
Static Mesh Enrichment with Dynamic Entities for

Training Sets Generation

Vivian Chiciudean, Radu Beche, Florin Oniga and Sergiu Nedevschi

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

FirstName.LastName@cs.utcluj.ro

Abstract—The 3D reconstruction of a real-world scene, usually
represented as a textured mesh, supports the fusion of various
information and can solve complex problems. For example, the
fusion of the 3D textured mesh with a relatively small set of se-
mantically annotated input images can generate a supplementary
semantic mesh. The two meshes can be used, based on a set of
consecutive camera positions, to generate novel RGB, depth, or
semantic images. However, these meshes are not able to represent
the dynamic objects, as these objects tend to vanish in the 3D
textured mesh construction process. The main goal of this work
is to provide a solution to generate training sequences including
dynamic entities. Therefore, for a given camera pose and time
instance, a new RGB, depth or semantically annotated image
can be generated using a mesh instance that inserts the dynamic
entities corresponding to the given timestamp. The proposed
solution utilizes Blender, an open-source software tool, to place
and animate the photorealistic mesh models of the different
dynamic entities in the 3D mesh representation of the real-
world scene. We use this tool to manage environment occlusions
and shadows, and to mimic the properties of the scene. After
the photorealistic rendering, we obtain a set of images of the
dynamic objects and their shadows. We propose a technique to
transfer the generated dynamic information into RGB, depth and
semantic images. The method focuses on entities such as moving
cars and pedestrians, but any dynamic entity is suitable. We
used a subset of the UAVid dataset to test the practical viability
of the solution for supervised semantic segmentation training.
Experimental results show that using the enriched images, as
opposed to the initial images, increases the performance on the
semantic segmentation task by 10.77% mIoU.

Index Terms—image enrichment, static scene, dynamic scene,
semantic segmentation, 3D reconstruction, dynamic mesh, image
inpainting

I. INTRODUCTION

The limited availability of comprehensive labeled datasets

poses a significant challenge in training and evaluating deep

learning models for semantic segmentation, hindering the

ability to capture the full range of scenarios. Annotating scenes

involving small, fast-moving objects, as observed in UAV

applications, adds complexity to the creation of such datasets.

To overcome these limitations, we propose a methodology

that builds upon prior research and focuses on enhancing

static scenes by seamlessly integrating photorealistic dynamic

objects into the acquired images. We address the underrepre-

sented classes like vehicles and pedestrians by utilizing dense

3D reconstruction as a guiding framework to place and animate

3D dynamic entities within a scene.

Fig. 1: Initial image (left) compared to enriched and corrected

image (right).

In dynamic scenarios, traditional techniques that rely on

static 3D mesh models for label propagation encounter limi-

tations such as the presence of noise artifacts and potential

disappearance of entities. These issues does not allow to

consistently generate image sequences that are consistent in

terms of realism, semantics and geometry. For example, Fu et

al. [1] successfully employed coarse 3D panoptic annotations

and environment reconstruction to produce panoptic masks,

however, the camera movements being very limited. Re-

cently, Chiciudean et al. [2] introduced a semantic mesh-based

method that allows a virtual camera to capture and generate

images from novel views, however, the dynamic objects were

omitted altogether. In this context, dealing with small dynamic

objects in 3D reconstruction can present significant challenges.

Instead of relying solely on real data trajectories, we propose

a novel approach that involves removing existing trajectories

from the reconstruction and introducing synthetic ones. By

incorporating synthetic trajectories, we aim to address the

limitations and overcome the issues associated with accurately

capturing and reconstructing small dynamic objects in the

scene.

Expanding on prior work, we propose a new methodol-

ogy for augmenting static scenes by inpainting photorealistic

dynamic objects into preexisting imagery, maintaining the

capabilities of novel view synthesis and label propagation.

We leverage the capabilities of dense scene reconstruction



as a guide for placing and animating 3D dynamic entities,

including examples such as vehicles and pedestrians. We

conduct an iterative refinement of the global illumination,

texture, and geometry of the entire scene, focusing our efforts

on the objects of interest. By making use of the intrinsic and

extrinsic parameters obtained from the dense photogrammetry

reconstruction, we are able to render and transfer these objects

of interest onto real-world images. To facilitate the smooth

integration of these dynamic entities, we employ a modified

version of the Alpha Blending technique. This allows us to

transfer both the objects and their respective shadows to RGB

frames, update the semantic masks and maintain a high level

of fidelity in the representation of the augmented scene as seen

in Fig. 1. Having access to all the aforementioned information,

we are able to generate the corresponding depth images. We

conducted experiments on low level aerial imagery collected

from UAV as a case study for showing the benefits of this

method. However, they can easily be extrapolated to other

domain of applications such as automotive or surveillance.

