 

An approach for computing the 3D path was presented in 
this paper, with application for UAV autonomous navigation. 
The solution is an iterative method based on extracting a set 
of control points from the initial path and interconnecting 
them using line segments. In this sense, the proposed method 
improves the paths generated by A*, shortening the path 
length by up to 8% and minimizing the unnecessary steering 
maneuvers without significantly affecting the running time. 
The software of an autonomous drone can take advantage of 
the control points and use them to navigate in a real 
environment. 

In terms of future work, a comparison can be made 
between the proposed method and other state of the art 
pathfinding algorithms. Another possible development is the 
identification and integration of more complex smoothing 
methods and trajectory shapes that approximate the real 
movement pattern of the drone, regardless of its speed. In the 
current phase, the proposed method is only valid for low 
speeds, without considering the dynamic maneuverability of 
the drone. 
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