To prove the effectiveness of our enrichment, we conducted

experiments using the UAVid [3] dataset. Initially, we em-

ployed classical photogrammetry approaches [4] to reconstruct

the dataset. Then, we applied our proposed pipeline to generate

multiple potential traffic scenarios for each video sequence.

To assess the performance of our method, we employed a

semantic segmentation model and compared its training and

evaluation outcomes with and without the synthetic data.

Through extensive experimentation in real-world scenarios, we

observed notable improvements. The main contributions of this

paper can be summarized as follows:

• we implement a scalable method for enriching video-

based datasets, which involves animating synthetic ob-

jects based on map constraints and integrate them into a

geo-located preexisting 3D scene

• for the rendered images we ensure a high level of photo-

realism while considering factors such as environmental

occlusions, shadows and global illumination

• we developed a method for transferring the generated

information that does not affect unwanted areas of the

image

• we conduct a comprehensive study employing quantita-

tive and qualitative methodologies to assess the proposed

pipeline in the context of semantic segmentation task

II. RELATED WORK

A. Aerial Datasets

The recent surge in UAV application development has

created a demand for acquiring and annotating aerial datasets,

focusing on areas such as semantic segmentation [5], object

detection [6], [7], tracking [8], and more [9], [10]. For this

study, we will specifically focus on datasets collected at

relatively low altitudes with available semantic annotations

considering a large number of classes. The selected dataset

for our work is the UAVid [3] dataset, which comprises 42

sparsely annotated aerial video sequences obtained from both

static and dynamic real-world environments targeting eight

semantic classes. It is worth noting that our approach can be

easily extended to other datasets [11]–[13], provided they offer

video sequences with corresponding segmentation masks.

B. 3D Scene Reconstruction

3D reconstruction through classical photogrammetry ap-

proaches involves analyzing multiple images captured from

different viewpoints and extracting spatial information to re-

construct the geometry and appearance of the scene. Notable

examples in this field include COLMAP [4] [14] and Open-

DroneMap [15]. While these are general-purpose pipelines

that require significant larger running time, tailored SLAM

applications like ORBSlam3 [16] can also be used to recover

desired information. The reconstruction of dynamic scenes

using these methods can be noisy, as moving objects tend

to disappear from the static reconstruction and need to be

modeled separately. The output representation of these meth-

ods usually consists of 3D meshes textured with associated

RGB colors obtained from the dense reconstruction process.

Additional texture information, such as semantic segmentation,

can also be added. Utilizing these methods has the benefit of

providing camera intrinsic and extrinsic parameters, enabling

us to generate synthetic images from the exactly the same pose

and add the objects over the real ones, guiding the animation

making in the process.

C. Image Composing and Inpainting

The inclusion of new elements in an image, known as

inpainting, has become a prominent subject in the field of

artificial intelligence. Recent advancements in generative AI ,

particularly diffusion-based approaches [17] and GANs [18]

(Generative Adversarial Networks), have facilitated the real-

istic addition of objects into scenes. However, these methods

have a limitation: they cannot generate a sequence of images

that adhere to geometric constraints. In order to overcome this

constraint, we employ a three-dimensional framework as a

foundational concept and depend on conventional rendering

engines such as Blender [19] throughout our workflow. Fol-

lowing the rendering and illumination modeling of the scenes,

we will utilize a modified alpha blending technique to merge

the artificially generated entities with the RGB images.

D. Semantic Segmentation

Research in the domain of semantic segmentation of images

captured from drones falls in two main categories: multi-

scale networks and transformers. Multi-scale networks are

designed to handle large scale variations present in drone

imagery, where the sizes of objects can vary dramatically due

to oblique view and different camera distances [3], [20], [21].

On the other hand, transformers are used to model the complex

relationships between objects and capture the global context of

the scene by leveraging self-attention mechanisms [22]–[24].



III. OVERVIEW OF THE PROPOSED APPROACH

The input of the proposed pipeline is a 3D mesh reconstruc-

tion of the real-world scene, the camera parameters of each

image and a set of models that define the dynamic entities.

Therefore, the main steps for obtaining an enriched set of

images with dynamic entities from a set of images acquired

from static scenes are as follows:

1) Import the inputs

2) Define places

3) Animate actions

4) Set the global illumination

5) Render the images

6) Transfer the dynamic entities

IV. DETAILED METHODOLOGY

For a significant visual support and to be able to demonstrate

the usefulness of the proposed method, we use the UAVid

dataset. More precisely, we focused on a scene with little to

no dynamic objects.

A. Import the Inputs

We started from the set of video sequences and used them

to build a 3D mesh reconstruction. This was done using the

COLMAP open-source software tool, but any photogrammetry

based reconstruction tool is suitable. COLMAP can obtain

both the geometry of the scene in form of a mesh, as well

as the camera parameters of each video sequence frame used

in the reconstruction. Fig. 2 shows the obtained 3D mesh

reconstruction and the camera fly-path of the video sequences,

where each black pyramid represent a camera pose. The

camera orientation is given by the base of the pyramid, its

top being the camera translation. For a better visualization,

only the frames divisible by 250 are shown.

Fig. 2: The 3D mesh reconstruction and the camera poses

using UAVid (seq29, seq13, seq15, seq36, seq19, seq31 and

seq38). Only the frames divisible by 250 are displayed.

The mesh models for the dynamic entities can be manually

modeled using a 3D model tool, like Blender, or can be found

for free, online. The goal of this study is to add entities such

as moving cars and humans. Therefore, Fig. 3 shows some of

the photorealistic models used as dynamic entities.

Once we have these inputs, we can import them into

Blender using a script, taking into account the change of

Fig. 3: Dynamic entities mesh models.

the coordinate system, or using a specific add-on. For the

ease of development, we made use of [25] for loading the

COLMAP information, while the mesh models were loaded

using the standard Blender method. Nevertheless, we have

to take into consideration the scale of the models, for both

the reconstruction mesh and the dynamic entities. The safest

method is to recover the scale in the reconstruction process,

and then, based on a reference from the mesh, to proportionally

scale the entities.

B. Define Places

At this point, we can define the places where the entities

should move or appear. Because we wanted to enrich the

images with moving cars and pedestrians, the suitable places

are the road or the pedestrian walking area. Due to the fact that

the video sequences cover a single camera pass over the scene,

and not a view from several angles of it, the reconstruction can

have significant noises. These type of noises are presented in

Fig. 4a. For a better visualization, we added a sun-type light

source.

(a) Noises (b) Smoothed

Fig. 4: Road reconstruction - UAVid seq13.

In order to obtain a seamlessly transfer of the generated

information, we need a global illumination that reflects the

real-world environment and also capture the shadows of the

dynamic entities. Therefore, the surface on which we capture

the shadows must be as smooth as possible. To alleviate this

problem, we added a new plane that follows the road path and

remove almost all the reconstruction noises. This is presented

in Fig. 4b. The reconstruction noises presented above can

negatively influence the projection of the shadows and generate

visual artifacts as presented in Fig. 5a and corrected in Fig.

5b.



(a) Shadows on reconstruction (b) Shadows on smooth surface

Fig. 5: Road shadows

After the surface of interest is smoothed, we can define

various paths for the model entities to follow. For example,

in Fig. 6 we define a main road path and two sidewalk paths

that will be attached to the road plane. One step to automate

this process is to transfer information from OpenStreetMap

[26] to Blender using a specialized add-on. This will auto-

matically add Bezier curves that define the main roads of the

scene. However, fine-tuning the control points may be required

depending on the 3D reconstruction.

Fig. 6: Defined animation paths.

C. Animate Actions

Once we have defined the paths where various entities will

be placed and made sure that the place where their shadow

will be projected is smooth so that visual artifacts won’t be

produced, we can define a specific movement for each model.

Regarding the dynamic cars, we set a constraint in Blender

for each mesh model to follow the defined road path, without

animating the wheel movement. The main reason that moti-

vated this choice was the nature of the dataset used, since

wheel movement is almost imperceptible in aerial images.

Therefore, the car animation is defined by a simple translation

of the model.

As far as moving pedestrians are concerned, this translation

would seem much less natural, and would not reflect a normal

movement, regardless of the distance from which the images

were acquired. We focused on walking pedestrians, without

various complex actions. Therefore, it is appropriate to define

a fixed walking-cycle animation in which the pedestrian is

translated at a constant speed, on the sidewalk defined in

the previous step, and performs the defined animation in a

loop. For this we use rigged models. These models have an

associated armature, meaning a certain skeleton, that will be

linked to various parts of the model. Fig. 7a shows the initial

pose of the armature for a rigged model.

A walking animation may be created manually or automat-

ically. The first option involves the placing of each bone of

the armature at different positions in successive key frames,

then interpolating the movement and deforming the mesh

accordingly. While the second options involves automated

online tools1 that take a common rigged model and provide a

unique animation. Fig. 7b shows a specific pose of the walking

cycle.

(a) Initial pose (b) Walk pose

Fig. 7: Rigged model.

After the animations are defined for each dynamic entity, we

can constraint each model to follow one of the three defined

paths and set a specific speed. We carefully place each car-

type entity on the road path, and each pedestrian-type entity

on one of the sidewalk-type paths.

D. Set the Light Properties

At this point we will have a fully functional dynamic mesh,

with moving entities and specific actions. However, in the

previous figures we did not mentioned the global illumination

settings that will help us to reflect the real-world acquisition

environment. Fig. 8a presents the rendering result if we do not

use any light source in the previous scene.

(a) No sun (b) Sun (c) Sun and area light

Fig. 8: Global illumination of the dynamic mesh.

To solve this, we add a sun-type light source, and the results

change significantly. This is shown in Fig. 8b. In this step it

is very important to analyze the type and color of the light

in the acquisition environment and chose a light source with

similar properties. It is also important to approximate from

which direction the light comes, in order to obtain shadows

similar to those in the initial images. This will help to correctly

project the shadows of the dynamic entities, as well as the

shadows of the reconstructed environment over the dynamic

entities.

1https://www.mixamo.com



However, in the rendering result, the shadowed dynamic

entities have a very big difference in illumination compared to

the models on which environmental shadows are not projected.

To cope with this problem, we add an area light source that

does not cast shadows. The results are shown in Fig. 8c.

E. Render the Images

After defining multiple paths and populating the mesh with

more dynamic entities, Fig. 9 shows the initial generated RGB

image using the UAVid camera parameters of seq13, frame

800.

Fig. 9: Rendered RGB image, without shadow catcher.

In order to be able to further transfer only the dynamic

entities and their shadows, we do not want to render the

3D mesh reconstruction but only its occlusions and shadows

that influence the entities. This can be done using a specific

Blender setting, namely marking the 3D reconstruction a

shadow catcher. The same settings are used for the smoothing

plan placed above the road. Therefore, the initially generated

image, using the same camera parameters, is presented in Fig.

10. Note that this image is an RGBA type image.

Fig. 10: Rendered RGBA image, final results.

Depending on the initial images, specific Blender parame-

ters should be changed. For example, in foggy conditions there

should be a mist pass added to the generated image, to better

reflect the real-world global illumination and environment. In

the case of unfocused images, the focal length of the camera

should be changed.

So far we focused on generating the RGB information.

Regarding the semantic information, we have to render the

image on two layers, a foreground layer and a background one.

The dynamic entities will be a part of the foreground layer,

while the 3D reconstruction and road plane will be part of the

background layer. In this way we will separate the dynamic

object from their shadows and obtain the mask of each object

from the foreground. Fig. 11a shows the generated RGBA

image obtained after the rendering of the foreground layer. An

alpha greater than zero means that there is a dynamic entity,

while the R, G and B channels have been set to the color of

the entity.

To differentiate between masks from different types of

entities, we took advantage of another Blender specific setting,

the Object Index pass. Therefore, we set an index for each

dynamic entity placed in the scene. Because we have only two

types of dynamic entities, we choose index one for cars and

index two for pedestrians. Fig. 11b shows the obtained indices

image. For visualization purposes, the car index was marked

as purple and the pedestrian index was marked as brown, as

were the moving car and human semantic classes of UAVid.

However, there are some problems with this approach,

specifically, the edges and translucent parts of the dynamic

entities. In this case, these problems manifest themselves

especially at the level of pedestrian contours and at the level

of car windows and windshields. Therefore we proposed a

combination of the mask generated at the previous step (Fig.

11a) and the Object Index Pass image (Fig. 11b). We applied

a morphological dilation on the index image, then extracted

the relevant information based on the mask image. Thus, we

obtained the final semantic mask (Fig. 11c). The subfigures in

Fig. 11 present, for a better visualization, only the region of

interest with dynamic entities from the generated images.

(a) No shadows (b) Object Index Pass (c) Semantic mask

Fig. 11: Obtaining semantic masks, only the region of interest

is displayed.



F. Transfer the Dynamic Entities

At this point, we have all the desired dynamic information

in certain images, but we want to seamlessly transfer this

information into the initial images.

Image = α ∗ Foreground+ (1− α) ∗Background (1)

For the initial RGB images, we will use the generated

RGBA image (Fig. 10) and apply the Alpha Blending tech-

nique (1). However, using this method, due to ambient occlu-

sions and shadows specific to the 3D reconstruction, a series of

unwanted noises may appear. Fig. 12a highlights these kind of

noise, using red for the shadows presents in the RGBA image

(Fig. 10), blue for pedestrians and green for cars. Although

we want to transfer the shadows of the dynamic entities, we

do not want to alter the original images in wrong places in

ways that are imperceptible to the human eye, but possibly

perceptible by a neural network. Another problem is that an

Alpha Blending operation can make distant entities fade out or

even vanish. Therefore, we propose a transfer process based

on the opacity level in the RGBA image (Fig. 10) and the

semantic class in the mask image (Fig. 11c).

The proposed method involves the application of the Alpha

Blending technique for each pixel with an opacity greater than

a threshold (T1), and then overwriting, without blending, all

car or pedestrian pixels that have a lower value than another

threshold specific to their class (T2 - car and T3 - pedestrian).

For this case, we experimentally found that T1 = 30, T2 = 200

and T3 = 96 work best (Fig. 12b). In this way, we will transfer

the shadows and the outline of the dynamic entities using the

blending technique, while their interior will be overwritten

pixel by pixel.

(a) Problem (b) Solution

Fig. 12: Transfer the dynamic entities in RGB images, only

the areas with alpha greater than 0 are displayed.

For the semantic information, since there are no shadows in

the generated images, we can simply overwrite the pixels of

interest with the corresponding classes. The final results are

shown in the second column of Fig. 14.

As a final remark, choosing the position of the light and the

textural properties of the materials can drastically influence

the way mesh models, shadows and ambient occlusions are

rendered (Fig. 13). At this point, the 3D reconstruction of the

scene also plays a very important role. If we use a poor quality

reconstruction, the results will be wrong in terms of occlusions

and shadows.

(a) Without fine-tuning (b) With fine-tuning

Fig. 13: Illumination and texture properties differences -

UAVid seq31, frame 316.

V. EXPERIMENTS

A. Dataset

UAVid [3] is a dataset acquired from two countries and

consists of 42 aerial video sequences at a 4K resolution. Each

video has 900 frames, and for each frame whose number is a

multiple of 100 a manual semantic annotation was made. A

total of eight classes are defined for the semantic segmentation

task, namely: building, road, tree, low vegetation, static car,

moving car, human, and background clutter. With a total of 420

images, this dataset is divided into 200 images for training, 70

for validation and 150 for testing. The semantic images used

for testing are not publicly available, therefore there are only

270 semantic images.

After a detailed analysis of the areas from which these

images were acquired, we noticed that the images from a

closed-loop subset have very few dynamic objects. Therefore,

we chose seven video sequences (seq29, seq13, seq15, seq36,

seq19, seq31 and seq38) to reconstruct the 3D mesh of a

closed-loop area of 600 x 800 meters. The mesh reconstruction

was obtained through the COLMAP pipeline. Regarding the

semantic information, these seven video sequences has only 50

semantic images publicly available, because seq29 and seq38

are being used for testing by the UAVid official benchmark.

After another detailed analysis of the 50 annotated images, we

noticed a series of errors and inconsistencies (i.e., different

labels between frames) in the UAVid manual labeling. These

issues were comprehensively described by Chiciudean et al.

[2]. In this work, we manually corrected all these problems



Fig. 14: Results of the proposed method. The first column shows the initial RGB image of seq13, frame 800, and the

corresponding corrected semantic image. The second column shows the enriched RGB and semantic image of the same

frame. The third column shows the generated and enriched images for frame 850, seq13.

Fig. 15: Before (left) and after (right) corrections. Overlaid

semantic image on RGB frame - UAVid seq36, frame 0.

for the 50 images of interest. Fig. 15 displays the corrections

(right) of the initial semantic image (left) of frame 0, seq36.

Moreover, based on the augmenting method developed in

[2], we generated 902 new semantic images using the 50

initial manually annotated images. For a visual understanding,

the images generated by the augmentation method [2] and

enriched with dynamic entities by the proposed solution are

presented in the last column of Fig. 14. These images are

generated with 50 frames ahead of the existing ones.

B. Semantic Segmentation Results

In this section, we present the methodology employed to

assess the usefulness of an enriched dataset for the task of

semantic segmentation.

TABLE I: Semantic Class Distribution (%)

Dataset
Background

Clutter
Moving

Car
Static
Car

Human Building
Ground

Vegetation
Tree Road

E2 12.352 0.018 0.297 0.007 21.673 37.652 23.286 4.592

E3 12.341 0.233 0.297 0.017 21.673 37.650 23.256 4.410

We use UNetFormer [23] which is composed of a ResNet18

encoder, and a transformer based decoder. The network is im-

plemented with PyTorch, using AdamW optimizer, with base

learning rate of 6e-4, employing cosine annealing learning rate

scheduler. For loss, we use a combination of cross-entropy and

Dice loss. Each image is cropped into 1024x1024 patches, with

random brightness, vertical and horizontal flips. We train for

40 epochs, with batch size of 8, on a NVIDIA 3090 GPU. The

following data splits are employed, which can also be seen in

Table III:

• Experiment 0 (E0) - From the 50 official UAVid images

(seq13, seq15, seq19, seq31, and seq36), we use 45 for

training and five for testing. We also add half of seq14

for training and the other half for testing. Resulting in a

total of 50 images for training and 10 images for testing.

• Experiment 1 (E1) - Almost the same setup as E0, but

we used the corrected semantic images instead.

• Experiment 2 (E2) - We add to E1 the 902 images

generated for training and keep the same 10 for testing.

• Experiment 3 (E3) - The quantity and data distribution is

the same as for E2, with the inclusion of synthetic cars

and pedestrians in the images of seq13, seq15 and seq31.

The test images were chosen so that there were no real-world

areas that also appeared in the training images.

The mean pixel-level distribution of the semantic classes is

presented in Table I. Compared to the corrected set of images

(E2), the proposed method (E3) increased the number of pixels

for the ”Moving Car” semantic class by a factor of 12.9, while

the number of pixels for the ”Human” class increased 2.4

times.

We report the IoU results in Table II, from which we notice

a mIoU improvement of +0.63% when we used the corrected

images (E1), compared to the same dataset used without any

corrections (E0). An additional +4.11% improvement when

we increase the quantity of training data from 50 images



TABLE II: Quantitative Semantic Segmentation Results using UNetFormer.

Experiment Clutter Moving Car Static Car Human Building Vegetation Tree Road mIoU

E0 55.55 0 41.32 0 84.00 63.03 67.64 68.28 47.48

E1 56.88 0 41.34 0 84.59 65.37 66.87 69.81 48.11

E2 62.02 11.11 49.07 0 85.90 68.80 65.67 75.21 52.22

E3 61.68 64.15 50.99 35.81 86.26 67.73 65.16 76.69 62.99

E4 59.95 57.59 50.13 30.06 86.42 67.00 65.32 74.28 61.34

Fig. 16: Qualitative semantic segmentation results using UNetFormer. The columns from left to right contain: the RGB frame,

the semantic segmentation ground truth, and the three outputs for each training dataset. Experiment 1 contained 50 training

images, while experiments 2 and 3 used 952 images for training. Experiment 3 also contained synthetic pedestrians and moving

cars. The white rectangles highlight various elements of interest, such as cars and humans.

TABLE III: Data Split for Semantic Segmentation Experi-

ments.

Seq #img Purpose Generated

13 10 Train

15 10 Train

19 10 Train

36 10 Train

5 Train
31

5 Test

5 Train
14

5 Test

no
E1

13 261 Train

15 261 Train

19 90 Train

36 174 Train

31 116 Train

yes

E2 E3

to 952 images, and another improvement of +10.77% when

synthetic 3D models for pedestrians and cars are introduced in

the training data. In Figure 16 we present results for three test

cases. We observe that the network has difficulties segmenting

small-sized objects such as cars and humans. In the case of

cars, when multiple examples are provided, the system begins

to distinguish between static and dynamic cars. However, since

certain car models have not been introduced synthetically, such

as buses or minivans, the network has problems in extracting

them. For the human semantic class their distribution is still

smaller compared to the other classes. Therefore, the network

learns to correctly extract the pedestrians only in the last

experiment, using the synthetic data enrichment.

C. Ablation Study

To prove the importance of the proposed transfer method

for dynamic entities and their shadows in RGB images,

we performed an ablation study. For this, we compared the

aforementioned results from E3 with a new experiment, E4.

In this new experiment, we employed the same dataset used

for E3, but we chose to transfer all the information from the

generated RGBA images (Fig. 10) without taking into account

the alpha channel thresholds (i.e., using the original Alpha

Blending technique). The last two rows of Table II shows

that if we had not applied the special transfer of synthetic

pedestrians and moving cars, the overall performance of the

network would have been 1.65% mIoU lower, and the least

represented classes (i.e., Moving Car and Human) would have

had a major segmentation decrease.

VI. CONCLUSIONS

In this paper, we proposed a processing pipeline for animat-

ing a 3D static mesh with dynamic entities in order to enrich

a set of images and obtain complex training sets. The pipeline

aims to create a virtual scene that reflects the real-world



environment from which the images were acquired, taking into

account the global illuminations, occlusions and shadows. At

the end of it, we transferred the obtained information to RGB

and semantic images.

In order to prove the practical utility of the proposed ap-

proach and evaluate its capabilities, the UAVid dataset [3] was

used. This work focused on a subset of 50 images from this

dataset, which was improved by various manual corrections

of errors and inconsistencies. The results for the semantic

segmentation task show an improvement of 10.77% mIoU,

significantly increasing the detection of poorly represented

dynamic object classes.

In terms of future work, we plan to develop a rendering

method based on semantic labels, which is not limited by the

3D reconstruction of the scene and allows the rendering of

occluded objects even for wrong reconstructions. We also plan

to generate depth masks for the dynamic entities and analyze

how much this can help the task of depth estimation.

VII. ACKNOWLEDGMENT

This work was supported by the ”DeepPerception - Deep

Learning Based 3D Perception for Autonomous Driving” grant

funded by Romanian Ministry of Education and Research,

code PN-III-P4-PCE-2021-1134.

REFERENCES

[1] X. Fu, S. Zhang, T. Chen, Y. Lu, L. Zhu, X. Zhou, A. Geiger, and
Y. Liao, “Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene
segmentation,” arXiv preprint arXiv:2203.15224, 2022.

[2] V. Chiciudean, H. Florea, B.-C.-Z. Blaga, F. Oniga, and S. Nedevschi,
“Data augmentation for environment perception with unmanned aerial
vehicles,” June 2023, manuscript submitted for publication.

[3] Y. Lyu, G. Vosselman, G.-S. Xia, A. Yilmaz, and M. Y. Yang, “UAVid:
A semantic segmentation dataset for UAV imagery,” ISPRS journal of

photogrammetry and remote sensing, vol. 165, pp. 108–119, 2020.

[4] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise
view selection for unstructured multi-view stereo,” in Computer Vision–

ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11-14, 2016, Proceedings, Part III 14. Springer, 2016, pp.
501–518.

[5] Y. Pi, N. D. Nath, and A. H. Behzadan, “Detection and semantic
segmentation of disaster damage in uav footage,” Journal of Computing

in Civil Engineering, vol. 35, no. 2, p. 04020063, 2021.

[6] G. Cheng and J. Han, “A survey on object detection in optical remote
sensing images,” ISPRS journal of photogrammetry and remote sensing,
vol. 117, pp. 11–28, 2016.

[7] Z. Li, A. Namiki, S. Suzuki, Q. Wang, T. Zhang, and W. Wang,
“Application of low-altitude uav remote sensing image object detection
based on improved yolov5,” Applied Sciences, vol. 12, no. 16, p. 8314,
2022.

[8] L.-Y. Lo, C. H. Yiu, Y. Tang, A.-S. Yang, B. Li, and C.-Y. Wen,
“Dynamic object tracking on autonomous uav system for surveillance
applications,” Sensors, vol. 21, no. 23, p. 7888, 2021.

[9] B. Chen, Z. Chen, L. Deng, Y. Duan, and J. Zhou, “Building change
detection with rgb-d map generated from uav images,” Neurocomputing,
vol. 208, pp. 350–364, 2016.

[10] H. Ling, H. Luo, H. Chen, L. Bai, T. Zhu, and Y. Wang, “Modelling
and simulation of distributed uav swarm cooperative planning and
perception,” International Journal of Aerospace Engineering, vol. 2021,
pp. 1–11, 2021.

[11] H. Florea, V.-C. Miclea, and S. Nedevschi, “Wilduav: Monocular uav
dataset for depth estimation tasks,” 2021 IEEE 17th International

Conference on Intelligent Computer Communication and Processing

(ICCP), 2021.

[12] I. Bozcan and E. Kayacan, “Au-air: A multi-modal unmanned aerial
vehicle dataset for low altitude traffic surveillance,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 8504–8510.

[13] ——, “Au-air: A multi-modal unmanned aerial vehicle dataset for low
altitude traffic surveillance,” 2020.

[14] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 4104–4113.
[15] OpenDroneMap, “A command line toolkit to generate maps, point

clouds, 3d models and dems from drone, balloon or kite images.”
https://github.com/OpenDroneMap/ODM, 2020.

[16] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and
J. D. Tardos, “ORB-SLAM3: An accurate open-source library for
visual, visual–inertial, and multimap SLAM,” IEEE Transactions on

Robotics, vol. 37, no. 6, pp. 1874–1890, dec 2021. [Online]. Available:
https://doi.org/10.1109%2Ftro.2021.3075644

[17] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” 2021.

[18] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and
T. Aila, “Alias-free generative adversarial networks,” in Proc. NeurIPS,
2021.

[19] B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org

[20] Y. Su, J. Cheng, H. Bai, H. Liu, and C. He, “Semantic segmentation
of very-high-resolution remote sensing images via deep multi-feature
learning,” Remote Sensing, vol. 14, no. 3, p. 533, 2022.

[21] M. Y. Yang, S. Kumaar, Y. Lyu, and F. Nex, “Real-time semantic
segmentation with context aggregation network,” ISPRS journal of

photogrammetry and remote sensing, vol. 178, pp. 124–134, 2021.
[22] L. Wang, R. Li, D. Wang, C. Duan, T. Wang, and X. Meng, “Transformer

meets convolution: A bilateral awareness network for semantic segmen-
tation of very fine resolution urban scene images,” Remote Sensing,
vol. 13, no. 16, p. 3065, 2021.

[23] S. Yi, X. Liu, J. Li, and L. Chen, “UAVformer: A Composite Trans-
former Network for Urban Scene Segmentation of UAV Images,” Pattern

Recognition, vol. 133, p. 109019, 2023.
[24] L. Wang, R. Li, C. Zhang, S. Fang, C. Duan, X. Meng, and P. M.

Atkinson, “UNetFormer: A UNet-like transformer for efficient semantic
segmentation of remote sensing urban scene imagery,” ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 190, pp. 196–214, 2022.
[25] S. Bullinger., C. Bodensteiner., and M. Arens., “A photogrammetry-

based framework to facilitate image-based modeling and automatic
camera tracking,” in Proceedings of the 16th International Joint Con-

ference on Computer Vision, Imaging and Computer Graphics Theory

and Applications (VISIGRAPP 2021) - GRAPP, INSTICC. SciTePress,
2021, pp. 106–112.

[26] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

https://github.com/OpenDroneMap/ODM
https://doi.org/10.1109%2Ftro.2021.3075644
http://www.blender.org
 https://www.openstreetmap.org 

	Introduction
	Related Work
	Aerial Datasets
	3D Scene Reconstruction
	Image Composing and Inpainting
	Semantic Segmentation

	Overview of the Proposed Approach
	Detailed Methodology
	Import the Inputs
	Define Places
	Animate Actions
	Set the Light Properties
	Render the Images
	Transfer the Dynamic Entities

	Experiments
	Dataset
	Semantic Segmentation Results
	Ablation Study

	Conclusions
	Acknowledgment
	References

